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Abstract: The impact of new and emerging therapies on the microenvironment of primary cutaneous
lymphomas (PCLs) has been recently raised in the literature. Concomitantly, novel treatments are
already used or registered (dupilumab, upadacitinib) and others seem to be added to the arma-
mentarium against atopic dermatitis. Our aim was to review the literature on interleukins 4, 13,
22, and 31, and JAK/STAT pathways in PCLs to elucidate the safety of using biologics (dupilumab,
tralokinumab, fezakinumab, nemolizumab) and small molecule inhibitors (upadacitinib, barici-
tinib, abrocitinib, ruxolitinib, tofacitinib) in the treatment of atopic dermatitis. We summarized the
current state of knowledge on this topic based on the search of the PubMed database and related
references published before 21 October 2021. Our analysis suggests that some of the mentioned
agents (dupilumab, ruxolitinib) and others may have a direct impact on the progression of cutaneous
lymphomas. This issue requires further study and meticulous monitoring of patients receiving these
drugs to ensure their safety, especially in light of the FDA warning on tofacitinib. In conclusion, in the
case of the rapid progression of atopic dermatitis/eczema, especially in patients older than 40 years
old, there is a necessity to perform a biopsy followed by a very careful pathological examination.

Keywords: cutaneous lymphoma; mycosis fungoides; Sézary syndrome; cytokine; atopic dermatitis;
tumor microenvironment; biologic treatment; small molecule inhibitors; JAK-STAT pathway; interleukins

1. Introduction

Primary cutaneous lymphomas (PCLs) are a rare entity of lymphoproliferative disor-
ders that have no evidence of extracutaneous involvement at the time of diagnosis [1]. An
important impact of the tumor microenvironment on the progression of the disease has been
raised in literature [2]. Currently, a variety of drugs affecting the cytokines and pathways
are essential in the pathogenesis of atopic dermatitis (AD) and are in the clinical trials phase,
whereas dupilumab targeting interleukin-4 (IL-4) and interleukin-13 (IL-13), tralokinumab
targeting IL-13 and two Janus kinase inhibitors (JAKi): upadacitinib (JAK1 inhibitor) and
baricitinib (JAK1/JAK2 inhibitor), are already registered in the EU [3,4]. Agents blocking
interleukin-22 (IL-22) and interleukin-31 (IL-31), fezakinumab, and nemolizumab, as well
as lebrikizumab will be available for patients soon [3]. There is a controversy regarding a
potential of increased risk of lymphoma in patients with atopic dermatitis (AD). Our aim is
to elucidate the role of IL-4, IL-13, IL-22, IL-31, and the JAK/STAT pathway in PCLs in the
context of novel treatment of AD.

2. Discussion

AD is a chronic, inflammatory skin disease characterized by strong pruritus that less
commonly affects adults [5]. This condition is associated with a poorer quality of life in
comparison with the general population and causes sleep disturbances and coexisting
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comorbidities [6]. As reported by the epidemiological studies, the prevalence of the child-
hood AD is between 12% and 20% in the United States, Europe, and Eastern Asia, whereas
in the elderly population it ranges from 2% to 5% [7–12]. Moreover, the secular trends tend
to show an increase in the number of AD patients in both children and adults [9,10]. Unfor-
tunately, a significant number of these patients present moderate to severe AD. Despite the
scale of the problem, the arsenal of drugs with a safe profile of action, characterized by a
low risk of serious side effects, and appropriate for long-term use is scarce [13]. Therefore,
doctors and patients hope for the end of “the draught”, which may happen thanks to
biologic drugs, e.g., monoclonal antibodies (mAb) like dupilumab/tralokinumab or small
molecule inhibitors, e.g., upadacitinib/baricitinib, which are proven to be effective and
are registered in the EU [13]. In fact, a few of these medications are already approved for
topical and systemic treatment of AD. However, despite the unquestionable potential these
drugs hold for AD patients in relieving their burden, we believe that some important issues
must be raised.

Among PCLs, heterogenous groups of B-, T- and NK-Cell lymphomas have been
differentiated [1]. Mycosis fungoides (MF) belongs to cutaneous T-cell lymphoma (CTCL)
and its classical variant is the most common PCL [1]. Our review focuses on the CTCLs;
however, when PCLs are mentioned, we refer to the entire spectrum of primary cutaneous
lymphomas. Major meta-analysis has shown a relative risk ratio (RR) of developing a lym-
phoma of 1.43 (95% CI, 1.12–1.81) in patients with AD [14]. The risk of lymphoma is higher
in cases where highly potent TCSs are used and in a severe course of the disease [14]. In a
recent study, the hazard ratios of developing Non-Hodgkin’s lymphoma (NHL) increase
with the severity of the eczema [15]. This was the only epidemiological study in which we
could find any biologic drug taken into consideration. Dupilumab has been analyzed in the
Danish cohort together with the influence of other immunosuppressive drugs, including
cyclosporine, azathioprine, mycophenolate and methotrexate [15]. According to some stud-
ies, the risk of developing NHL with cutaneous manifestation is especially high, but we
have to bear in mind the possible misdiagnosis bias [14–16]. We were not able to find any
other studies that describe the incidence of lymphomas in patients treated with biologics or
small molecule inhibitors referring to AD except clinical trials and case reports. Incidence
of lymphomas in the mentioned studies will now become a baseline for the further analysis
of the effects of new immunosuppressives brought to the market.

