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abstract

PURPOSE Adequately prioritizing the numerous therapies and biomarkers available in late-stage testing for
patients with glioblastoma (GBM) requires an efficient clinical testing platform. We developed and implemented
INSIGhT (Individualized Screening Trial of Innovative Glioblastoma Therapy) as a novel adaptive platform trial
(APT) to develop precision medicine approaches in GBM.

METHODS INSIGhT compares experimental arms with a common control of standard concurrent temozolomide
and radiation therapy followed by adjuvant temozolomide. The primary end point is overall survival. Patients with
newly diagnosed unmethylated GBM who are IDH R132H mutation negative and with genomic data available for
biomarker grouping are eligible. At the initiation of INSIGhT, three experimental arms (neratinib, abemaciclib, and
CC-115), each with a proposed genomic biomarker, are tested simultaneously. Initial randomization is equal
across arms. As the trial progresses, randomization probabilities adapt on the basis of accumulating results using
Bayesian estimation of the biomarker-specific probability of treatment impact on progression-free survival.
Treatment armsmay drop because of low probability of treatment impact on overall survival, and new armsmay be
added. Detailed information on the statistical model and randomization algorithm is provided to stimulate dis-
cussion on trial design choices more generally and provide an example for other investigators developing APTs.

CONCLUSION INSIGhT (NCT02977780) is an ongoing novel biomarker-based, Bayesian APT for patients with
newly diagnosed unmethylated GBM. Our goal is to dramatically shorten trial execution timelines while in-
creasing scientific power of results and biomarker discovery using adaptive randomization. We anticipate that
trial execution efficiency will also be improved by using the APT format, which allows for the collaborative
addition of new experimental arms while retaining the overall trial structure.
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INTRODUCTION

Clinical development of new therapies and biomarkers
is costly and inefficient and frequently results in failure.1

Such problems are particularly acute for glioblastoma
(GBM), where there has been little change in the
standard of care over decades, and late-stage failure is
common.2,3 Phase II trials based on end points different
than follow-up phase III studies and single-arm designs
compared to historical controls may over- or un-
derestimate treatment effects, which may lead to poor
therapeutic development.4

With the advent of the precision medicine era, trial
design has been additionally complicated by the need
for clinical development of biomarkers. Developing
precision medicines requires not only demonstrating

therapeutic efficacy but also understanding the rela-
tive benefits of experimental therapies in biomarker-
defined patient populations. This makes comparisons
with historical controls more difficult and adds com-
plexity to trial design choices. Clinical trials in the era of
precision medicine must consider how to develop
biomarker data during the trials, make efficient use of
multiplexed biomarker screening, and develop as-
signment algorithms for patients positive for more than
one biomarker. Clinical trials often also have logistic
and bureaucratic challenges that delay development
of new therapies and reduce trial opportunities for
patients with deadly diseases. The upfront fixed cost
for developing a trial infrastructure is most commonly
only amortized over the relatively short life of a single
clinical trial.
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Master protocols and adaptive platform trials (APTs) have
been proposed as attractive solutions to efficiently address
multiple therapeutic and biomarker hypotheses.5-7 We de-
veloped INSIGhT (Individualized Screening Trial of Innova-
tive Glioblastoma Therapy), a multisite investigator-initiated
phase II screening APT, as a solution to precision medicine
development challenges for patients with GBM. INSIGhT
was specifically designed to enable efficient use of randomly
assigned controls, generate information to support genomic
biomarker development, and leverage the fixed cost of trial
development across more experimental therapies.

METHODS

Eligibility

Patients are eligible for INSIGhT if they have newly di-
agnosed GBM with unmethylated O6-methylguanine–
DNA methyltransferase (MGMT) gene promoters and
negative IDH1 R132H mutation–specific immunohisto-
chemistry. The marginal benefit of temozolomide (TMZ) in
patients with unmethylated MGMT promoters8 offers the
opportunity to test experimental therapies without combi-
nations with TMZ.9,10 This potentially accelerates the overall
time for drug development (by not needing prior separate
phase I studies with TMZ) and eliminates the potential for
subtherapeutic dose of the experimental agent as a result of
overlapping toxicity with TMZ.2,3 INSIGhT therefore can
support experimental arms with TMZ combinations or with
the experimental agent alone. INSIGhT was approved by
the Dana-Farber/Harvard Cancer Center Institutional Re-
view Board and by local institutional review boards before
site activation.

Treatment Arms and Biomarkers

The overall schema for INSIGhT is shown in Figure 1.
The control arm is standard chemoradiotherapy per the
European Organisation for Research and Treatment of
Cancer NCIC.CE3 study.11 For experimental arms, thera-
pies may be added to this standard backbone if there are
sufficient safety data in combination with TMZ. Experi-
mental therapies may also replace TMZ in the concurrent
radiation therapy (RT) portion (if there is a compelling
radiosensitizing hypothesis), the adjuvant portion, or both.
A pure radiosensitizing agent or experimental RT regimen
could theoretically replace standard RT/TMZ while keeping
the adjuvant TMZ intact.

