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Abstract 

Strong sex differences exist in sleep phenotypes and also cardiovascular diseases (CVDs). 

However, sex-specific causal effects of sleep phenotypes on CVD-related outcomes have not 

been thoroughly examined. Mendelian randomizaZon (MR) analysis is a useful approach for 

esZmaZng the causal effect of a risk factor on an outcome of interest when intervenZonal 

studies are not available. We first conducted sex-specific genome-wide associaZon studies 

(GWASs) for subopZmal-sleep phenotypes (insomnia, obstrucZve sleep apnea (OSA), short and 

long sleep duraZons, and excessive dayZme sleepiness) uZlizing the Million Veteran Program 

(MVP) dataset. We then developed a semi-empirical Bayesian framework that (i) calibrates 

variant-phenotype effect esZmates by leveraging informaZon across sex groups, and (ii) applies 

shrinkage sex-specific effect esZmates in MR analysis, to alleviate weak instrumental bias when 

sex groups are analyzed in isolaZon. SimulaZon studies demonstrate that the causal effect 

esZmates derived from our framework are substanZally more efficient than those obtained 

through convenZonal methods. We esZmated the causal effects of sleep phenotypes on CVD-

related outcomes using sex-specific GWAS data from the MVP and All of Us. Significant sex 

differences in causal effects were observed, parZcularly between OSA and chronic kidney 

disease, as well as long sleep duraZon on several CVD-related outcomes. By applying shrinkage 

esZmates for instrumental variable selecZon, we idenZfied mulZple sex-specific significant 

causal relaZonships between OSA and CVD-related phenotypes. 
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Introduc3on 

InvesZgaZng sex differences in health and disease mechanisms is a leading public health 

research priority (1–3). Sex differences are evident in various health condiZons, including 

subopZmal-sleep phenotypes and cardiovascular diseases (CVD). For example, there is a higher 

prevalence of insomnia in women (4,5), whereas obstrucZve sleep apnea (OSA) is more 

common in men (6,7). Cardiovascular-related diseases, such as myocardial infarcZon and 

hypertension, generally present with a higher incidence in male adults compared to females (8–

10). Increasing numbers of genome-wide associaZon studies (GWASs), which like other genomic 

studies oeen analyze only autosomal chromosomes, have idenZfied strong signals of sex 

differences (11–13). Examples include, but are not limited to, sex differences in geneZc variant 

effect sizes (14–16), sex-specific geneZc risk associaZons (17–19), and sex-biased gene/protein 

expression level (20–22). Sex-specific causal effects of modifiable risk exposures on outcomes 

can, under some condiZons, be obtained via Mendelian randomizaZon (MR) analysis (23). But 

because of the paucity of sex-specific intervenZonal studies, or studies with sufficient sex-

straZfied sample sizes, much remains unknown about how sex-specific causal effects may 

inform targeted disease treatments or intervenZons, ulZmately limiZng efforts to reduce sex-

dispariZes in health (24–26). 

 

MR analysis is widely used in geneZc epidemiology because it can, using GWAS summary 

staZsZcs alone (27–29), esZmate causal effects from observaZonal data. Sex-specific MR 

analysis, however, is limited in comparison: not only is each sex group’s sample size smaller than 

total in any one study, but GWAS reporZng is not always sex-specific. This problem can be worse 
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where GWAS parZcipaZon is biased for structural or other reasons. For example, in the Million 

Veteran Program (MVP) of the U.S. Department of Veterans Affairs (VA) healthcare system, 

which collected geneZc data and extensive phenotypes from U.S. veterans, only 10% of 

parZcipants are female, in line with the proporZon of female veterans. In sex-specific MR 

analysis, the small sample size of the female MVP populaZon parZcularly limits the strength of 

instrumental variables (IVs) idenZfied from female-specific GWAS, which may make causal effect 

esZmates unstable, due to the corresponding weak IV bias (30,31).  

 

To address these challenges, we (i) performed sex-specific GWASs of sleep phenotypes in the 

MVP, (ii) developed a novel staZsZcal approach to enhance the precision of sex-specific variant-

phenotype effect esZmates by leveraging informaZon across sex groups, and (iii) integrated our 

new shrinkage esZmator into MR analyses to improve causal effect esZmates, parZcularly for 

the sex group with smaller sample sizes. MoZvaZon for this approach comes from recent 

findings of high correlaZon, between females and males, of the geneZc components of mulZple 

traits, (32,33), suggesZng that many (though not all) variant associaZons are similar between 

sexes. Thus, focusing on MVP where the female populaZon is small, our approach is to borrow 

informaZon from the male populaZon in an adapZve manner to improve female-specific variant 

effect esZmates and, ulZmately, exposure-outcome causal effect esZmates. 

 

The proposed approach, incorporaZng the spirit of both transfer learning and empirical Bayes, 

uses male-specific effect size esZmates to specify prior distribuZons on the female-specific 

variant-exposure effect sizes (i.e., using informaZon from the larger sample to improve power in 
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the smaller). The inverse variance-weighted meta-analysis esZmator and the adapZve weight 

esZmator (proposed for analyzing secondary outcome in case-control studies (34–36)) can both 

be derived as the posterior mean in the proposed framework. In simulaZon studies, compared 

to standard use of variant-exposure summary staZsZcs in MR analysis, our approach improves 

efficiency of exposure-outcome causal effect esZmates. Finally, using sex-specific data from the 

MVP, along with geneZc associaZon results from the All of Us (AoU) study, we applied a two-

sample MR approach to esZmate the causal effects of sleep phenotypes on CVD-related 

outcomes. Our method idenZfied several sex-specific causal associaZons. Specifically, insomnia 

was causally associated with an increased risk of chronic kidney disease in females, long sleep 

was linked to a higher risk of hypertension in females, and short sleep was associated with an 

increased risk of coronary artery disease in males. A staZsZcally significant sex difference in the 

causal effect of OSA on chronic kidney disease was also idenZfied. In addiZon, using shrinkage 

esZmates for IV selecZon, we detected several staZsZcally significant causal effects of OSA on 

CVD-related outcomes, as well as disZnct sex differences in the causal pajerns of long sleep on 

CVD-related outcomes, with higher risks observed in female populaZons 

 

Results 

Overview of semi-empirical Bayesian method for calibra8ng gene8c variant effect size 

es8mates u8lizing informa8on across groups 

While our method is general, we focus on the need to improve the esZmaZon of variant effect 

sizes in the relaZvely small MVP female populaZon, and do so by borrowing informaZon from 
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the male populaZon. Another simplificaZon we make in the exposiZon is to focus on the 

“exposure” GWAS, even though the same framework can be applied to any trait GWAS, 

regardless of its role in an MR analysis. Throughout this paper, we use 𝛾 to represent “variant-

exposure” effect size and Γ to represent “variant-outcome” effect size. To moZvate our method, 

we consider a Bayesian prior on 𝛾!", the female-specific effect size of the 𝑗th SNP on the sleep 

phenotype, specifically 

𝛾!" 	~	𝑁(𝜃!" , 𝜏!"# ) (1) 

where 𝜃!" , 𝜏!"  are the prior mean and standard deviaZon (SD). The approximate distribuZon of 

the “raw” female-specific effect size esZmate (i.e., an esZmate that relies on female data only) 

is given by 

𝛾,!",%&' 	~	𝑁(𝛾!" , 𝜎,(,!",%&'# ) (2) 

where 𝜎,(,!",%&' is the esZmated standard error of 𝛾,!",%&'. The normality assumpZon here is 

appropriate due to large GWAS sample sizes (30,31), regardless of the specific method used for 

esZmaZon (maximum likelihood, method of moments, etc.).  