It may be difficult to clinically differentiate AD and PCL, especially in the case of
erythroderma. If a patient develops adult-onset AD, erythrodermic CTCL, and Sézary
syndrome (SS), they should always be excluded, as these diseases require distinct treatment
and have drastically varying prognoses [17]. Similarities concerning both diseases, which
are crucial in their pathogenesis, are illustrated in the Table 1 [17–28].

Table 1. Clinical and immunological similarities between atopic dermatitis (AD) and cutaneous T-cell lymphoma (CTCL).

Similarities Atopic Dermatitis Cutaneous T-Cell Lymphoma

Eosinophilia Often present May be present in the advanced stage
Immunoglobulin E (IgE) Often elevated May be elevated in the advanced stage

Lactate dehydrogenase (LDH) May be elevated Severity marker of MF/SS
Soluble interleukin receptor 2 (sIL-2R) May be elevated Severity marker of MF/SS

Th-2 microenvironment activation Always present Present in the advanced stage
Levels of filaggrin Significantly lowered May be significantly lowered

Transepidermal water loss (TEWL) Significantly lowered May be significantly lowered
Levels of antimicrobial peptides (AMPs) Significantly lowered Significantly lowered

Colonization of S. aureus 80% of patients 50–60% of patients

Some authors indicate that, due to the significant quantity of similarities, both diseases
may require the same treatment at certain stages [29]. However, in our opinion, the safety of
emerging drugs used in AD treatment, in the context of a PCL coexistence/induction risk,
should be raised. We decided to analyze theoretical and clinical data regarding interleukins
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and JAK-STAT pathways, which recently have been proven to be attractive targets in the
treatment of AD. On that basis, we excluded IL-5, IL-17, and IL-33 from the analysis, as
the trials of drugs targeting them are either terminated, are of unknown status, or they
did not meet the primary endpoints [30–35]. In this review, we also omit the IL-12/IL-23
axis affected by ustekinumab for two reasons. Firstly, a recent review on the effectiveness
of this agent concluded that the IL-12/IL-23 pathway is not an attractive target for the
treatment of AD [36]. Furthermore, the largest cohort of patients receiving ustekinumab has
shown that more novel and effective treatments are available for the therapy of this atopic
disease [36]. Second, IL-12 has been shown to be one of the possible treatments, despite
the fact that it is not currently clinically developed [37]. Therefore, blocking it should be
a factor facilitating the lymphoma progression by down-regulating the Th-1 cytotoxicity
against malignant clones.

2.1. New Medications in AD

AD is thought to be the hallmark of Th-2 microenvironment diseases. Th-2 profile
cytokines, such as IL-4, IL-5 and IL-13, play a significant role in the pathogenesis of the
disease by switching the immunoglobulin class to IgE and stimulating afferent neurons
via IL-4Rα, thereby promoting pruritus [38]. Therefore, drugs blocking these pathways
should be clinically effective in reducing the symptoms of this eczematous disease, as they
act against the inflammation [39].

One of them is dupilumab—a fully human monoclonal antibody that blocks IL-4Rα,
a shared receptor unit for IL-4 and IL-13, actively participating in the decrease of Th-2
mediated immunological response [3]. It is already used in America, Europe, and in several
other countries on children, adolescents, and adults. The analysis of four phase-three trials
has revealed that patients treated with this monoclonal antibody achieve a significantly
higher percentage reduction from the baseline in the most important AD management
scales—Eczema Area and Severity Index (EASI), SCORing Atopic Dermatitis (SCORAD),
Dermatology Life Quality Index (DLQI), and Patient-Oriented Eczema Measure (POEM)
versus control [40]. Notably, these superior effects have been achieved in monotherapy
without topical corticosteroids, regardless of previous use of systemic non-steroidal im-
munosuppressants, e.g., methotrexate or cyclosporine [40].

Other drugs targeting the IL-13 are lebrikizumab and tralokinumab. IL-13 binds and
neutralizes the activity of the mentioned cytokine with high affinity [41]. In phase IIb
of several randomized clinical trials, it showed promising results [42,43]. Even though
adverse effects of this drug were reported in the significant group of patients, they were
mostly mild to moderate [42,43]. Phase III clinical trials on patients who suffer from
moderate to severe AD are currently ongoing [44–50]. Another promising emerging
drug is tralokinumab—a fully human, monoclonal anti-IL-13 IgG4 antibody that binds
to two subunits of IL-13R (IL-13Rα1 and IL-13Rα2), thus neutralizing the cytokine from
the interaction [3,51]. Recently, three phase III clinical trials (ECZTRA1, ECZTRA2, and
ECZTRA3) were completed for this drug [52,53]. Tralokinumab, in combination with
topical corticosteroids, is not only effective in reducing the pruritus and improving sleep
quality, but it is also well tolerated for up to 52 weeks of treatment, which brings a promising
perspective we mentioned earlier [52]. Moreover, this medicament is safe and well tolerated
in combination with topical corticosteroids [53]. Interestingly, a long-term extension trial
for patients who were participants in the previous studies is currently ongoing and the
estimated completion date is in 2024 [54].