Eligibility for INSIGhT requires sufficient genotyping data to
define the predetermined biomarker categories for arms
currently in the trial. Additional details regarding the initial
experimental arms and biomarkers are included in the Data
Supplement.

Statistical Considerations

End points and modeling. The primary end point of INSIGhT
is overall survival (OS). Progression-free (PFS) survival
analysis is used to influence randomization, as described
in Results. Power computations, simulations evaluating

operating characteristics, and secondary analyses use the
proportional hazards (PH) model for both PFS and OS.

There are several arguments to support the use of different
outcomes for adaptive randomization (PFS) and final effi-
cacy evaluation (OS). PFS data involve less risk of delayed
reporting and capture signals at earlier time points. The
relationship between accrual rate and event timing is crucial
for response-adaptive trials, because effective variation of
randomization probabilities requires rapid generation of
treatment effect estimates on the basis of an adequate
number of individual outcomes. In addition, treatment effects
may have a stronger signal on PFS, a relationship illustrated
previously.12 Finally, potential issues with pseudoprogression
and pseudoresponse13,14 are mitigated by preserving OS as
the foundation for stopping rules and final efficacy analyses.
That is, promising early results of an experimental treatment
accelerate the accrual rate of the corresponding arm without
reducing the final sample size of the other experimental arms.

Group-specific adaptive randomization probabilities. Biomarker
status (positive or negative) is accounted for both at the indi-
vidual randomization level and in final analyses. A biomarker
group is defined by the subpopulation with identical status
for all of the three markers. Patients are randomly assigned
using an adaptive algorithm that updates randomization
probabilities for the various arms in each biomarker group
monthly.15 The algorithm uses available information gener-
ated by INSIGhT (the individual biomarker groups combined
with individual PFS) to determine the randomization prob-
abilities that will be used to allocate patients for the sub-
sequent month. The algorithm translates this preliminary
evidence on the basis of PFS data into unbalanced ran-
domization probabilities that may vary across biomarker
groups. We previously presented simulation results with
adaptive randomization probabilities driven by PFS and OS
probability models.16

PFS model. We use a Bayesian PH model with treatment-
biomarker interactions.17 This accounts for possible effect
variations across subgroups. The hazard function for each
patient assigned to an experimental arm is modeled, rescaling
the baseline by a factor that depends on treatment (main ef-
fect), biomarker-specific coefficients, and biomarker-treatment
interaction terms. We previously described the use of PH
models for the computation of randomization probabilities.17

We indicate the individual profile withX � (X1,X2,X3). All three
biomarkers are binary. The hazard function λX ,a(t ) for the time-
to-event outcome of a patient with biomarker profile X, ran-
domly assigned to experimental arm a, is proportional to the
baseline λ(t ). More specifically,
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The coefficients βX capture possible differences in the
time-to-event distributions across profiles under the control
treatment. The described model is used with Bayesian
analyses to adapt the randomization probabilities and
predict future outcomes.

Sample size. INSIGhT will randomly assign a maximum of
70 patients to each experimental arm. The sample size for
the initial set of arms is 70 patients per arm across four
arms, for a total of 280 patients, but there are early stopping
rules for futility in each arm, and other arms may be added
as the trial is ongoing. If new arms are added, the overall
sample size can increase to more than 280 patients. Such
an increase will depend on the number of experimental
arms added and the time at which they will start enrollment.
The later new arms start enrolling, the larger the corre-
sponding sample size expansion will be. Indeed, when
a new experimental arm is added, the design increases the
control-specific sample size to guarantee enrollment of 70
patients in the control after the addition of a novel arm. We
previously described the adjustment of the control sample
size with the addition of novel arms and potential futility
early stopping of experimental arms in platforms.18

Operating characteristics of outcome adaptive randomi-
zation are related to the accrual rate relative to the event
rate, because information from events is used to alter
probability of random assignment for newer patients. We
estimated an accrual rate of seven patients per month
based on prior experience. Sensitivity analyses on the trial
operating characteristics considered a range of hypothetic
accrual rates, from five to 14 patients per month. Biomarker
frequencies were assumed on the basis of data from prior
genomic profiling.19 Monthly updates of the randomization

probabilities are combined with a sequential decision rule
that drops experimental arms when there is insufficient
preliminary evidence to warrant additional investigation of
the treatment based on the primary end point (OS). We
describe a linear boundary that provides thresholds for
predictive probabilities to define the decision rule.