 

Poten&al specifica&on of the prior distribu&on of female-specific SNP effect sizes and resul&ng 

posterior es&mates 

An intuiZve way to borrow informaZon from the male to the female populaZon is to specify the 

prior mean and variance 𝜃!" , 𝜏!"#  in equaZon (1) as the male-specific effect size esZmate and its 

esZmated variance. Formally the prior is   

𝛾!" 	~	𝑁(𝜃!" = 𝛾,!),%&' , 𝜏!"# = 𝜎,(,!),%&'# ), (3) 

leading to posterior 
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𝛾!"|𝛾,!",%&' , 𝜎,(,!",%&'# , 𝛾,!),%&' , 𝜎,(,!),%&'# 	~	𝑁(𝑅!" , 𝐾!"# ), (4) 

where the posterior mean 𝑅!" =
*+!,#$,%&'
(

*+!,#),%&'
( ,*+!,#$,%&'

( × 𝛾,!",%&' +
*+!,#),%&'
(

*+!,#),%&'
( ,*+!,#$,%&'

( × 𝛾,!),%&' and 

the posterior variance 𝐾!"# =
-

*
+,!,#),%&'
( , *

+,!,#$,%&'
(

. The posterior mean is a weighted average of the 

prior mean and sample mean, with the weight on the group-specific esZmates being 

proporZonal to their precisions (i.e., the inverse of their variances). The posterior mean and 

variance are exactly idenZcal to those from convenZonal fixed-effects inverse-variance meta-

analysis of the sex-specific esZmates (𝛾,!,./0&, FE meta esZmate henceforth). A more detailed 

illustraZon of the Bayesian approach to meta-analysis is given by Dominguez and Rice (37). The 

FE meta esZmate has been shown to be as efficient as pooling individual level data when effects 

are idenZcal across combined studies (38), so in that senng there is no penalty to using meta-

analysis over any standard compeZng method.  

 

However, the esZmated strength of sex differences, i.e., 𝛾,!",%&' − 𝛾,!),%&', is not considered in 

the FE meta esZmate, or standard compeZng methods, making their use unappealing when 

there are strong sex differences. To incorporate informaZon on sex differences we consider the 

prior with: 

𝛾!" 	~	𝑁(𝜃!" = 𝛾,!,./0& , 𝜏!"# = 5𝛾,!",%&' − 𝛾,!),%&'6
# + 𝜎,(,!),%&'# ). (5) 

Here, the prior mean is the efficient FE meta esZmate 𝛾,!,./0&, while the sex differences strength 

is incorporated in the prior variance. The posterior distribuZon of  𝛾!"  is Normal, with mean 

𝑅!" =
12(

12(,32(
𝛾,!",%&' +

32(

12(,32(
𝛾,!,./0&, where 𝛿8# = (𝛾,!",%&' − 𝛾,!),%&')# + 𝜎,(,!),%&'#  is related to 
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both the difference in effect size esZmate and the variance of male-specific esZmate. Here, 𝜓:# 

is 𝜎,(,!",%&'# . The posterior variance can be wrijen as 𝐾!"# =
-

*
+,!,#),%&'
( , *

(!,#),%&'.!,#$,%&')(0+,!,#$,%&'
(

 . 

Because the posterior mean adapts 𝛾,!",%&' to the observed differences in sex-specific esZmates, 

we call it the adap%ve posterior mean (APM) esZmator (𝛾,!",45)). From equaZon (5), the prior 

mean and variance depend not only on sex-specific groups but also on sex-combined effect 

esZmates and sex differences. This is why we refer to our framework as a “semi-empirical” 

Bayes approach. 

 

The APM esZmator is related to the adapZve weight (AW) esZmator, iniZally proposed for gene-

environment interacZons or gene-secondary outcome associaZons in case-control studies (34–

36). In both of those contexts, the AW esZmator was developed to provide a populaZon-level 

esZmate (i.e., not specific to either cases or controls) by adapZvely combining informaZon from 

both groups using weighZng. In our approach, we instead use shrinkage esZmators to obtain 

group-specific esZmates. The APM esZmator also differs from the original AW in its weighZng 

parameters. APM incorporates the variance of group-specific effect esZmates into its prior 

variance for	𝛾!", to avoid underesZmaZng posterior variance due to smaller esZmated sex 

differences (i.e., 𝛾,!",%&' − 𝛾,!),%&' ≈ 0). In other words, if 𝜎,(,!),%&'# = 0 in equaZon (5), then 

the APM esZmator may reduce to AW esZmator. Table 1 summarizes the derivaZon of the FE 

meta and APM esZmates under the Bayesian Normal-Normal modeling scheme. As stated 

earlier, we focus on the calibraZon of the female effects 𝛾,", but the framework is general and 

can be similarly applied to the male populaZon. 
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Table1: The proposed Bayesian framework for calibraZng variant-trait effect size esZmates. 

Likelihood Prior distribu;on of 𝛾!" Posterior mean of 𝛾!" Es;mator name 

𝛾"!",$%&	~	𝑁(𝛾!" , 𝜎"',!",$%&( ) 

𝛾!"	~	𝑁(𝛾"!),$%&, 𝜎"',!),$%&( ) 
*+!,#$,%&'
(

*+!,#),%&'
( ,*+!,#$,%&'

( 𝛾"!",$%& + 
*+!,#),%&'
(

*+!,#),%&'
( ,*+!,#$,%&'

( 𝛾"!),$%& 
FE meta es;mate 

𝛾"!,-./% 

𝛾!"	~	𝑁(𝛾"!,-./%, +𝛾"!",$%& − 𝛾"!),$%&-
( + 𝜎"',!),$%&( ) 

0'+#),%&'1'+#$,%&'2
(
,*+!,#$,%&'

(

0'+#),%&'1'+#$,%&'2
(,*+!,#$,%&'

( ,*+!,#),%&'
( 𝛾"!",$%& + 

*+!,#),%&'
(

0'+#),%&'1'+#$,%&'2
(,*+!,#$,%&'

( ,*+!,#),%&'
( 𝛾"!,-./% 

APM es;mate 
𝛾"!",34) 

The table summarizes the semi-empirical Bayesian model parameters behind the two proposed variant-trait effect 
size es:mators. The “raw” effect size es:mates are obtained from an analysis of a single stratum (here we focus on 
the female stratum). By specifying prior distribu:ons on the variant-trait effect sizes (second column), the raw 
es:mates are shrunk toward the prior means to become the es:mates provided in the posterior mean column. The 
last column, es:mator name, provides the name and nota:on of the resul:ng es:mators (FE meta es:mate and 
adap:ve posterior mean (APM) es:mate). 
 
 
Exposure-outcome causal effect es&ma&on 

Two-sample MR approaches esZmate causal effects from two independent sets of summary 

staZsZcs. These describe variant associaZons with an exposure and with the outcome 

phenotype, where the variants are selected to be valid IVs for the exposure of interest (30,39–

42). A causal effect 𝛽!  of exposure on outcome can then be esZmated using esZmated 

associaZons of variant 𝑗 with exposure (𝛾,!,%&') and outcome (Γ:!,%&') via the Wald raZo esZmate 

𝛽8!,%&' =
62#,%&'
(+#,%&'

 . Using mulZple IVs, the causal effect 𝛽 can then be esZmated by aggregaZng 

esZmates from all valid IVs through various weighZng approaches. Here, we assume all 𝑝 

variants are valid IVs. Our proposed Bayesian framework, therefore, is conceptualized as a 

preliminary step before applying MR methods. More specifically, we first calibrate the 𝛾,%&' 

esZmates using the proposed Bayesian models. Then, the shrinkage esZmates, i.e., the 

posterior means and SDs in equaZon (4), are used as inputs in exisZng MR algorithms. The 
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causal effect is then esZmated using the newly-esZmated 𝛾,./0& and 𝛾,45) (with corresponding 

posterior SD) coupled with the (raw) variant-outcome esZmated effect sizes. A schemaZc 

overview of the sex-specific MR analysis and the proposed Bayesian framework is illustrated in 

Figure 1.  
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Figure 1: SchemaZc overview of the sex-specific MR analysis  

 