IL-22 and IL-31 are also the targets of new drugs, which have been or currently still
are under investigation in phases IIa and III of clinical trials [55–57]. Fezakinumab, an
anti-IL-22 antibody, has been shown in the IIa randomized, double-blind clinical trial on
adults with moderate to severe AD to be well tolerated and to have sustainable improve-
ments after the last dose [55]. Despite the small sample size and common adverse effects,
which were upper respiratory tract infections, improvements in SCOring AD (SCORAD)
were significant in patients with severe disease [3,55]. Thus, this drug is thought to be
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suitable for patients with severe AD, but no further clinical trials are currently ongoing [3].
Another interesting medication, especially for managing the pruritus in patients with
AD is nemolizumab, a human monoclonal IL-31 receptor α (IL-31Rα) antagonist [3,57,58].
This drug targets small-diameter neurons and it is thought that the relieving effect of
nemolizumab is due to action on cutaneous sensory neurons [3,58]. In the phase III trial,
the patients who could not achieve proper control of pruritus by solely using topical treat-
ment were recruited and enrolled [56]. Not only were the primary end points of the study
achieved with a significant decrease in pruritus measured in the VAS scale, but also a series
of secondary endpoints including EASI, DLQI or Insomnia Severity Index were met [56].
Other phase III trials are currently ongoing [59].

Various systemic and topical JAK inhibitors are about to be widely used in the treat-
ment of AD [4]. The data on the double blind control trials evaluating the efficacy of
these drugs in the treatment of AD are promising [60,61]. Baricitinib, abrocitinib, and
upadacitinib belong to the group of oral drugs, while ruxolitinib is known as a topical
agent considered in the therapy of AD [60].

Baricitinib is known as the first-generation JAK1/2 selective inhibitor [60,62,63]. The
efficacy of the drug in monotherapy and combined with topical corticosteroids has been
evaluated and the dose of 4 mg appears to significantly improve symptoms [64–66]. In
the pooled safety analysis of baricitinib in adults, which contained previously mentioned
studies, there were four major cardiovascular-adverse events and one death, however, no
malignancies were reported [67].

Abrocitinib is an oral selective JAK1 inhibitor that achieved satisfying results in
the phase III trial, proving that it is effective and well tolerated in monotherapy [64,68].
Patients from these studies have been enrolled in the extended trial (NCT03422822) and in
the 48th week of this trial, it has been shown, that between 24 and 36 weeks, the proportion
of patients meeting primary endpoints increased and was stable thereafter [60]. Comparing
abrocitinib, dupilumab, and the placebo in clinical trial, both drugs significantly more
reduced AD symptoms; however, a 200 mg dose of abrocitinib was superior to dupilumab
in limiting itchiness [69].

The next oral selective JAK1 inhibitor is upadacitinib [60]. It safe and efficient in
the monotherapy of moderate to severe AD in three phase III trials [70,71]. Moreover, in
comparison with dupilumab it was superior, showing significantly higher proportion of
patients who achieved the primary and secondary endpoints of the study [72]. Extension
of the mentioned trials and also new ones with pediatric patients are ongoing [73,74].

Ruxolitinib (JAK1/2 inhibitor) and delgocitinib (pan-JAK inhibitor) have proved to
be effective topical drugs in AD [60,61]. In the two phase III trials, ruxolitinib has shown
anti-inflammatory and anti-pruritic effects superior to the vehicle cream [75]. Adverse
effects were infrequent and clinically insignificant [75]. Clinical trials with atopic children
are underway [76]. Delgocitinib also seems to be satisfactory, since in the phase III trial it
was effective and well tolerated in Japanese patients for up to 28 weeks [77]. Currently,
two phase III trials on moderate to severe chronic hand eczema are ongoing [78,79].

2.2. Role of Interleukin-4 and Interleukin-13 in PCL

Interleukin-4 (IL-4) and interleukin-13 (IL-13) are the characteristic molecules that
induce, drive, and prolong the Th-2 answer both in AD and in advanced stages of
CTCL [21–23,38]. Along with the progression of CTCL, Th-2 cytokines are most com-
monly overproduced, skewing the Th1/Th2 axis towards the latter side, a well-known
phenomenon [80–82]. Certain genetic markers are associated with the predisposition to
develop the progressive MF. One of them has an increased expression of IL-4 relative to
CD3 expression levels, which are significantly associated with lymphoma progression [83].
Each of the discussed cytokines are elevated in the biopsies of MF and SS lesions [84–87].
IL-4 levels are raised in sera of patients; however, it does not always concern the cases of
low-grade lymphoma [18,21,81,82,84,88]. The elevated concentrations of these cytokines
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are related to the ability of neoplastic cells to secrete IL-4 and IL-13 as well as in the skin
and in the blood in vivo [81,82,85].