Prior Normal distributions were used for the regression
parameters β. They are a priori independent, and the
variance σa2 of the main effect βa is set to have the 80th and
20th percentiles that correspond to (log[2]; duplication of
the hazard) and (log[1/2]). The variance σX ,a

2, which
regulates the a priori magnitude of interaction terms, is
lower; we set σX ,a

2 � 0.25σa2. Approximate posterior
analyses are performed by using the partial likelihood
method, because it is standard in both frequentist and
Bayesian analyses. Posterior computations during the trial
provide, for every combination of biomarker profile X and
treatment a, the probability that patients with profile X will
benefit from the experimental treatment a:

Pr(λX . λX ,a

��data)

By PH assumptions, either λX (t ) . λX ,a(t ) at all t . 0 with
λX (t ) . 0 or the opposite holds.

Randomization probabilities. Bayesian adaptive randomi-
zation is defined with the probability for a patient (condi-
tionally on randomassignment to an experimental treatment)
with biomarker profile X of being randomly assigned to ex-
perimental arm a proportional to Pr(λX ,a . λX

��data)h, with
h ≥ 0, a function that increases linearly with the number of
enrollments. More specifically, when applied to the initial
three experimental arms, h increases with the number of
patients assigned to any of these arms or the control,
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FIG 1. Overall schema for INSIGhT. RT, radiation therapy; TMZ, temozolomide.
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whereas for a hypothetic arm added later during the study, it
increases with the number of patients randomly assigned to
the novel arm and the concomitant random assignments to
the control arm. Adaptive randomization intervenes only after
the initial burn-in period.

As we discussed previously,17,20 to preserve the power of
detecting treatment effects, it is important to guarantee
sufficient enrollment in the control arm. Randomization
probabilities for the control are obtained by matching
(under the hypothesis that all the active arms will complete
accrual and will not be stopped for futility) the expected
number of patients randomly assigned to the control and
the planned sample size specific to the control. For ex-
ample, if after 10 enrollments two patients have been
assigned to the control, then the 11th patient is assigned to
the control with a probability of (70 − 2)/(280 − 10). The
same approach is used if one experimental arm is dropped
for futility or a novel arm is added, with the consequence of
an expansion of the control sample size.18

Burn-in randomization. All experimental arms are assigned
with fixed randomization probability until enrollment rea-
ches 20% of the planned arm-specific sample size. This
holds both for arms active from the onset of the trial as well
as arms added during the course of the trial. During this
time period, the randomization probability matches (1/K),
the inverse of the number of active arms. If arms are added
after the onset of the platform study, this determines an
expansion of the control arm.

Noncompeting arm-specific final sample sizes. Because
the overall trial sample size is not fixed, the presence of
arms with positive treatment effects does not reduce the
final sample size of the remaining arms. That is, there
is little dependence between the final arm-specific sam-
ple sizes, considerably less compared with alternative
response-adaptive randomization (RAR) approaches. This
is an important difference with respect to other adaptive
designs, which include a component of competition and
negative correlation with the final number of patients en-
rolled by different experimental arms. Instead, INSIGhT
specifies a maximum number of patients per arm. By
preserving arm-specific sample size, power is maintained
even in the presence of other effective arms. The accrual
can be stopped earlier for an experimental arm (before this
maximum is reached) only when the likelihood of a positive
final result becomes insufficient and triggers the early
stopping on the basis of futility. As a consequence, the
adaptive algorithm has a substantial impact on the duration
of the arm-specific accrual period, which tends to be
shortened for the arms with positive treatment effects, with
little effect on other operating characteristics. It can also
affect the arm-specific biomarker distributions. Variability of
the arm-specific sample size results only from early stop-
ping rules. Bayesian randomization can only modify the
enrollment rate and accelerate accrual to the most
promising arms, particularly for the patients who are more

likely to benefit from these treatments. Symmetrically,
a decrease in the enrollment rate for the worst per-
forming experimental arms guarantees more time and
a larger proportion of OS events available before all or
a majority (eg, 60%) of the total 70 patients have been
enrolled and therefore allows more time for better futility
stopping.

Early stopping for futility. The Bayesian model is updated
monthly; this allows prediction of future outcomes and
future randomizations. We also predict future biomarker
profiles X using a standard Dirichlet conjugate model.
Monthly, Bayesian sampling is used to generate final trial
data from the predictive distribution, including the enroll-
ment of future patients, and PFS and OS outcomes, both for
patients previously enrolled and for those who have not yet
been enrolled. Using Bayesian terminology, we sample
multiple times from the predictive distribution every month.
These data sets, including the actual data generated up to
a time point by the trial and a complementary component of
probabilistically imputed data, describe expectation and
uncertainty on how we predict the data to look at com-
pletion of the study (including censored data points) on the
basis of the available information. These computations
assume that the open arms will reach the final sample size
of 70 patients and allow us to derive a single predictive
probability of interest for each experimental arm, at each
interim analysis, of a well-defined event. The event is the
rejection of the primary null hypothesis (absence of
a treatment effect on OS in the overall population) at
completion of the study. Prediction (the probability that the
arm-specific result will be significant) is used monthly to
decide either to continue or to discontinue the study of the
experimental arm. A key step of the process is the simu-
lation of the baseline λ and the PHmodel parameters β from
the posterior at each interim analysis. Conditionally on
these parameters, the final data set is imputed by gener-
ating the current missing data accordingly into the PH
model. Next, P values to evaluate the primary null hy-
potheses are computed using this partially imputed data
set. These steps are iterated so that the relative fre-
quency of generated arm-specific P values below the
significance threshold α approximates the targeted pre-
diction probability.