Panel a: A causal diagram underlying the MR framework in this manuscript. We consider sleep-related 
phenotypes to be the exposure factors and cardiovascular-related measures as outcome variables. 𝛽1 denotes 
the underlying female-specific exposure-outcome causal effect; 𝛽2 represents the underlying male-specific 
exposure-outcome causal effect. In our analysis, 𝛽1  and 𝛽2 are es:mated separately. The GWAS summary 
sta:s:cs for sleep phenotypes were derived from the MVP dataset, and the summary sta:s:cs for 
cardiovascular-related diseases were computed in AoU; Panel b: Es:ma:on of sex-specific causal effects using 
the two-sample MR approaches. The inputs for the two-sample MR methods are raw sex-specific exposure 
(female:	𝛾%31,456 and 𝜎%7,31,456; male: 	𝛾%32,456 and 𝜎%7,32,456) and outcome GWAS summary sta:s:cs 
(female:	Γ(31,456 and 𝜎%8,31,456; male: 	Γ(32,456 and 𝜎%8,32,456) from independent samples. The outputs are: 
es:mated female-specific causal effect 𝛽)1,456 and es:mated male-specific causal effect 𝛽)2,456; Panel c: The 
proposed Bayesian method. We first calibrate the raw sex-specific exposure effects by borrowing informa:on 
from one sex group to the other, or across both sex groups. Two-sample MR analysis then uses the shrinkage 
exposure summary sta:s:cs, i.e., the posterior mean and posterior SD of 𝛾 (female:	𝐸{𝜋(𝛾31|. )} and 
𝑆𝐷{𝜋(𝛾31|. )} ; male: 	𝐸{𝜋(𝛾32|. )} and 𝑆𝐷{𝜋(𝛾32|. )}), with the raw outcome summary sta:s:cs to provide a 
more robust basis for causal effect es:ma:on. We use 𝜋(𝛾|. ) to denote the posterior distribu:on of 𝛾. The 
outputs are the es:mated female-specific causal effect 𝛽)1,95:;<, and es:mated male-specific causal effect 
𝛽)2,95:;<, both use shrinkage exposure effect es:mates in their construc:on. 
Abbrevia:ons. MR: Mendelian randomiza:on; F: female; M: male; CVD: cardiovascular disease; GWAS: genome-
wide associa:on study; MVP: million veteran program; AoU: All of Us; SD: standard devia:on; cML: constrained 
maximum likelihood. 
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Simula8on studies 

We used simulaZon primarily to evaluate and compare the performance of exposure-outcome 

causal effect (𝛽) esZmaZon using raw (𝛾,%&') and shrinkage variant-exposure effect (𝛾,./0& and 

𝛾,45)) with respecZve SD esZmates, combined with each selected MR 

method, parZcularly focusing on the populaZon with a smaller sample size (female populaZon 

in our analysis). For our Bayesian methods, the posterior SDs of 𝛾 are treated as standard error 

esZmates. We also incorporated the AW esZmator (𝛾,47) as another approach for calibraZng 

female-specific variant-exposure effect size esZmates. The two-sample MR methods considered 

in the analyses are summarized in Table 4 (Method secZon).  

 

To mimic the structure of the MVP dataset, we generated 2,000 female individuals and 20,000 

male individuals for the exposure GWAS, maintaining a similar proporZon of females to males 

as in the MVP. For the outcome GWAS, we generated balanced datasets of 10,000 individuals 

for both female and male populaZons. We generated 100 independent SNPs as IVs in all 

simulaZons, with all allele frequencies set at 0.3. We use 𝐷!( = 𝛾!" − 𝛾!) , 𝑗 = 1,2, … , 𝑝 to 

denote the sex differences strength in variants associaZons with the exposure,	𝛾. We write 

𝐷( = C𝑗|𝐷!( = 𝛾!" − 𝛾!) ≠ 0E and F𝐷(F to represent the set of variants and the number of 

variants having sex-differences in variant-exposure effect size, respecZvely. We considered three 

simulaZon scenarios: (i) fixed 𝐷!( = 0.05 if variant 𝑗 ∈ 𝐷(  (ii) random 𝐷!(, and (iii) using MVP 

OSA GWAS summary staZsZcs to guide the simulated differences 𝐷!(, which consists 

of strong 𝐷!( pajerns with weak IVs in the female populaZon (average F-staZsZc < 10). In 

simulaZon (ii) and (iii), all variants 𝑗 ∈ 𝐷( (i.e., F𝐷(F = 100). Within each simulaZon, we also 
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considered a few levels of sex differences in “causal effect” senngs (i.e., 𝛽" ≠ 𝛽)). A more 

detailed descripZon of the simulaZon studies is provided in Method secZon, Supplementary 

Note 1, Supplementary Tables 1 and 2. 

 

We summarized the esZmaZon performance of the 𝛽8"  and 𝛽8) in the simulaZon studies using 

two metrics: (i) the mean squared error (MSE) of the esZmated effect and (ii) the 95% 

confidence interval’s actual coverage of the true effect, where these 95% confidence intervals 

for 𝛽 under each MR method were computed using standard asymptoZc normality properZes. 

The female results from simulaZons with no sex-differences in causal effect are presented in 

Figure 2 and summarized below. The full simulaZon results, including the male-specific causal 

effect esZmaZon and sex differences in causal effect simulaZons are summarized in 

Supplementary Note 1 and Supplementary Figures 1, 2 and 3. 

 

Results from simula&on se?ngs (i): fixed sex differences in variant-exposure effect sizes  

These results are provided in Figures 2a and 2b. The 𝛾,./0& esZmator performs best when 𝐷( 

included only 10% of the variants (i.e., F𝐷(F = 10), compared to other shrinkage methods and 

to the raw 𝛾,",%&'. The esZmators	𝛾,",45) and 𝛾,",47 had similar performance, and both gave 

bejer causal effect esZmates than 𝛾,",%&', regardless of the proporZon of variants with sex 

differences. We found that 𝛾,",45) performed bejer than 𝛾,./0& when more than 10% of 

variants were being selected into 𝐷(. The coverage rate of	𝛽"  using 𝛾,",45) was lower than that 

of 𝛾,",%&' 	when many variants were included in 𝐷(. However, 𝛾,",45) always achieved a smaller 

MSE for 𝛽"  compared with 𝛾,",%&'. 
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Results from simula&on se?ngs (ii): random sex differences in variant-exposure effect sizes  

For random sex differences in 𝛾 (Figures 2c and 2d), when every variant has a sex difference, 

i.e., all 𝑗 ∈ 𝐷(, and most sex-difference 𝐷!( were strong, the esZmate 𝛽8"  that relies on the 𝛾,./0& 

had a higher MSE than the one relying on raw 𝛾,",%&'. In contrast, using 𝛾,",45) improved 𝛽"  

esZmaZon performance in terms of MSE and performed similarly to 𝛾,",47. In these simulaZons, 

the APM esZmator 𝛾,",45) resulted in similar 95% confidence interval coverage compared to the 

raw approach, but achieved a smaller MSE for 𝛽".  

 

Results from simula&on se?ngs (iii): using OSA GWAS summary sta&s&cs to guide the simulated 

variant-exposure effect sizes 

Here, all variants have substanZal sex differences in 𝛾, while the selected variants are all weak 

IVs, meaning that the F-staZsZc < 10 in the female populaZon. Using 𝛾,",45) and 𝛾,",47 

improved 𝛽"  esZmaZon as demonstrated by improved MSE (Figures 2e and 2f). In most cases, 

𝛾,",45) performed bejer than 𝛾,",47. Both 𝛾,",45) and	𝛾,",47 approaches improved the 95% 

confidence interval coverage rate compared to using 𝛾,",%&'. These results highlight that even 

though less informaZon could be transferred from the male to the female populaZon in these 

simulaZons (due to the strong sex differences in 𝛾), adapZve esZmates sZll improved causal 

effect esZmaZon. Moreover, the esZmates  𝛾,./0& had a larger MSE than the raw approach 

under most senngs and performed poorly when the female causal effect 𝛽"  was non-null.  

 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 2, 2025. ; https://doi.org/10.1101/2025.01.02.25319889doi: medRxiv preprint 

https://doi.org/10.1101/2025.01.02.25319889
http://creativecommons.org/licenses/by-nd/4.0/


 15 

In summary, borrowing power from the stratum with the larger to the stratum with the lower 

sample size, using adapZve (i.e., shrinkage) variant-exposure esZmates (𝛾,",45) and 𝛾,",47) 

improves 𝛽"  esZmates. Using esZmators 𝛾,",45) and 𝛾,",47 performed well in most simulaZon 

studies, regardless of the degree of sex differences 𝐷(!. The esZmator 𝛾,./0& performs best 

when the underlying true 𝛾 were similar in the two groups. Among the two-sample MR 

methods considered, MR-RAPS, known to perform well when weak instruments are used, 

demonstrated at least no worse performance than other methods.  

 

Secondary simula&on studies 

Supplementary Note 2 and Supplementary Figures 4-14 provide results from secondary 

simulaZon studies. We expanded upon simulaZon senngs (i), and further examined two 

scenarios: (a) esZmaZon at the presence of pleiotropic effects of some IVs and (b) calibraZon of 

both 𝛾 and Γ effect esZmates using the proposed framework. We also considered an increased 

sample size of the female populaZon in the exposure GWAS to simulate a scenario where 

borrowing informaZon from the male group may be less useful. Lastly, we evaluated the 

performance of a test for sex differences, i.e., a test of the null hypothesis 𝐻8:	𝛽" =	𝛽), using 

the esZmated 𝛽"  and 𝛽) based on various MR approaches (but always using the raw variant-

exposure 𝛾,%&' and variant-outcome associaZons Γ:%&').  