Also, IL-4 is a potent factor that polarizes tumor-associated macrophages into type 2 cells
(M2 Macrophages) [89]. The ability to produce several Th-2 cytokines is characteristic
for these phagocytes, thereby affecting the formation of CTCL by stromal factors [86,89].
Furthermore, IL-4 and IL-13 are important growth factors for PCLs and IL-13 acts in an
autocrine manner on the neoplastic lymphocytes [81,87]. IL-4 and IL-33 are also found to
induce the secretion of IL-31, which is one of the elements alongside with the discussed
interleukins, causing pruritus in AD and in CTCL—but the data are ambivalent concerning
lymphomas [3,90]. These properties contribute to driving the Th-2 type inflammatory
answer propelled in a vicious circle, leading to the depletion of the Th-1 microenvironment.
The arrest of the IL-4/IL-13 pathway by neutralizing IL-4 and IL-13 cytokines leads to
inhibition of tumor-cell proliferation [81]. Interestingly, blocking certain types of IL-13
receptors (IL-13Rα2) revealed an even stronger inhibition effect. However, this receptor
binds with IL-13 stronger than the first IL-13 receptor (IL-13Rα1) and is thought to be a
decoy in the normal tissues [81,91]. Recent studies have shown that the tumoral microenvi-
ronment created by the malignant lymphocytes in leukemic CTCL is a global bias, which
refers also to benign T cells [82]. Thus, in comparison to the normal lymphocytes in healthy
individuals, non-tumorous cells are strongly Th-2 biased [82]. Such drastic reduction of the
cytotoxic environment is thought to be one of major factors leading to infections which is
the most common reason of death in this group of patients [1,92,93].

It is also proven that cytoplasmic IL-4 concentration is the predictor of the advanced
stage of MF and SS [94]. Moreover, increased IL-4 concentration is observed frequently in
advanced stages of CTCL; it correlates with T-cell immunophenotype differences found in
advanced lymphoma stages and is associated with clonality of MF and SS cells [94]. Some
available methods of treatment used in clinical practice can reduce the Th-2 polarization in
advanced stages of CTCLs. One study revealed that extracorporeal photopheresis (ECP)
effectively restores the imbalance in Th1/Th2 microenvironments of peripheral blood
mononuclear cells (PBMC) [95]. After one year of such therapy, the concentrations of IL-4,
interferon gamma (IFNγ), and IL-12 did not differ from the healthy controls [95]. Also,
after administration of the T-cell depleting antibody directed against CD52, alemtuzumab
(Campath), which is used to treat refractory leukemic CTCL (L-CTCL), skin T cells have
been shown to secrete less IL-4 and more interferon gamma (IFNγ) than before the treat-
ment [96]. Finally, Guenova et al. suggested that inhibiting the Th-2 microenvironment
and restoration of Th-1 cytotoxicity should enhance both anti-tumorous and antibacterial
responses [82].

Concluding this section, the listed Th-2 cytokines play an essential role in the patho-
genesis of PCLs. It is especially prominent in advanced stages of the disease. Therefore,
blocking these pathways may be beneficial and may result at least in the stabilization of
the lymphoma.

2.3. Role of Interleukin-22 in PCL

Interleukin-22 (IL-22) is secreted mainly by the subpopulation of Th22 lymphocytes,
but also by other immune cell subsets and is involved in the modification of tissue responses
at the inflammation [97]. In two studies and one case report, levels of this cytokine were
significantly elevated in both skin lesions and sera of CTCL patients [18,98,99]. Other
researchers found that cultured CTCL cells overexpress IL-22 receptor subunit alpha1
(IL22Rα1) and overproduce IL-22 as well as chemokine ligand 20 (CCL20) [100]. Cytokine
induces the expression of CCL20 and signal transducer and activator of transcription 3
(STAT3), the latter of plays a role in the pathogenesis of CTCL [98,101]. Moreover, the
Sézary cells of one patient who developed sepsis stained positive for CD8 and produced
IL-22 [98]. Genetic analysis of SS patients and SS cell lines (SaEx) showed the disruption in
the IL-22 receptor subunit alpha2 (IL22Rα2) gene twice [102]. Subsequently, a fusion of
several genes occurred and one of them was the CCDC28A-IL22Rα2, which was transcribed
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on the messenger RNA level [102]. CCL20 and IL-22 serum levels correlate with the LDH
and sIL-2R and thus they correlate with CTCL severity [18]. Their activity seems significant
in the pathogenesis of the disease.

Enhanced CCL20 activity may induce epidermal hyperplasia as well as the migration
of chemokine receptor 6 (CCR6) positive Langerhans/Dendritic cells to the skin, which
are crucial in the evolution of lymphoma cells as the activation of T-cell receptors is
crucial for the malignant transformation of MF [18,103]. CCL20 is a ligand of CCR6 [100].
Activation of IL-22 has also been shown to lead to chronic CCR6-CCL20 interaction with
CTCL cells [100]. Furthermore, the continuous upregulation of CCR6 was discovered,
which results in the continuous activation of CCR6-CCL20, leading the lymphoma cells
to metastasize to internal organs [100]. These important findings are supported by recent
studies, showing that triggering a STAT3/CCL20/CCR6 cascade that blocks CCR6-CCL20
interaction, may be crucial in stopping lymphomagenesis [104]. Today, it is considered one
of the promising strategies in the treatment of advanced CTCL [104].