The arm is stopped if the prediction probability of a positive
result becomes small. A linear boundary that increases with
the number of enrollments from 0 at the onset of the study
up to 0.1 is used to define monthly the cutoff for dis-
continuing or proceeding with the study of the experimental
treatment. Interim futility analyses start after the burn-in
phase of the experimental arm.

RESULTS

The early stopping rule that we described reduces the
average number of patients allocated to an experimental
arm without effects (hazard ratio [HR], 1) to 49.0, and the
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average size is 69.8 (69.0) with an HR of 0.6 (0.65).
Sensitivity analyses were used to describe variations of the
average sample size for arms without treatment effects. By
varying accrual rate and treatment effects of the remaining
arms, we obtained averages between 47 and 50 patients. In
scenarios with an experimental arm having a negative effect
(ie, HR. 1), early stopping tended to occur frequently and
earlier during enrollment. For example, with an HR of 3/2
(4/3), futility early stopping in simulations occurred for
. 90% of the simulated studies, with an average enroll-
ment for the arm with negative effects equal to 33 (43)
patients. Appendix Table A1 shows the probability of early
stopping on the basis of futility for various simulation sce-
narios considering HRs between 0.7 and 1.15.

In power calculations, we estimated that if any of the ex-
perimental arms had a PFS HR of 0.6 (0.65) for the overall
population, then the power of rejecting the corresponding
null hypothesis (overall population PFS HR ≥ 1) at com-
pletion of the study would be 0.9 (0.79). Power remained
stable when we considered variations of accrual rates and
outcome distributions for the remaining arms with values
from 0.85 to 0.92. In the comparison of these simulations
with a balanced design, keeping the described early
stopping mechanism for futility, enrollment in arms with
positive treatment effects was completed faster, with an
average time reduction between 16% and 27% across
simulation scenarios.

A similar power analysis like that for PFS was repeated for
OS. For example, with an OS HR of 0.6 (0.65) for the overall
population, the power of rejecting the null hypothesis at
completion of the study was 0.89 (0.78; Table 1). Using
simulations, we also estimated arm-specific type I error
probabilities (empiric estimates) between 4% and 5%
across scenarios with various accrual rates. The power of
rejecting the same primary null hypothesis decreased to
0.37 when only a smaller stratum of patients (eg, CDK-
positive patients) benefited from the treatment. Although
the power to reject the null was of course considerably
reduced, the power to detect a significant biomarker/
treatment interaction (null hypothesis: no treatment effect
in the CDK-positive group) in the secondary analyses was
higher (0.66; Table 2). The noncompeting maximum
number of patients (ie, 70) per armmaintained the power of
detecting a positive treatment effect for each experimental
arm stable with respect to the presence of treatment effects
on the remaining arms.

Sensitivity to PFS and OS correlation seemed limited. We
considered both different magnitudes of PFS and OS HRs
contrasting an experimental treatment and a control (Ap-
pendix Table A2) and various PFS-OS correlation degrees
at the individual level. We used the concordance C-statistic
to measure PFS-OS dependency (Appendix Table A3).
Multiple primary hypotheses, one for each arm, were tested
without correction for multiplicity.21 Each test was based on
the Cox model contrasting data from the control and the

corresponding experimental arm, with biomarkers used as
covariates, and a treatment effect coefficient. Additional
sensitivity analyses, including the probability of reporting
a positive treatment effect for the biomarker-positive group
under selected scenarios (Appendix Table A4), the power
for arms added later during the course of the platform trial
(Appendix Table A5), and the power assuming different
possible accrual rates (Appendix Table A6), are included in
the Appendix. In contrast to alternative response-adaptive
designs, the low correlation of accrual rate with final arm-
specific sample size (which, as described in Methods, can
be fewer than 70 patients only as a result of early stopping
for futility) induces little variations of power estimates across

TABLE 1. Power of Rejecting Null Hypotheses of No Treatment Effect
at Completion of Study

HR

Power

Single Arm With Positive
Treatment Effects

Additional Arm With
Positive Treatment Effect

0.55 0.94 0.94

0.6 0.89 0.88

0.65 0.78 0.78

0.7 0.64 0.64

0.75 0.51 0.52

0.8 0.35 0.37

NOTE. P values computed using standard Cox proportional hazards
analyses. Analyses include the three biomarkers used as covariates.
Results computed with 10,000 simulations per scenario. In the middle
column, only a single arm has positive treatment effects. In the right
column, one additional arm has a positive treatment effect (hazard
ratio [HR], 0.6). HRs are constant across biomarker subgroups.
Hypothesis testing: one-sided α = 0.05.