 

In brief, 𝛾,45) and 𝛾,47 substanZally improved the esZmaZon accuracy of 𝛾 (Supplementary 

Figures 4-6) compared to the 𝛾,%&' in all senngs and, under substanZal sex differences, 

performed bejer than 𝛾,./0&. In the simulaZons where pleiotropy was present, 𝛾,45) sZll 
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produced a lower MSE when esZmaZng 𝛽"  compared to 𝛾,%&' (Supplementary Figure 7). The 

penalized and robust IVW, contaminated mixture, cML, and MR-RAPS performed similarly in this 

analysis. AddiZonal calibraZon of Γ improved the esZmaZon of the 𝛽"  when males and females 

had the same causal effect, but not otherwise (Supplementary Figures 9-10). When increasing 

female sample sizes, the shrinkage approaches resulted nearly the same MSE for 𝛽"  esZmaZon 

as the 𝛾,%&', indicaZng that no esZmaZon efficiency is lost when using the shrinkage 

approaches, even though potenZally less informaZon is transferred from the male populaZon 

(Supplementary Figures 11-12). The test of sex differences in the causal effect between groups 

showed that MR-RAPS controls Type I error rate close to the nominal level under most senngs 

while maintaining similar power compared to other MR methods for detecZng sex differences in 

causal effects (Supplementary Figures 13-14). 
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Figure 2: MSE and 95% confidence interval coverage rate for female-specific causal effect 
esZmaZon 

 

Results from es:ma:ng female-specific causal effects 𝛽1 under three simula:on scenarios where there are no 
sex differences in causal effects (i.e., 𝛽1 = 𝛽2 ) across sex groups. The leW panel shows the MSEs of the 
es:mated female-specific causal effects, while the right panel presents the 95% confidence interval coverage 
rates of the true underlying causal effects. We considered five two-sample MR methods for es:ma:ng the causal 
effect, which are: MR-RAPS (RAPS), constrained maximum likelihood (cML), contaminated mixture (ConMix), 
weighted median (W-median), penalized and robust IVW (IVW*). In the MSE results, the un-calibrated approach 
(𝛾%456) is represented by the bars with darker colors. The other three shrinkage approaches (𝛾%=;>5, 𝛾%?@2, 
𝛾%?A) are shown in gradient colors. For the coverage rate results, the un-calibrated approach is shown in the first 
column, and other three shrinkage approaches are shown in the second to forth column. The results of fixed sex 
differences in variant-exposure effect simula:on are presented in panels a and b. The results of random sex 
differences in variant-exposure effect simula:ons are shown in panels c and d. The results of using MVP OSA 
GWAS summary sta:s:cs to guide sex-specific variant-exposure effect simula:on are shown in panels e and f. 
The underlying true causal effect is set at	𝛽1 = 0.1 in panels a, b, c, and d. The underlying true causal effects are 
shown in the top of panel e and bo]om of panel f. MSEs were computed over 1000 simula:on replicates. 
Intervals around the es:mated MSE correspond to the MSE +/- one es:mated standard error. 
Abbrevia:on: MSE: mean square error; MR: Mendelian randomiza:on; APM: adap:ve posterior mean; AW: 
adap:ve weight; diff: different level of sex differences in variant-exposure effects; Cor: correla:on between 
female and male variant-exposure effect; CE: causal effect; RAPS: MR-RAPS; cML: constrained maximum 
likelihood; ConMix: contaminated mixture; W-median: weighted medium; IVW*: penalized and robust IVW 
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Sex-specific causal es8mates of the effect of sleep phenotypes on cardiovascular-related 

outcomes 

We esZmated sex-specific causal effects of sleep phenotypes on CVD-related outcomes. The 

sample sizes for MVP’s sex-specific sleep GWAS are reported in Supplementary Table 4. 

Specifically, we considered five binary sleep traits: OSA, insomnia, short sleep duraZon, long 

sleep duraZon, and excessive dayZme sleepiness (sleepiness). The outcomes were six binary 

CVD-related phenotypes from All of Us: atrial fibrillaZon (AF), coronary artery disease (CAD), 

chronic kidney disease (CKD), heart failure (HF), hypertension (HTN), and type 2 diabetes 

mellitus (T2DM). CharacterisZcs of AoU individuals in the variant-phenotype associaZon analysis 

are summarized in Supplementary Table 5. The MVP sex-specific GWAS of sleep phenotypes 

were conducted using the same procedure described elsewhere (16). We only included 

individuals from the White Harmonized race/ethnicity and geneZc ancestry (HARE) group, as 

the large HARE group. Based on these results, we selected variants and performed variant-

outcome associaZons in the AoU dataset, focusing on the group of White individuals. For each 

trait, two types of analyses were performed: one adjusZng for body mass index (BMI) and the 

other not adjusZng for BMI. We only used common variants (minor allele frequency ≥ 0.01) 

with imputaZon quality score ≥ 0.8. More details are summarized in Method secZon. The 

results of sex-specific sleep GWASs are presented in Supplementary Figures 23-32.  

 

IV selec&on strategies 

We applied p-value thresholding and clumping procedures on exposure GWASs using the 

“clump_data” funcZon from the “TwoSampleMR” R package (version 0.6.8). The clumping 
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window was set to 10,000 kb, correlaZon threshold to 0.001, and the European populaZon 

reference panel was used. Due to having a limited number of variants (or even no variants) with 

p-value<5x10-8 and p-value<10-7 in the female sleep GWASs, p-value threshold of 109: was 

selected for IV selecZon in all analyses. The number of variants remaining aeer p-value 

thresholding (p-value<10-5) and clumping is given in Supplementary Table 3. We then matched 

the list of variants selected as targeted IVs from exposure GWAS to the variants in AoU datasets. 

The exposure and outcome dataset were harmonized using the “harmonise_data” funcZon 

from the TwoSampleMR R package (version 0.6.8) to remove variants with unmatched allele 

frequency and palindromic pajerns. We employed two strategies for IV selecZon in the primary 

analyses: (i) sex-specific IVs were selected based on sex-specific GWAS results (𝛾,%&'), potenZally 

resulZng in different variants for male and female analyses; (ii) IVs were selected using APM 

shrinkage esZmates (𝛾,45)), where addiZonal “potenZal” IVs that could not be selected using 

𝛾,",%&' esZmates (due to the smaller female sample size) were included by borrowing 

informaZon from the male populaZon. In the secondary analysis, we applied the 𝛾,./0& esZmate 

for IV selecZon in sex-combined analyses. 

 

Sex-specific causal es&mates 

The primary results use the 𝛾,45) esZmates with the MR-RAPS method, specifically developed 

for handling weak instruments and demonstraZng superior performance in simulaZon studies. 

Figure 3 shows sex-specific causal effect esZmates of sleep-related phenotypes on CVD-related 

outcomes, employing two different IV selecZon strategies: IVs selected based on sex-specific 

𝛾,45) (primary, proposed) and sex-specific 𝛾,%&'. Three pairs of causal effect esZmates showed 
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staZsZcally significant associaZons (p < 0.05) when IVs were selected using 𝛾,%&': insomnia on 

CKD in females (OR: 1.23, 95% CI: 1.01–1.49), long sleep on HTN in females (OR: 1.03, 95% CI: 

1.00–1.06), and short sleep on CAD in males (OR: 1.32, 95% CI: 1.03–1.69). In contrast, when 

𝛾,45) was used for IV selecZon, enabling more potenZal IVs to be selected by borrowing 

informaZon across sex groups, addiZonal staZsZcally significant causal esZmates were 

idenZfied. For instance, in females, we found a significant effect of OSA on T2DM (OR: 1.32, 95% 

CI: 1.05–1.66) in BMI-unadjusted analyses, and also an effect on HTN (OR: 1.14, 95% CI: 1.03–

1.25) in BMI-adjusted analyses. Notably, the causal relaZonships between insomnia and CKD 

(OR: 1.38, 95% CI: 1.07–1.79) and long sleep and HTN (OR: 1.04, 95% CI: 1.00–1.09) were 

replicated in the APM selecZon analyses (both from BMI-adjusted analyses). Among males, 

mulZple causal associaZons were observed between OSA and CVD-related outcomes, including 

OSA on CKD (BMI-unadjusted: OR: 1.23, 95% CI: 1.03–1.47; BMI-adjusted: OR: 1.27, 95% CI: 

1.02–1.59) and OSA on HF in the BMI-unadjusted analysis (OR: 1.30, 95% CI: 1.04–1.63). 