2.4. Role of Interleukin-31 in PCL

The role of Interleukin-31 (IL-31) in PCL is difficult to establish despite numerous
studies covering this topic. Importantly in other lymphomas, such as follicular lymphoma,
IL-31 promotes the growth of tumors in an autocrine and paracrine manner [90]. Certainly,
this cytokine seems to be involved in the pathogenesis of PCLs [105]. It is typically secreted
by Th-2 cells [106]. Signal transducers and activators of transcription 6 (STAT6) and NF-κB
induced by IL-4 are main players in mediating the production of IL-31 [106]. Both STAT6
and NF-κB play some role in the pathogenesis of CTCL [101,107]. IL-31 is elevated in both
lesions and sera of patients in the majority of studies (five); however, one study found no
differences in comparison to control groups [54,105,108–111]. Malignant T-cells may secrete
IL-31 [109]. Researchers did not establish with certainty whether IL-31 concentration is
correlated with CTCL progression or/and pruritus [54,105,108–111]. Despite the proven
central role of this cytokine in mediating pruritus in AD patients and the assumptions to
have the same role in CTCL, it is rather not the case here based on our results [58,105,110].
The postulated patomechanism seems to be specific to AD [110].

IL-31, a chemokine ligand expressed by monocytes and dendritic cells, is also cor-
related with CCL18 and may be associated with the development of CTCL [84]. Both of
these cells are important in the pathogenesis of PCL [89,103]. Moreover, exposition of
Staphylococcal enterotoxin B, a potent superantigen, to patients with AD rapidly elevates
the IL-31 levels secreted by T cells [112]. In cultured patients’ tumor cell samples, IL-2
acted as the previously mentioned superantigen, resulting in the expression of IL-31 in
9 of 11 cases [113]. Both illustrated mechanisms could give a reasonable explanation to the
observed elevation of IL-31 levels in patients with PCL. Moreover, it may explain why, in
some studies, the concentrations were higher in advanced stages of the disease.

2.5. Role of JAK-STAT Pathways in PCL

As of today, four types of Janus kinases (JAKs) (JAK1, JAK2, JAK3 and TYK2) and
seven different signal transducers and activators (STATs) (STAT1, STAT2, STAT3, STAT4,
STAT5a and STAT5b, STAT6) have been identified [114,115]. These molecules have impor-
tant roles in the transmission of the cytokine signal in various human cells in vivo [114].
They are abundantly expressed in the healthy human epidermis [115]. Numerous stud-
ies have shown the impact of different JAK/STAT pathways on the pathogenesis of
PCLs [90,101,103,116–181].

Strong evidence has been collected on genetic abnormalities of JAKs and
STATs in cutaneous lymphoma cells, both on the cell lines and PBMCs from
patients [103,125,129,137,139,143,144,149,153,157,162,170]. Studies highlight the activat-
ing mutations of JAK3, which occurred in 3.3–10.8% of patients with PCL according to
different study groups [125,137,139]. Suppressors of cytokine signaling 1 (SOCS-1), a
potent CTCL suppressor, regulates the JAK3/STAT5 signaling [119,143,153]. Moreover,
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mutations of SOCS-1 that abolished its binding to JAK3 reinforced the aggressive course of
the lymphoma [143]. Other researchers found that SOCS-1 deletion was one of the most
common events in the group they studied and happened especially in the early stages of
MF [153]. Interestingly, JAK3 is activated by the IL-2 and is in its pathway, which may
be clinically relevant especially in more aggressive types of the disease [139]. JAK3 is
expressed in the nuclei of CTCL cells, both from cell lines and PBMCs, and may also play
a novel role in malignant clones [167]. Interestingly, tofacitinib (JAK1 and JAK3 selective
inhibitor) could not block the kinase activity inside the nucleus, in contrast to the normal
blockage of the IL-2/JAK3 pathway [167,177].

Other genetic studies regarding PCL found the pathological variants in JAK1 and
JAK2 genes only in individual cases, and concerning common JAK2 alterations detected
in other lymphoid malignancies are worth noticing [129,137,162,170,176]. Interestingly,
JAK2 may play a role in keeping the Th-1 cytotoxic answer against the tumor present
by mediating the IL-12 signaling and thereby phosphorylating STAT4 [135]. STAT4 and
STAT6 genes are inversely regulated in CTCL and the loss of expression of the former
may play a role in switching to Th-2 answer in the advanced lymphoma stages [131]. In
contrast, JAK2 inhibition resulted in a decreased viability of SaEx, suggesting that it may
be important for tumorous survival [164]. Concomitantly, with these results acquired from
cell lines, the PBMC isolates showed that JAK inhibition potentiates the cytotoxicity of
other agents (e.g., histone deacetylase inhibitors (HDACi)) and allows us to achieve a
more generalized lethal effect against the malignant clones [165]. Other studies seem to
be consistent with these results by showing the results of combinative cytotoxic effect of
ruxolitinib (selective JAK1 and JAK2 inhibitor) and reminostat (HDACi) on the CTCL cell
lines [168]. Moreover, another study showed the synergistic role of JAK/STAT inhibition on
the in vivo SS model, in which romidepsin (HDACi) and mechloretamine were successfully
used in the treatment [173]. A blockage of the malignant cell growth mechanisms in CTCL
after the administration of increasing doses of ruxolitinib has also been suggested [137].
Further use of JAK inhibitors in the treatment of SS may be due to their ability to stop the
constitutive activation of the activated kinases [176]. In advanced stages of a lymphoma,
STAT3 and STAT5 are completely dependent on the constitutively activated JAK1 and
JAK3 [135]. However, one study showed that apoptosis in CTCL lines may be augmented
via the JAK1 pathway and this activity was blocked by ruxolitinib [145].