TABLE 2. Probability of Reporting Positive Biomarker-Treatment
Interaction

HR

Power

Single Arm With Positive
Treatment Effects

Additional Arms With
Positive Treatment Effect

0.55 0.78 0.77

0.6 0.66 0.66

0.65 0.54 0.53

0.7 0.42 0.41

0.75 0.35 0.34

0.8 0.24 0.24

NOTE. Results computed with 10,000 simulations per scenario. In
the middle column, only a single arm has positive treatment effects
restricted to a single biomarker-positive subpopulation (prevalence,
0.5) and hazard ratios (HRs) of 1 for the rest of the patients. In the right
column, there is an additional arm with positive treatment effects (HR,
0.6) across all subgroups. We used standard Cox proportional hazards
analyses with biomarker-treatment interaction terms. Hypothesis
testing: one-sided α = 0.05.
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scenarios with positive treatment effects and various ac-
crual rates. Accrual rate therefore correlates with time
required to complete the arm evaluation, but it does not
correlate with power.

DISCUSSION

Clinical trials under master protocols have been proposed
as a methodologic innovation to more efficiently answer
therapeutic development questions.6,7,22 Such innovations
are particularly important in the era of precision medicine,
where biomarker testing adds complexity by increasing the
number of testable hypotheses. Platform trials under
master protocols are intended to “study multiple targeted
therapies in the context of a single disease in a perpetual
manner, with therapies allowed to enter or leave the plat-
form on the basis of a decision algorithm.”7(p63) Potential
efficiencies include the conservation of control arms, mul-
tiplexed biomarker screening data, and reduced downtime
because the trial infrastructure is maintained as treatment
arms enter or leave the trial. Platforms also enable innovative
statistical approaches to increase efficiency.23-27 INSIGhT is
the first biomarker-based APT designed to apply these
general solutions to specific problems in therapeutic de-
velopment for GBM.28

Late-stage clinical trial failures are a major issue for ther-
apeutic development in general1 and in GBM specifically.2,3

Failure in phase III may be linked to erroneous go/no-go
decisions on the basis of phase II results that have different
end points than the desired pivotal trial, overestimate
treatment effects on the basis of comparisons with historical
controls, or both. Discordant end points may be a signifi-
cant issue in GBM. Prior data have shown that effects on
imaging-based end points such as response rate and PFS
may not translate to effects on OS.4,13,29-31 Furthermore,
comparison of end points like PFS and OS with historical
controls may overestimate treatment effects through se-
lection bias, temporal drift, and failure to account for control
variability.4 For these reasons, we chose to use OS as the
primary end point of the trial. In unmethylated GBM,
survival postprogression is generally short, and there are no
proven effective therapies at recurrence that increase the
chance of detecting a true therapeutic impact on OS.12 We
included a randomly assigned control arm to avoid the
pitfalls associated with comparison with historical controls
for OS in GBM.4 The platform design affords considerable
efficiency by using a single control arm for comparison
against multiple therapies and offers patients a higher
probability of being randomly assigned to an experimental
arm. Furthermore, we use Bayesian RAR17 based on ac-
cumulating PFS results to increase the probability of ran-
dom assignment to arms that showed more promise.28,32

We had previously shown that RAR using an OS end point
was possible for recurrent GBM17 and additionally sup-
ported this approach in our simulations during the devel-
opment of INSIGhT. However, to increase efficiency, we
opted to use PFS, because earlier end point assessment

can more rapidly influence randomization.16 If we were to
find a discordance between therapeutic impact on PFS and
OS, randomization probability would be altered, but de-
cision making on the primary end point would remain
unchanged.