 

Sex-differences tests idenZfied staZsZcally significant difference in the causal effect of OSA on 

CKD, with a stronger effect in males (Table 3 and Supplementary Figure 15). Also, there were sex 

differences in the causal effects of long sleep on several CVD-related outcomes: long sleep 

increased risk of CAD, CKD, HTN, and T2DM in females, but was protecZve in males. These sex 

differences were staZsZcally significant in the APM IV selecZon analysis (Table 3 and 

Supplementary Figures 17-18).  
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The key findings from sex-specific causal effect esZmaZon and sex-difference tests are 

summarized in Tables 2 and 3. Full results, including the causal esZmaZon using 𝛾,%&', 𝛾,./0&, 

and 𝛾,47, as well as the sex-differences in causal esZmates tests, are summarized in 

Supplementary Figures 15-18. Causal esZmates from other considered MR methods are 

summarized in Supplementary Data 1 (𝛾,%&' IV selecZon) and Supplementary Data2 (𝛾,45) IV 

selecZon).  

 
Table 2: Top findings from sex-specific exposure-outcome causal effect esZmaZon. 
 Exposure Outcome BMI adjustment 𝛽)1,?@2 𝛽)2,?@2 
𝛾%456 selec:on      
 Insomnia CKD unadjusted 1.23 (1.01, 1.49) 1.23 (0.88, 1.73) 
 Long sleep HTN unadjusted 1.03 (1.00, 1.06) 0.94 (0.85, 1.05) 
 Short sleep CAD unadjusted 1.01 (0.85, 1.21) 1.32 (1.03, 1.69) 
𝛾%?@2 selec:on      
 OSA CKD unadjusted 0.95 (0.77, 1.16) 1.23 (1.03, 1.47) 
 OSA HF unadjusted 1.07 (0.86, 1.35) 1.30 (1.04, 1.63) 
 OSA T2DM unadjusted 1.32 (1.05, 1.66) 1.09 (0.92, 1.28) 
 Sleepiness AF unadjusted 1.18 (1.00, 1.38) 0.99 (0.78, 1.27) 
 Long Sleep CAD unadjusted 1.11 (1.00, 1.25) 0.80 (0.64, 1.00) 
 Long Sleep CKD unadjusted 1.05 (0.95, 1.16) 0.77 (0.61, 0.96) 
 Long Sleep HTN unadjusted 1.04 (0.99, 1.07) 0.91 (0.83, 0.99) 
 OSA CKD adjusted 1.09 (0.86, 1.38) 1.27 (1.01, 1.59) 
 OSA HTN adjusted 1.14 (1.03, 1.25) 0.99 (0.87, 1.14) 
 Insomnia CKD adjusted 1.38 (1.07, 1.79) 1.19 (0.88, 1.61) 
 Long Sleep HTN adjusted 1.04 (1.00, 1.09) 0.94 (0.86, 1.03) 

Selected findings from sex-specific exposure-outcome causal effect es:ma:on, where significant results were 
iden:fied in at least one sex-stratum, using MR-RAPS with APM variant-exposure es:mates (𝛾%?@2). The results 
based on 𝛾%456 for IV selec:on are shown in the top three rows, while the remaining results are from the analyses 
using 𝛾%?@2 for IV selec:on. The exposure and outcome of interest are listed in the second and third columns, 
respec:vely. The fourth column indicates whether BMI adjustment was applied in the variant-phenotype 
associa:on analysis. The es:mated causal effects are given in an OR scale. The female-specific causal es:mates and 
the corresponding 95% confidence intervals are shown in the fiWh column, and the results for males are in the sixth 
column. Bold values indicate sta:s:cally significant results (p-value < 0.05). 
Abbrevia:ons: MR-RAPS: MR using robust adjusted profile score method; APM: adap:ve posterior mean; IV: 
instrumental variable; OR: odds ra:o; OSA: obstruc:ve sleep apnea; AF: atrial fibrilla:on; CAD: coronary artery 
disease; CKD: chronic kidney disease; HF: heart failure; HTN: hypertension; T2DM: type 2 diabetes mellitus; BMI: 
body mass index; 
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Table 3: Top findings from sex-differences test in causal effect esZmaZon. 
 

Exposure Outcome 𝛽/",34) 𝛽/),34) 𝛽/",$%& − 𝛽/),$%& 
Sex 

difference  
p-value 

Sex 
difference 

FDR p-value 
𝛾"$%& selec;on 
BMI-
unadjusted 

       

 OSA CKD -0.108 (-0.277, 0.060) 0.171 (-0.015, 0.357) -0.275 (-0.521, -0.029) 0.028 0.500 
𝛾"34) selec;on 
BMI-
unadjusted 

       

 Long Sleep CAD 0.112 (0.001, 0.223) -0.219 (-0.445, 0.008) 0.328 (0.078, 0.578) 0.009 0.118 
 Long Sleep CKD 0.049 (-0.046, 0.146) -0.267 (-0.489, -0.044) 0.317 (0.073, 0.560) 0.011 0.118 
 Long Sleep HTN 0.035 (-0.003, 0.072) -0.095 (-0.188, -0.002) 0.128 (0.028, 0.228) 0.011 0.118 
 Long Sleep T2DM 0.101 (-0.022, 0.225) -0.125 (-0.299, 0.049) 0.223 (0.014, 0.433) 0.036 0.273 
𝛾"34) selec;on 
BMI-adjusted 

       

 Long Sleep CKD 0.070 (-0.027, 0.168) -0.202 (-0.425, 0.022) 0.272 (0.028, 0.516) 0.029 0.407 
 Long Sleep CAD 0.099 (-0.011, 0.209) -0.146 (-0.341, 0.049) 0.241 (0.019, 0.463) 0.033 0.407 
 Long Sleep HTN 0.043 (0.004, 0.082) -0.059 (-0.148, 0.029) 0.101 (0.004, 0.197) 0.041 0.407 

Selected findings from tests of sex-difference in causal effects. The first column describes the IV selec:on 
procedure and whether the exposure GWAS was adjusted for BMI or not. The exposure and outcome of interest 
are provided in the second and third columns, respec:vely. Sex-specific causal es:mates, obtained using MR-RAPS 
with APM variant-exposure es:mates (𝛾%?@2), along with their corresponding 95% confidence intervals, are 
displayed in the fourth (female-specific) and fiWh (male-specific) columns. The es:mated causal effects are 
reported on the log scale, as used in the test of sex differences. The sixth column provides the es:mated sex 
differences in causal effects, calculated from raw variant-exposure es:mates (𝛾%456), with 95% confidence intervals. 
P-values and FDR-adjusted p-values for the sta:s:cal tests of sex differences are shown in the seventh and eighth 
columns. The FDR p-values were computed using the Benjamini-Hochberg procedure. All the sex-difference tests 
are significant in the nominal threshold (p-value < 0.05).  
Abbrevia:ons: IV: instrumental variable; GWAS: genome-wide associa:on study; BMI: body mass index; BMI-unadj: 
BMI unadjusted; BMI-adj: BMI adjusted; MR-RAPS: MR using robust adjusted profile score method; APM: adap:ve 
posterior mean; OR: odds ra:o; OSA: obstruc:ve sleep apnea; CAD: coronary artery disease; CKD: chronic kidney 
disease; HTN: hypertension; T2DM: type 2 diabetes mellitus; FDR p-value: false discovery rate adjusted p-value. 
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Figure 3: Results from sex-specific causal effect esZmaZon 
 

 
Panel a provides sex-specific causal effect es:mates with the corresponding 95% CIs based on IVs selected by 
using 𝛾%456, while panel b shows result using 𝛾%?@2 for IV selec:on. The es:mated causal effects (from MR-RAPS) 
with 𝛾%?@2 variant-exposure effect es:mates are displayed on an OR scale. In each panel, variant-phenotype 
es:mates without BMI adjustment are displayed at the top, and those with BMI adjustment are shown at the 
bo]om. Female-specific results are indicated in the color orange, while results from male-specific are shown in 
color green. Ver:cal dashed lines indicate the null causal effects. The exposure variables are shown as the :tles 
of the sub-panels, while row names of the sub-panels provide the outcome variables. Sta:s:cally significant 
results (p-value < 0.05) for either the female or male-specific analysis are highlighted with yellow background.  
 