The further parts of the JAK/STAT pathway, especially STAT3, STAT5, and STAT6 also
play the established role of mediators in the PCLs oncogenesis [101,157,173,175]. These
proteins act upon the regulation of several gene transcriptions after being phosphorylated
by JAKs. One study demonstrated the constitutive activation of STAT5 in CTCL; however,
in most cases, after blocking the specific Janus kinase, these molecules should not be able
to maintain their function in regulating different gene transcriptions [134,135]. Currently,
there are no ongoing and upcoming trials concerning AD and STATs inhibition. Therefore,
the STATs role in PCLs is beyond the scope of this review.

2.6. Safety and Danger Concerns of Administering the New Drugs in the Context of PCLs

AD and psoriasis are distinct medical conditions. However, we have to think about the
possible interactions between drugs modifying immune responses in AD and pathogenesis
of PCL (followed by Dequidt et al.), especially because of the higher risk of lymphoma
in severe cases of AD as well as the problem of differentiation between AD and PCL in
some cases [182]. Also, in our opinion, it is crucial to first deduce whether the biologic and
small molecule treatments in AD may induce lymphoma and second, in case of an overlap
or misdiagnosis between those two diseases, a PCL may progress after administration of
these agents.

We would like to shortly summarize the above theoretical assumptions. Decreasing
the concentration and/or stopping the secretion of IL-4 and IL-13 could lead to the restora-
tion of the Th-1 microenvironment, which may enhance tumorous toxicity. The reduction in
the levels of these interleukins after receiving certain treatments discussed earlier is one of
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the supporting facts for this theory. Therefore, dupilumab, lebrikizumab, and tralokinumab
may appear to be clinically efficient in the treatment of the PCL. Agents blocking IL-22, i.e.,
fezakinumab, could also stop the lymphomagenesis and additionally reduce the ability
of the tumorous cells to metastasize in the advanced stages of the lymphoma. We also
show the possible involvement of IL-31 in the pathogenesis of PCLs, which is still elusive.
Theoretically, blocking the role in the establishment of the Th-2 microenvironment and
in the growth of the tumor might be beneficial for the lymphoma patients after admin-
istration of nemolizumab, similar to other lymphomas. Lastly, we described the current
state of knowledge on the influence of JAKs on PCLs. JAK1 and JAK3 seem to have the
pathogenic role by activating the STAT3, STAT5, and STAT6, which contribute significantly
to lymphomagenesis. Therefore, blocking them may reduce tumor development. In con-
trast, JAK2 may also play some role in preventing the growth of lymphomas. Despite
the mentioned effects of ruxolitinib on the CTCL cell lines, obstructing this pathway may
appear to be harmful for the patients by reducing the Th-1 cytotoxicity directed to the
clones. Figure 1 summarizes the most important aspects of the above assumptions.

Figure 1. The influence of agents targeting interleukins (IL) 4, 13, 22, and 31 and JAK/STAT pathways
on the primary cutaneous lymphomas (PCLs) cells and tumorous microenvironment. The up and
down arrows stand for increase/decrease of the interleukins concentration, cell count or receptor’s
upregulation. IL-12 promotes phosphorylation of STAT4, thereby stimulating the cytotoxic mediated
CD8(+) answer. Concomitantly, IL-4, IL-13, and IL-31 contribute to forming the Th-2 cytokine profile,
which results in decreased cytotoxic immunosurveillance and lymphomagenesis. IL-4, IL-13, and
IL-22 activate different Janus kinases, which promote the STAT3, STAT5, and STAT6 activation
contributing to the transcription of pro-tumorous factors. In the advanced stages of the disease, this
phenomenon may be seen more prominently. By blocking several pathways or cytokines, biologic
drugs and small molecule inhibitors may affect both the malignant microenvironment and pathways
in the PCLs cells.

However, despite the theoretical expectations of stopping the progression of the
disease, after administering the immunomodulating agents, PCL may progress or be
induced for reasons currently unknown [183]. Dirk Elston, in his letter discussing the
role of dupilumab in CTCL, agrees with our findings. He points out that if a cytokine is
upregulated, it does not mean we must down regulate it, contrary to the saying “If it’s wet,
dry it. If it’s dry, wet it” [184]. Concerning the theory we have previously described, we will
now discuss what researchers and medical agencies have found when the aforementioned
drugs have been used clinically. We were unable to find any reports on the impact of
lebrikizumab, tralokinumab, fezakinumab, and nemolizumab on PCLs in PubMed. Also,
we performed the search in the “Drug Safety-related Labeling Changes (SrLC)”—the
Federal Drug Agency (FDA) database—and could not find any records on these biologic
agents [185]. When searching the European Medicines Agency (EMA) website, found
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information on tralokinumab (Adtralza), which is authorized for use in the European
Union in the treatment of moderate to severe AD [186]. We also found an agreement on the
investigation plan for pediatric use of lebrikizumab [187].