Another advantage of platform trials is the efficient use
of multiplexed genomic biomarker data for treatment as-
signments. GBM is characterized by redundant and
overlapping alterations in several molecular pathways
rather than mutually exclusive driver mutations.33 As such,
patients can be positive for multiple genomic biomarkers.
Some platform trials like NCI-MATCH (National Cancer
Institute Molecular Analysis for Therapy Choice),34 Lung
MAP (Lung Cancer Master Protocol),35 BATTLE (Biomarker-
Integrated Approaches of Targeted Therapy for Lung Cancer
Elimination),36 and N2M2 (National Center for Tumor Dis-
eases Neuro Master Match)37 generally deal with this sit-
uation through an assignment algorithm on the basis of
accrual and/or relative evidence of biomarker-specific
therapeutic efficacy. I-SPY 2 (Investigation of Serial
Studies to Predict Your Therapeutic Response With
Imaging and Molecular Analysis 2), in contrast, uses
biomarker subgroup–specific randomization probabilities to
allow data generated during the trial to drive the biomarker
specificity of arm assignments.38 INSIGhT does the latter,
starting with equal randomization among the experimental
arms and allowing the RAR procedure to prioritize randomi-
zation in a biomarker-specificway. For example, if only patients
with EGFR amplification in the neratinib arm were living longer
than those in the control, the randomization algorithm would
increase the probability of EGFR-amplified patients assigned to
neratinib (regardless of their other biomarkers) while potentially
reducing assignment to neratinib for EGFR wild-type patients.
In fact, this situation occurred in I-SPY 2, where the adaptive
randomization algorithm stopped assigning patients with hu-
man epidermal growth factor receptor 2 (HER2) –negative/
hormone receptor–positive cancer and those with HER2-
negative/hormone receptor–negative cancer to neratinib dur-
ing the course of the trial, even as it reached the prespecified
efficacy threshold in the HER2-positive/hormone receptor–
negative signature.39 This strategy may be optimal when there
are limited pretrial data or a weak hypothesis suggesting
a biomarker-specific effect. However, future experimental arms
may have a strong biomarker-specific rationale supported by
preclinical or clinical data. In these situations, more biomarker
specificity may be desired from the start of the trial, and we
have suggested ways to integrate this into a platform design.40

More generally, adding future biomarkers specific to ad-
ditional experimental arms increases design complexity
and requires appropriate definitions of the randomization
probabilities. This capacity is possible in INSIGhT, although
current simulations do not account for future biomarkers.
GBM AGILE is another platform trial in development for
GBM; it considers these potentially future predictive
markers (denoted enrichment biomarkers) in the design.41
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Additional comparisons between INSIGhT, GBM AGILE
(Adaptive, Global, Innovative Learning Environment), and
N2M2 have previously been discussed.42

Biomarker-based clinical trials must consider not only the
potential effect differences between biomarker-positive and
biomarker-negative groups (predictive effect) but also that
preselected biomarker categories have an independent
association with the primary outcome (prognostic effect).
INSIGhT accounts for this possibility through randomiza-
tion within biomarker subgroups. However, there may be
biomarker categories with low frequency such that ran-
domization is unattractive. In these cases, it would be
helpful to know the natural history of these biomarker
subpopulations. Knowing that a biomarker had no prog-
nostic significance might allow a trial to assign all
biomarker-positive patients to the targeted experimental
therapy and compare with unselected controls. Even
though INSIGhT used randomization, we queried clinically
annotated genomic data33,43 to investigate the possibility
that the biomarkers we used had prognostic significance or
a variable relationship between PFS and OS and found no
such associations.19

Although the perpetual clinical trial framework that is
provided by the APT framework can provide significant
efficiencies, it can create additional challenges as well.
Maintaining ongoing operations requires both financial

models that support ongoing concerns and active pipeline
development to maintain a regular flow of experimental
arms. More complex Bayesian designs require engaged
clinical and statistical investigators and new ways of de-
termining operating characteristics through simulation.44

Reporting of trial results is complicated because of the
separation between the master protocol and the arm-
specific data. Arms that leave the trial because of suc-
cess or failure need to be reported while the overall trial is
still ongoing, which does not lend itself to traditional trial
reporting best practices like CONSORT. Two recent pub-
lications from I-SPY 2 are examples.39,45 Conversely,
reporting on the overall master protocol does not have
a natural time point, although most groups publish
a general description of the overall trial structure without
results.35,36,38,41

In conclusion, INSIGhT is an ongoing novel biomarker-
based Bayesian APT for patients with newly diagnosed
unmethylated GBM. Our goal is to dramatically shorten trial
execution timelines while increasing scientific power of
results and biomarker discovery using adaptive randomi-
zation. We anticipate that trial execution efficiency will also
be improved by using the APT format, which allows for the
collaborative addition of new experimental arms while
retaining the overall trial structure.
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APPENDIX

EXPERIMENTAL AGENTS

CC-115

CC-115 is a potent and selective oral dual inhibitor of mammalian
target of rapamycin (mTOR) kinase (both mTORC1 andmTORC2) and
DNA-dependent protein kinase (Mortensen DM, et al: J Med Chem 58:
5599-5608, 2015). The phosphatidylinositol 3-kinase (PI3K)/Akt/
mTOR signaling axis plays a central role in cell growth, survival,
motility, and metabolism in a variety of cancers (Fruman DA, et al: Nat
Rev Drug Discov 13:140-156, 2014; Engelman JA: Nat Rev Cancer 9:
550-562, 2009), including glioblastoma (GBM; Brennan CW, et al: Cell
155:462-477, 2013). DNA-dependent protein kinase is a serine/
threonine kinase involved in the repair of DNA double-strand breaks
(Collis SJ, et al: Oncogene 24:949-961, 2005), which are considered to
be the most lethal DNA lesions and the main driver of cellular death
after treatment with ionizing radiation therapy (RT). Therefore, beyond
its hypothesized growth-inhibitory effect as monotherapy, CC-115 has
the potential to be a radiation-sensitizing agent in the treatment of GBM
(Zhao Y, et al: Cancer Res 66:5354-5362, 2006). One phase Ia/Ib
multicenter open-label clinical study established 10 mg twice per day
as the recommended dose for cohort expansion and phase II with
near-maximal inhibition of phosphorylated Akt and partial inhibition of
phosphorylated 4EBP (Munster PN, et al: J Clin Oncol 34, 2016 [suppl;
abstr 2505]). CC-115 also showed reasonable penetration into GBM
tissue in a surgical expansion cohort (Munster PN, et al). Given the
therapeutic hypothesis of radiosensitivity supported by preclinical
data, CC-115 will replace temozolomide (TMZ) in both the concurrent
and adjuvant phases of treatment. Because this dose has never been
combined with RT, the treatment armwill start with a safety lead-in with
the combination before expansion to the full phase II setting.