Abbrevia:ons: CI: confidence interval; APM: adap:ve posterior mean; IV: instrumental variable; MR-RAPS: MR 
using robust adjusted profile score method; MR: Mendelian randomiza:on; OR: odds ra:o; BMI: body mass 
index; OSA: obstruc:ve sleep apnea; AF: atrial fibrilla:on; CAD: coronary artery disease; CKD: chronic kidney 
disease; HF: heart failure; HTN: hypertension; T2DM: type 2 diabetes mellitus. 
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Results from secondary analyses  

We compared the causal effect esZmates of MR-RAPS, which we used in the primary analyses, 

with those of MR-PRESSO (43), a widely used approach for detecZng IVs with pleiotropic effects, 

and removing them, in MR analysis. The results from two methods are similar and are 

summarized in Supplementary Note 3 and Supplementary Figures 19-20. 

 

A comparison of causal effect esZmates using 𝛾,%&' and 𝛾,45) for IV selecZon is presented in 

Supplementary Figure 21. In the male populaZon, more consistent results were observed across 

different IV selecZon methods. For the analysis of OSA phenotype, the 𝛾,45) selecZon strategy 

idenZfied more variants as IVs in both male and female populaZons. Several significant causal 

effects between OSA and CVD-related outcomes were only detected when 𝛾,45) was used for IV 

selecZon. These findings highlight an addiZonal advantage of our proposed shrinkage esZmate: 

it not only helps correct for weak IV bias in causal effect esZmaZon but also enhances the IV 

selecZon process, increasing the potenZal for idenZfying novel causal effects. 

 

Lastly, we applied 𝛾,./0& for IV selecZon in the sex-combined analysis. In this analysis, the 

variant-exposure effect esZmates were based on 𝛾,./0&, and the variant-outcome effect 

esZmates were computed from a sex-combined analysis in the AoU study. The results are shown 

in Supplementary Figure 22. Significant causal relaZonships between OSA and several CVD-

related outcomes were idenZfied, consistent with the findings from the primary analysis using 

𝛾,45) for IV selecZon. However, some of the significant sex-specific findings, such as the female-
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specific causal effect of long sleep on HTN, were not idenZfied in sex-combined analysis, likely 

because the 𝛾,./0& is closed to  𝛾,),%&' due to the predominantly male sample size in MVP. 

 

Discussion 

We performed sex-specific analysis of the causal associaZons of sleep-related phenotypes on 

CVD-related outcomes. These are biologically important relaZonships with immediate clinical 

relevance. The primary raZonale in our work was to ameliorate the weak instrumental bias in 

MR analysis. This can be done by incorporaZng informaZon from auxiliary datasets. In our case, 

we used a male-specific dataset to improve female-specific staZsZcs. Acknowledging likely sex 

differences between male and female individuals, this led to the need for an adapZve esZmator, 

that will intelligently uZlize informaZon across the two sex groups. Female-specific causal 

esZmaZon is limited by smaller sample sizes (relaZve to males), leading to large variability in 𝛾"  

esZmates, also known as weak IV bias. Thus, we introduced a framework to calibrate the 𝛾,"  

esZmates by borrowing informaZon from the male group. We first demonstrated that the FE 

meta esZmate (𝛾,./0&) is a special case of our proposed framework. We then proposed the APM 

esZmate, which adapZvely transfers informaZon across sex groups by considering the strength 

of sex difference in 𝛾, in a data-driven manner. SimulaZon studies demonstrated that: (i) 

employing the shrinkage esZmates can substanZally improve the efficiency of causal esZmaZon 

for the populaZon with smaller sample size; (ii) using 𝛾,45) esZmate is less sensiZve to the 

existence of sex differences in 𝛾 compared to the use of 𝛾,./0&; (iii) no esZmaZon efficiency is 

lost by applying the 𝛾,45) to the populaZon with larger sample sizes. In real data analyses, we 
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idenZfied several sex-difference pajerns between the causal associaZon of sleep phenotypes 

and CVD-related outcomes, including OSA on CKD as well as long sleep duraZon on several CVD-

related outcomes, offering potenZal implicaZons for research in sex-specific cardiovascular 

medicine. The method itself has broader applicability, and could be used to address sex 

differences for a large set of complex traits. 

 

We also applied the proposed framework to the male populaZon, which had a larger sample 

size in our analysis. The results indicate that less informaZon could be borrowed from the 

smaller female populaZon. Although the shrinkage approaches did not improve causal effect 

esZmaZon for the male populaZon in our simulaZons, using them did not result in a loss of 

esZmaZon efficiency compared to using the raw (𝛾,)). This supports the usefulness of 

incorporaZng shrinkage approaches (especially the adapZve approach) into MR analysis when 

relevant summary staZsZcs are available, regardless of the corresponding sample size. 

 

Due to the low number of IVs that could be used when applying a genome-wide significance 

threshold (5x10-8) for selecZng IVs, we considered a lower p-value threshold (p-value < 109:), 

as suggested by (27) as the minimal threshold value for selecZng IVs in two-sample MR analysis. 

However, this strategy may increase the risk of including several weak instruments in MR 

analysis. Therefore, we applied advanced MR methods that address weak instrumental bias, 

including MR-RAPS (30), cML (42), the contaminated mixture model (41), and robust MR 

methods (40), in simulaZons and in real data analyses. We used MR-RAPS, which demonstrated 

superior performance in our simulaZon studies, as the primary method. The consistent findings 
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between MR-RAPS and cML, the top two methods with the best esZmaZon performance in 

simulaZon studies, also increase confidence in the data analyses findings. AddiZonally, to 

examine the influence of violaZng horizontal pleiotropy assumpZon due to using a lower p-

value threshold to select IVs, we compared the causal effect esZmated by MR-RAPS with MR-

PRESSO (43), another widely used approach developed for detecZng horizontal pleiotropy 

effects, in our primary and secondary analyses. The results from MR-RAPS and MR-PRESSO are 

highly consistent, increasing the expected reliability of our findings using MR-RAPS. 

 

MoZvated by the need to address low female sample size in MVP data and the use of its 

summary staZsZcs as exposure GWAS in MR analysis, our focus has been calibraZng the 

“variant-exposure” effect esZmates. However, we did not apply such calibraZons to the 

outcome GWASs, as the balanced sample sizes across sex-specific GWAS in AoU suggest that 

further calibraZons might not substanZally improve the efficiency of sex-specific summary 

staZsZcs, compared to the exposure GWASs. Simultaneously incorporaZng the proposed 

Bayesian framework into exposure and outcome GWASs will be of interest if both GWASs were 

performed with limited sample sizes. 

 

Some limitaZons of this work should be discussed. First, the lack of sex-specific sleep GWASs 

limits the selecZon of IVs using independent datasets. Instead, we directly uZlized the MVP 

sleep GWASs for the IV selecZon. Various IV selecZon strategies were implemented, including 

sex-specific selecZon, sex-specific APM esZmates selecZon in primary analysis, and sex-

combined selecZon by using FE meta esZmate in secondary analysis. The results, however, are 
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only someZmes consistent across different selecZon methods, indicaZng that the esZmaZon of 

causal effects is sensiZve to the IV selecZon process. This sensiZvity could be due to the 

strength of the IVs and differences in the underlying geneZc architecture captured by the 

different IVs. The second limitaZon arises from the test of sex differences in exposure-outcome 

causal effects. We applied the convenZonal two-sample t-test, performed under the assumpZon 

of independence between the two compared samples. Therefore, we included only the causal 

esZmates from the raw esZmates (𝛾,",%&' and 𝛾,),%&') in our sex-differences test. We did not use 

any shrinkage esZmates, because they may result in correlated causal effect esZmates between 

sexes. A correlated version, which includes a covariance correcZon between esZmates (32), can 

be exploited. However, quanZfying the covariance between causal esZmates across sexes using 

shrinkage approaches is challenging and a topic of future work. Lastly, we used only European 

ancestry individuals, due to the larger sample sizes available. Assessing the transferability of our 

findings to other populaZons, and potenZally applying a similar shrinkage framework to 

improve IVs in non-European ancestry populaZons, is of interest for future research. 