Despite a multitude of evidence on potential benefits of using JAKi in the treatment
of other lymphoid malignancies, the only JAK inhibitor with reported effects on patients
with PCLs is ruxolitinib [188]. Baricitinib, upadacitinib, tofacitinib, and ruxolitinib are
authorized for use in the European Union [189–192]. Abrocitinib was recently positively
opinioned for marketing authorization [193]. Prior to 22 October 2021, the only JAK
inhibitor registered for AD treatment in the EU is baricitinib (Olumiant) [192]. Interestingly,
according to the U.S. Food and Drug Administration Database, baricitinib (Olumiant)
and tofacitinib (Xeljanz) may increase risk of developing lymphomas, including those
of the skin [194,195]. This warning especially raises the problem of potential increased
risk of serious adverse events, including cardiovascular and malignant complication in
the treatment of chronic inflammatory conditions [195]. Ruxolitinib and upadacitinib do
not have such warnings or precautions in their records because they are not used for
treatment of arthritis or other inflammatory conditions [195–197]. However, the issue of
JAK inhibitor safety in the treatment of AD is raised, since they share the same mechanisms
of action [198]. Moreover, currently the only JAK inhibitor that has been studied in a big,
four-year surveillance study is tofacitinib [198].

Only dupilumab and ruxolitinib will be discussed in the subsequent paragraph, be-
cause to the best of our knowledge, only these drugs are reported to have been administered
in the treatment of CTCL misdiagnosed as AD or eczema, CTCL itself, and AD followed
by CTCL. These cases are recorded in Table 2.

Table 2. Cutaneous T-cell lymphoma cases treated with dupilumab or ruxolitinib. We have updated the table continuing
the results by doctor Sugaya [91].

Drug Age (Years) Sex Pre-Diagnosis Final Diagnosis Response to Treatment Death Reference

Dupilumab 58 M AD MF Progression of MF No [199]

Dupilumab 64 M AD SS Progression of SS No [200]

Dupilumab 51 F AD MF Progression of MF No [201]

Dupilumab 64 M AD CTCL-NOS Progression of erythroderma No [202]

Dupilumab 72 M AD MF Progression of MF No [202]

Dupilumab 59 F AD MF and AD Progression of MF No [202]

Dupilumab 40 F AD MF Progression of MF No [202]

Dupilumab 67 M MF SS Progression of SS Yes [202]

Dupilumab 58 M MF SS Progression of SS Yes [202]

Dupilumab 77 F MF SS Progression of SS No [202]

Dupilumab 61 M Eczema MF Progression of MF No [203]

Dupilumab 52 M Eczema MF No clinical improvement No [203]

Dupilumab 60 F Eczema MF No clinical improvement No [203]

Dupilumab 68 M SS and AD SS and AD Improvement in SS and AD No [204]

Dupilumab 37 F Eczema SS Progression of SS No [205]

Dupilumab 55 M MF and AD MF and AD Improvement of MF and AD No [205]

Dupilumab 74 F SS SS Improvement of SS No [206]

Dupilumab 48 F AD SS and AD No clinical improvement No [207]

Dupilumab 40 F AD MF Progression of MF No [208]

Dupilumab 43 M AD MF and AD Progression of MF No [209]

Dupilumab 48 F AD MF Progression of MF No [210]
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Table 2. Cont.

Drug Age (Years) Sex Pre-Diagnosis Final Diagnosis Response to Treatment Death Reference

Dupilumab 55 M AD MF Progression of MF No [210]

Dupilumab 26 M MF MF No clinical improvement No [211]

Ruxolitinib 13 M HLH HLH and SPTCL Improvement of
SPTCL and HLH No [212]

Ruxolitinib NS NS MF MF Progression of MF No [213]

Ruxolitinib NS NS CTCL CTCL No clinical improvement/
Stable disease No [213]

Ruxolitinib NS NS CTCL CTCL Progression of CTCL No [213]

Ruxolitinib NS NS CTCL CTCL Progression of CTCL No [213]

Ruxolitinib NS NS MF MF Progression of MF No [213]

Ruxolitinib NS NS MF MF No clinical improvement/
Stable disease No [213]

Ruxolitinib NS NS MF MF Improvement of MF/
Partial remission No [213]

Ruxolitinib NS NS pcALCL pcALCL Improvement of MF/
Complete response No [213]

Abbreviations: NS: not specified; M: male; F: female; MF: mycosis fungoides; AD: atopic dermatitis; CTCL: cutaneous t-cell lymphoma;
pcALCL: primary cutaneous anaplastic large-cell lymphoma; SS: Sézary Syndrome; HLH: hemophagocytic lymphohistiocytosis; SPTCL:
subcutaneous panniculitis-like T-cell lymphoma; CTCL-NOS: CTCL-not otherwise specified.