Abemaciclib

Retinoblastoma (Rb) protein is a key tumor suppressor that inhibits
progression through the G1 checkpoint (Sherr CJ: Science 274:1672-
1677, 1996). Cyclin D and CDK4/6 phosphorylate and inactivate Rb,
thereby allowing the cell cycle to progress. Abemaciclib is a highly
specific ATP-competitive CDK4/6 inhibitor that induces reversible G1
phase cell-cycle arrest in Rb-proficient tumor models and is approved
for hormone receptor–positive, human epidermal growth factor re-
ceptor 2 (HER2) –negative advanced or metastatic breast cancer.
Orally dosed abemaciclib achieved brain exposures in excess of the
concentrations required for CDK4/6 inhibition in an orthotopic rat GBM
model and significantly increased survival alone or in combination with
TMZ (Raub TJ, et al: Drug Metab Dispos 43:1360-1371, 2015). Ten
patients from a phase I dose-escalation and tumor-specific cohort
expansion study had cerebrospinal fluid concentrations available and
showed abemaciclib concentrations in a range (2.2 to 14.7 nmol/L)
that exceeded the dissociation constant (Ki, 0.6 nmol/L) for the CDK4/
cyclin D1 complex (Patnaik A, et al: Cancer Discov 6:740-753, 2016).
Of the 17 patients with GBM, three patients with GBM achieved stable
disease, two of whom continued to receive ongoing treatment without
progression for 19 and 23 cycles, respectively (Patnaik A, et al).
Abemaciclib will be administered in place of TMZ after standard
concurrent RT/TMZ.

Neratinib

Epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase
that regulates cell growth and differentiation, and EGFR aberrations are
important in oncogenesis (HynesNE, et al: Nat Rev Cancer 5:341-354,
2005) and common in GBM (Brennan CW, et al). Neratinib, an orally
available potent irreversible small-molecule pan–ERBB family tyrosine
kinase inhibitor that targets the intracellular tyrosine kinase domains in
EGFR, is approved for HER2-positive breast cancer (Martin M, et al:
Lancet Oncol 18:1688-1700, 2017; Cancer Discov 7:OF1, 2017)39

and has shown activity in controlling and delaying CNS progression of
breast cancer metastases (Awada A, et al: JAMA Oncol 2:1557-1564,
2016). In preclinical GBM studies, neratinib was shown to selectively
cause cell death in cell lines harboring genetic activation of EGFR and
was more effective than other EGFR inhibitors in lines harboring the
extracellular domain mutations seen in GBM (Vivanco I, et al: Cancer
Discov 2:458-471, 2012). Neratinib has also been shown to exhibit
potential for potent inhibition of amplified EGFRvII and EGFRvIII in
GBM patient-derived cell-line models (Francis JM, et al: Cancer Discov
4:956-971, 2014). Neratinib is significantly more potent than lapatinib
in limiting the growth of primary GBM cell lines, and this increased
potency is an attractive feature, given that negative clinical trials for
lapatinib have been attributed to inadequate tumor concentrations of
the drug (Vivanco I, et al). Neratinib will be administered in place of
TMZ after standard concurrent RT/TMZ.

BIOMARKERS
Prospective patients may have biomarker data already available from
academic or commercial sources, or they may take advantage of
a companion consortium (ABC2 ALLELE Consortium) that generates
free portable genotyping data using whole-exome sequencing and
copy array testing performed in a Clinical Laboratory Improvement
Amendments–certified clinical laboratory for patient use in clinical
trials. The biomarkers determined are as follows: EGFR positive de-
fined as patients with EGFR amplification or mutation; PI3K positive
defined as patients with PIK3CA mutation/amplification, PIK3R1
mutation, AKT3 amplification, PIK3C2B . one copy gain, or PTEN
dual allele inactivation through either homozygous deletion or deletion
plus an inactivating mutation; and CDK positive defined as patients
with RB1 wild type and CDK4 amplification, CDK6 amplification, or
CDKN2A or CDKN2B . one copy loss, or CDKN2A or CDKN2B one
copy loss plus an inactivating mutation.