 

Methods 

Sex-specific sleep GWAS in MVP 

We performed sex-specific GWAS for four sleep phenotypes (insomnia, long sleep duraZon, 

short sleep duraZon, and excessive dayZme sleepiness), and used GWAS summary staZsZcs 

from previously published GWAS of OSA (16), using MVP parZcipants. Sleep phenotypes are 

described below. We only used the European (White) harmonized race/ethnicity and geneZc 
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ancestry (HARE) group to match the geneZc ancestry of the available outcome sex-straZfied 

GWAS from the AoU. We removed related individuals based on kinship coefficient ≥ 0.0884, 

where the kinship coefficients were esZmated using KING v.2.0 (44), so that all analyses were 

conducted using an unrelated set of individuals (including, parZcipants from across the female 

and male strata were unrelated). Sex chromosome checks confirmed biological sex. Variants 

were filtered based on imputaZon quality, requiring INFO score of at least 𝑅# ≥ 0.6, and minor 

allele frequency ≥ 0.01. The sample sizes of each sleep GWAS are summarized in 

Supplementary Table 4. Across analyses, sample sizes ranged from ~15,000 to 30,000 (female 

stratum), and from ~204,000 to 380,000 (male stratum). All analyses were adjusted for age and 

the first 10 PCs of geneZc data. For each trait, two GWASs were performed: with and without 

BMI adjustment. BMI-adjusted models had BMI as a covariate using both linear and squared 

terms. Analyses were performed separately using PLINK v2.00a3LM (45) in each sex strata.  

 

Sleep phenotypes 

Sleep phenotypes were defined as previously reported (16). In detail, OSA was defined based on 

the VA electronic health record using a mulZmodal automated phenotyping (MAP) algorithm 

(46). The MAP algorithm was applied to predict general sleep apnea and OSA separately. For 

each trait, it resulted in a score, roughly mapping to a likelihood of having these condiZon. The 

final OSA definiZon combined both scores. Insomnia status was inferred using a MAP algorithm 

applied to relevant ICD codes and elements extracted using natural language processing. 

Insomnia status was inferred at the same age as was used in OSA analysis, i.e., a parZcipant was 

considered to have insomnia if their age of first insomnia ICD code was on or before their age in 
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the OSA analysis. All other sleep phenotypes were self-reported based on the baseline 

quesZonnaire administered to program parZcipants. Long sleep was defined as sleep duraZon > 

9, and short sleep as sleep duraZon < 6, where the sleep duraZon was defined based on the 

response to the quesZon about hours of sleep in a typical day, with responses ranging from “5 

or less” to “10 or more”, with increments of 0.5. The excessive dayZme sleepiness phenotype 

was based on the quesZonnaire item “Feeling excessively sleepy during the day (does not 

include regular naps),” with yes or no answers. All five sleep phenotypes are binary.  

 

Associa8on analysis with CVD-related outcomes in AoU 

We used short-read whole-genome sequencing (srWGS) data (version 7) from the AoU study to 

conduct associaZons analysis with CVD-related outcomes. To reduce memory storage 

requirements, we focused on genomics data pre-filtered by the following criteria: populaZon-

specific allele frequency ≥ 1% or populaZon-specific allele count > 100 (data from: gs://fc-aou-

datasets-controlled/v7/wgs/short_read/snpindel/acaf_threshold_v7.1). To align with summary 

staZsZcs computed from the White HARE group in the MVP, we included only White individuals 

(as determined by self-reported race and ethnicity) in the AoU analysis. Related individuals were 

excluded based on informaZon available in gs://fc-aou-datasets-

controlled/v7/wgs/short_read/snpindel/aux/relatedness/relatedness_flagged_samples.tsv. We 

also restricted the analysis to adults aged 18 to 95, with BMI values ranging from 17 to 55. 

Following data preprocessing, approximately 114,000 White individuals were included, 

consisZng of 67,600 females and 46,400 males. The exact sample size varied slightly depending 

on the phenotype analyzed. Six binary CVD-related phenotypes were considered: atrial 
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fibrillaZon (AF), coronary artery disease (CAD), cardiovascular disease (CVD), heart failure (HF), 

hypertension (HTN), and type 2 diabetes mellitus (T2DM). Detailed selecZon criteria for these 

clinical outcomes and the corresponding SNOMED codes and OMOP Concept IDs in the AoU 

study, are provided in Supplementary Table 6. More details are summarized in Supplementary 

Note 4. 

 

Aeer matching the variants idenZfied as IVs according to the exposure dataset (MVP), we 

conducted single-variant associaZon analyses with the six binary outcomes. We used logisZc 

regression, adjusZng for age and 16 geneZc principal components (PCs) as covariates in the 

BMI-unadjusted analyses. For the BMI-adjusted analyses, the models were further adjusted for 

BMI, including both linear and quadraZc terms. The effect sizes of the variants, i.e., log(OR) with 

the corresponding SD, were then extracted for use as summary staZsZcs in the outcome GWAS.  

 

Simula8on studies 

We performed simulaZon studies to evaluate the performance of exposure-outcome causal 

effect (𝛽"  and 𝛽)) esZmaZon, using shrinkage variant-exposure effect esZmates (𝛾,./0& and 

𝛾,45)) as input to exisZng two-sample MR approaches. We then compared these to the use of 

un-calibrated (“raw”) effect esZmates (𝛾,%&'). We employed three senngs to simulate sex-

specific variant-exposure effect sizes (𝛾"  and 𝛾)) and considered different levels of sex 

difference in causal effect within each senng.  
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Simula&on data genera&on 

We simulated data via the structural model presented in Figure 1a, where we use 𝑆 (for sleep 

phenotype) to represent the exposure variable and 𝐶 (for CVD phenotype) to represent the 

outcome variable. We first generated individual-level geneZc data for two datasets, 

corresponding to two populaZons used in an exposure GWAS (one populaZon) and an outcome 

GWAS (second populaZon). In each of the datasets, the data-generaZng process was carried out 

independently in the females and males. We set the female sample size of the exposure dataset 

to 𝑁"; = 2,000 and the sample size of the male stratum to 𝑁); = 20,000, matching the sex 

sample size proporZons in the MVP. In the outcome dataset, the female and male sample sizes 

were set to be the same: 𝑁"< = 𝑁)< = 10,000. For each geneZc variant, allele counts were 

generated independently from 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(2,0.3) distribuZon, assuming that all variants are in 

linkage equilibrium with allele frequencies of 0.3. 

 

In the exposure dataset, we generated the exposure variable according to the following linear 

model:  

𝑆"= = 1 +[𝛾!" × 𝑔"!=

>

!?-

+ 𝛼 × 𝑈"= + 𝜀"= , 𝑖 = 1,2, … , 𝑁"; 

𝑆)= = 1 +[𝛾)! × 𝑔)!=

>

!?-

+ 𝛼 × 𝑈)= + 𝜀)= , 𝑖 = 1,2, … , 𝑁);  

(6.1) 

 

(6.2) 

 

With 𝑝 = 100 independent variants. 𝑈 represents the unknown confounder, which we 

generated from Normal distribuZon with mean 0 but different variances in female and male 
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populaZons: 𝑈"=~𝑁(0,1) and 𝑈)=~𝑁(0,0.5). The random errors 𝜀"=  and 𝜀)=  were generated 

from standard Normal distribuZon for both the female and male populaZons. The 𝛾!"  and 𝛾)!  

are the underlying sex-specific variant-exposure effect sizes. The effect size of the unknown 

confounder to the exposure associaZon was set as 𝛼 = 0.1 for both the female and male 

populaZons.  

 

Next, we use the same strategy to generate the geneZc data, exposure variable, and 

unmeasured confounder for the outcome populaZon,  

𝑆"=@ = 1 +[𝛾!" × 𝑔"!=@

>

!?-

+ 𝛼 × 𝑈"=@ + 𝜀"=@ , 𝑖 = 1,2, … , 𝑁"<  

𝑆)=@ = 1 +[𝛾)! × 𝑔)!=@

>

!?-

+ 𝛼 × 𝑈)=@ + 𝜀)=@ , , 𝑖 = 1,2, … , 𝑁)<  

(7.1) 

 

(7.2) 

 

The superscript 𝑂 is used to disZnguish the exposure simulated in the outcome populaZon from 

the exposure simulated in the exposure populaZon. Based on the generated exposure variables 

𝑆"=@  and 𝑆)=@ , we then generate the outcome variable through the following linear equaZon: 

𝐶"= = 1 + 𝛽" × 𝑆"=@ + 𝜙 × 𝑈"=@ + 𝜀"=< , 𝑖 = 1,2, … , 𝑁"<  

𝐶)= = 1 + 𝛽) × 𝑆)=@ + 𝜙 × 𝑈)=@ + 𝜀)=< , 𝑖 = 1,2, … , 𝑁)<  

(8.1) 

(8.2) 

 

where 𝜙 denotes the effect sizes of the unknown confounder on the outcome, which we set to 

𝜙 = 0.1. The 𝛽"  and 𝛽) are the underlying true female and male exposure-outcome causal 

effects, respecZvely.  
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Aeer generaZng the individual level data, we get the exposure GWAS and outcome GWAS 

summary staZsZcs by finng marginal linear regression models. The exposure data summary 

staZsZcs (𝛾,!" , 𝜎,(,!"# ) and (𝛾,!) , 𝜎,(,!)# ), 𝑗 = 1,2, … ,100 are obtained by finng the following 

regression using the data generated from equaZons (6.1) and (6.2):  

𝐸(𝑆") = 𝛾c"8 + 𝛾c!" × 𝑔"! , 𝑗 = 1,2, … ,100 

𝐸(𝑆)) = 𝛾c)8 + 𝛾c!) × 𝑔)! , 𝑗 = 1,2, … ,100 

And the same procedure is applied for the outcome populaZon 

𝐸(𝐶") = Γ"8 + Γ"! × 𝑔"!@ , 𝑗 = 1,2, … ,100 

𝐸(𝐶)) = Γ)8 + Γ)! × 𝑔)!@ , 𝑗 = 1,2, … ,100 

The outcome GWAS summary staZsZcs are (Γ:!" , 𝜎,6,!"# ) and (Γ:!) , 𝜎,6,!)# ), 𝑗 = 1,2, … ,100. 

 

We performed simulaZons in three simulaZon senngs that differed in the way that variant-

exposure effect sizes were simulated. In all senngs, we considered a few models for the 

exposure-outcome effect sizes: no sex differences in exposure-outcome causal effects, with 

𝛽" = 𝛽) = 0.1; and sex differences in exposure-outcome causal effect with 𝛽) = 0.1, and 𝛽" ∈

{0,0.05,0.15}. 

 

Simula&on se?ngs 1: Fixed sex differences in variant-exposure effects  

Here, we simulated from senngs in which the sex-difference in 𝛾"  and 𝛾), when there were 

such differences, were weak and fixed across variants. Male-specific variant-exposure effect 

sizes were	𝛾!) = 0.1, 𝑗 = 1,2, … ,100 for all variants. For the female populaZon, some variants 

had the same effect size as in the male populaZon (𝛾!" = 0.1), and a subset of variants (sized 
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10, 50, or 90 out of 100) had female-specific variant-exposure effect size 𝛾!" = 0.05. For the sex 

differences in causal effect senng, we fixed 50% of variants to have sex differences in variant-

exposure effect sizes.  

 

Simula&on se?ngs 2: Random sex differences in variant-exposure effects 

Here, we simulated from senngs in which the sex-difference in variant-exposure effect sizes, 

when there were such differences, were strong. For each variant 𝑗 = 1,2, … ,100, we generated 

a pair of female and male variant-exposure effect size from a bi-variate normal distribuZon 

f
𝛾!"
𝛾!)g 	~	𝑁# hf

0.1
0.1g , Σ = j0.01 𝜙

𝜙 0.01kl, where we considered different covariance value 𝜙 to 

set the correlaZons ( A
8.8-

) between (𝛾" , 𝛾)) equaling to either 0.5, 0.7, and 0.9 when the 

exposure-outcome causal effect was the same in males and females (𝛽" = 𝛽) = 0.1). When 

𝛽) ≠ 𝛽", the correlaZon between (𝛾" , 𝛾)) was set to 0.7. Finally, the variant exposure effect 

sizes  𝛾" , 𝛾) were randomly generated in each simulaZon replicate.  

 

Simula&on se?ngs 3: Summary sta&s&cs from MVP OSA GWAS guide variant-exposure effect 

sizes 

Here, we used the summary staZsZcs from the MVP OSA GWAS (without BMI adjustment) to 

guide the 𝛾"  and 𝛾) values. First, we conducted p-value thresholding and clumping for the 

male-specific summary staZsZcs. The p-value threshold was set at 109:, with clumping window 

of 10,000 kb and a correlaZon threshold of 0.001, using the European populaZon reference 

panel from 1000 genome. This resulted in a list of 110 variants. We randomly selected 100 
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variants used their male- and female-specific effect size esZmates from the MVP GWAS in 

simulaZons.  

 

Two-sample MR methods  

We applied the following two-sample MR methods, described in Table 4, over the raw and 

calibrated esZmated variant effect sizes.  

Table 4: Two-sample MR methods used in both simulaZon studies and real data analyses. 
MR method Descrip<on So?ware used Reference 
MR-RAPS 
(primary 
analysis) 

EsZmaZon:  adjusted 
profile likelihood 
esZmaZon with down-
weighZng of outliers via a 
robust loss funcZon 
 
 
AssumpZons: InSIDE, 
pleiotropic effects follow 
normal distribuZon with 
mean zero 
 

R package: mr.raps 
 
R funcZon: 
mr.raps.overdispersed.robust() 
 

(30) 

IVW EsZmaZon: aggregate 
mulZple Wald-raZo 
esZmates using fixed effect 
inverse-variance weighZng 
 
AssumpZons: InSIDE, zero 
average pleiotropy effect 

R package: 
MendelianRandomizaZon 
 
R funcZon: mr_allmethods() 

(27) 

Constrained 
ML 

EsZmaZon: maximum 
likelihood esZmaZon with 
a constraint on the number 
of invalid IVs 
 
AssumpZons: plurality 
valid 

R package: 
MendelianRandomizaZon 
 
R funcZon: mr_cML() 

(42) 

Contamina<on 
mixture 

EsZmaZon: profile 
likelihood esZmaZon 
assuming that the raZo 

R pacakge: 
MendelianRandomizaZon 
 

(41) 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 2, 2025. ; https://doi.org/10.1101/2025.01.02.25319889doi: medRxiv preprint 

https://sciwheel.com/work/citation?ids=10507454&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=686003&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=15166713&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=8965662&pre=&suf=&sa=0&dbf=0
https://doi.org/10.1101/2025.01.02.25319889
http://creativecommons.org/licenses/by-nd/4.0/


 37 

esZmates follow two 
normal distribuZons for 
valid and invalid IVs, 
respecZvely. 
 
AssumpZon: plurality valid 

R funcZon: mr_conmix() 

Weighted 
median 

EsZmaZon: compute the 
median of the causal effect 
esZmated from mulZple 
IVs, weighted by the 
inverse of the esZmate’s 
sampling variance 
 
AssumpZon: majority valid 

R package: 
MendelianRandomizaZon 
 
mr_allmethods() 

(47) 

MR Egger  EsZmaZon: weighted 
meta-regression with an 
intercept term to capture 
the average horizontal 
pleiotropy effect 
 
AssumpZon: InSIDE 

R package: 
MendelianRandomizaZon  
 
R funcZon: mr_allmethods() 

(39) 

Robust IVW 
and MR-Egger 

EsZmaZon: apply robust 
regression to down-weight 
or exclude variants with 
heterogenous causal 
esZmates 

R package: 
MendelianRandomizaZon  
 
R funcZon: mr_allmethods() 

(40) 

Summary of the two-sample MR methods used in the simula:on studies and real data analyses. The names of the 
methods are listed in the first column. A brief descrip:on of the es:ma:on approach and the underlying 
assump:ons for each method are provided in the second column. The corresponding soWware for applying these 
methods is listed in the third column, and the references are provided in the last column 
Abbrevia:ons: InSIDE: instrument strength independent of direct effect. 
 

Data availability 

Summary staZsZcs from sex-specific sleep trait GWASs will become available on the dbGaP 

repository “Veterans AdministraZon (VA) Million Veteran Program (MVP) Summary Results from 

Omics Studies”, study accession phs001672.	Data from the NIH All of Us study are available via 

insZtuZonal data access for researchers who meet the criteria for access to confidenZal data. To 
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register as a researcher with All of Us, researchers may use the following URL and complete the 

laid-out steps: hjps:// www.researchallofus.org/register/. The srWGS genomic data were 

available on: gs://fc-aou-datasets-controlled/v7/wgs/short_read/. The R code used to 

implement the proposed semi-empirical Bayes framework, two-sample MR approaches, and 

simulaZon studies is available on the GitHub repository: hjps://github.com/Gene-Huang/sex-

specific-MR. The harmonized summary staZsZcs for both exposure and outcome GWASs used in 

our data analysis are also provided in the repository. 
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