For amplifications listed, the genotyping report must state clear gene
amplification and not gain, which is typically greater than a log2 ratio of
+2.0. Copy number losses would be values of , −0.3, and more than
single copy deletions are inferred relative to baseline for the chro-
mosome on which they are located (eg, single copy chromosome 9 loss
with additional loss of CDKN2A/B below this level in focal region). The
general criteria to be included for mutations would be single-nucleotide
variants that are present at. 3% allelic fractions and have. five prior
events reported in COSMIC or are well-established hotspots known to
be activating or inactivating mutations through experimental data or
novel mutations that are predicted to be clearly inactivating, such as
nonsense and frameshift mutations. All genotyping data are centrally
reviewed by a neuropathologist for ultimate determination of biomarker
categories.
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TABLE A1. Estimated Probability of Arm-Specific Early Stopping for
Futility
HR Early Stopping Probability

0.7 0.02

1.0 0.53

1.05 0.57

1.15 0.72

NOTE. Estimated probability based on simulation scenario with no
treatment effects in any other experimental arm.

Abbreviation: HR, hazard ratio.

TABLE A2. Sensitivity Analysis With Respect to PFS Treatment Effects

OS HR

Power

PFS HR (3 OS HR)

1.2 0.9

Scenario A Scenario B Scenario A Scenario B

0.55 0.93 0.95 0.95 0.94

0.6 0.88 0.89 0.89 0.89

0.65 0.78 0.79 0.79 0.79

0.7 0.65 0.64 0.65 0.64

0.75 0.51 0.50 0.51 0.50

0.8 0.35 0.36 0.37 0.35

NOTE. Power of rejecting null hypotheses of no overall survival (OS) treatment effects at completion of study. Analyses include the three biomarkers used as
covariates. Results computed with 10,000 simulations per scenario. In scenario A, only a single arm has positive treatment effects. In scenario B, one
additional arm has positive treatment effects (OS hazard ratio [HR], 0.6). HRs are constant across biomarker subgroups. We modified the simulation
scenarios of Table 1 by changing the progression-free survival (PFS) HRs. Also, in this case, type I error is controlled at α = 0.1.

TABLE A3. Power Based on OS-PFS Correlation

OS HR

Power

PFS-OS Concordance Index

1 0.7

Scenario A Scenario B Scenario A Scenario B

0.55 0.93 0.95 0.94 0.94

0.6 0.88 0.89 0.88 0.89

0.65 0.78 0.79 0.79 0.78

0.7 0.65 0.64 0.64 0.63

0.75 0.51 0.50 0.50 0.51

0.8 0.35 0.36 0.36 0.36

NOTE. Power of rejecting null hypotheses of no overall survival (OS) treatment effects at completion of study. Analyses include the three biomarkers used as
covariates. Results have been computed with 10,000 simulations per scenario. In scenario A, only a single arm has positive treatment effects. In scenario B,
one additional arm has positive treatment effects (hazard ratio [HR], 0.6). HRs are constant across biomarker subgroups. We modified the simulation
scenarios of Table 1 by modifying the progression-free survival (PFS) –OS concordance index.
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TABLE A4. Power Based on Biomarker Frequency

HR

Power

Biomarker Prevalence

0.65 0.4

0.55 0.85 0.66

0.6 0.74 0.56

0.65 0.62 0.44

0.7 0.49 0.35

0.75 0.35 0.27

0.8 0.26 0.20

NOTE. Probability of reporting a positive treatment effect in the
biomarker-positive group. We used scenarios where the positive
treatment effect is limited to the biomarker-positive subpopulation.
Results computed with 10,000 simulations per scenario. In this
example, only a single arm has positive treatment effects restricted to
a single biomarker-positive subpopulation of varying prevalence.

Abbreviation: HR, hazard ratio.

TABLE A5. Power of Rejecting Null Hypotheses of No OS Treatment
Effect

HR

Power

Scenario A Scenario B

0.55 0.94 0.94

0.6 0.88 0.88

0.65 0.77 0.78

0.7 0.64 0.64

0.75 0.48 0.48

0.8 0.34 0.34

NOTE. Power for an experimental arm added after onset of the
platform study. Reported power probabilities refer to a single arm
added after enrollment of 140 patients. In scenario A, only the single
arm added after onset of the study has positive treatment effects. In
scenario B, one additional arm available from onset of the platform
study has positive effects (hazard ratio [HR], 0.6).

Abbreviation: OS, overall survival.

TABLE A6. Power Sensitivity Analysis Based on Accrual Rate

HR

Power

Accrual (patients per month)

5 14

0.55 0.93 0.94

0.6 0.90 0.89

0.65 0.77 0.78

0.7 0.64 0.62

0.75 0.52 0.51

0.8 0.36 0.36

Abbreviation: HR, hazard ratio.
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