An expert opinion on the safety of dupilumab shows that it is a safe, well-tolerated
drug in AD [214]. Noticeably, CTCLs which occur during treatment with this drug may
be unrelated, but a long-term follow-up performed with a large cohort of patients is
needed to elucidate this subject [214]. Another opinion describes the cases of MF or SS
identified in patients treated with dupilumab and concludes that in a limited subset of
patients, this drug might appear to be beneficial [91]. However, generally it should be
avoided and in some cases contraindicated for CTCL treatment [91,215]. Our research
of the Pubmed database has led us to identify a total of 23 cases in which a PCL and
use of dupilumab coexisted [199–211]. A total of 21 people in this group were above
40 years old [199–207,209–211]. What may be surprising in the context of our theoreti-
cal assumptions is that the most common event in the mentioned group was the pro-
gression of the lymphoma, which led to the death of two patients, who progressed to
SS [199–207,209–211]. No clinical improvement of the CTCL was observed four times,
whereas the disease course improved in three cases [199,203,206,207,211]. In 16 cases, the
original diagnosis was AD or eczema while remaining patients were treated for PCL or
mogalizumab-associated rash off-label [199–207,209–211]. Interestingly, dupilumab ap-
peared to be effective for the treatment of lichenoid reaction associated with mogalizumab
in a patient with CD8+ MF [211].

Ruxolitinib, which targets JAK1/JAK2 is used in the treatment of psoriatic arthritis, AD,
and several lymphoid malignancies, e.g., myelofibrosis and polycythemia vera [215,216].
Moreover, trials on animal models of hemophagocytic lymphohistiocytosis (HLH) prove
this JAK inhibitor to be efficient in the treatment of this condition [217,218]. The genetic
abnormalities in the JAK/STAT pathway have been the rationale for therapeutic uses that
we discussed earlier. Assuming that JAK inhibitors prove to be effective in the treatment
of cutaneous lymphomas, clinicians may feel comfortable administering them if the final
diagnosis is difficult to make [215]. These facts led the researchers to administer ruxolitinib
to nine patients with PCLs (four MF, three non-specified CTCL, one primary cutaneous
anaplastic large cell lymphoma (pcALCL), and one subcutaneous panniculitis-like-T-cell
lymphoma (SPTCL)) [212,213]. Some was observed in three cases (one MF, one pcALCL
and one STPCL), but the disease course remained stable or worsened in the others [212,213].
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Interestingly, despite that five of the seven CTCLs showed the signs of JAK/STAT activation,
only one patient whose tumor showed 20% overactivation of pSTAT3 responded to the
treatment [213].

The conflicting data revealed in this article seems to be in line with our previous
considerations on the safety and danger of the use of biologics in the treatment of psoriasis.
Blockage of several mechanisms by which the interleukins act and occur in PCLs should
be beneficial in the treatment of the disease. However, dupilumab, in most of patients
with lymphoma misdiagnosed as AD or eczema, makes it fully apparent. This drug
does not seem to be beneficial for CTCL patients in most cases. Accordingly, despite the
JAK/STAT activation, most of the lymphomas did not respond to ruxolitinib. With this
paper, we would like to raise awareness to the issue of a development or a misdiagnosis of
a cutaneous lymphoma in patients with AD. Especially for patients that are 40 years old or
above, the chronic and severe course of AD and the sudden worsening of the symptoms
should be considered “red flags” to exclude the potential oncologic risk by taking and
carefully verifying the biopsy.

3. Materials and Methods

A comprehensive search of the literature using the PubMed (https://pubmed.ncbi.
nlm.nih.gov/) electronic database using the search queries “(IL-4 and cutaneous lym-
phoma) OR (IL-4 and mycosis fungoides)”, “IL-22 and cutaneous lymphoma”, and “IL-31
and cutaneous lymphoma” was performed in the second week of August 2021, from
the database inception to the 14th of August 2021. Further research using the queries
“(dupilumab and lymphoma)”, “(fezakinumab and cutaneous lymphoma) or (fezakinumab
and mycosis fungoides)”, “(lebrikizumab and cutaneous lymphoma) or (lebrikizumab
and mycosis fungoides)”, “(tralokinumab and cutaneous lymphoma) or (tralokinumab
and mycosis fungoides)”, “(baricitinib and cutaneous lymphoma) or (baricitinib and my-
cosis fungoides)”, “(ruxolitinib and cutaneous lymphoma) or (ruxolitinib and mycosis
fungoides)”, “(upadacitinib and cutaneous lymphoma) or (upadacitinib and mycosis fun-
goides)”, and “(jak inhibitor and cutaneous lymphoma) or (jak inhibitor and mycosis
fungoides)” was performed in the third week of August 2021, from the database inception
to the 25th of August 2021 and a “((jak) OR (stat)) AND (cutaneous lymphoma)” search
was performed in the second week of September 2021, from the database inception to the
11th of September 2021. After the initial search, titles and abstracts were screened for the
inclusion and exclusion criteria. Based on title and abstract analysis, we included articles
concerning the role of IL-4, IL-13, IL-22, IL-31, JAK/STAT, and biologic drugs affecting
cytokine profiles and JAK inhibitors on PCLs. At this step, we excluded records not related
to the topic, non-English manuscripts, personal opinions, and duplicates. The remaining
were qualified as eligible for full-text reading. After reading the full manuscripts, some
were excluded (not relevant, not original, and not providing information concerning earlier
mentioned cytokines, pathways, and new drugs’ impact on PCLs). Finally, additional
relevant, eligible records identified through a references search were included, in which
information on the effect of PCL microenvironmental influence on the specific lymphoma
subtypes were included. Concentration of cytokines in the biopsies and in the blood of the
patients, genetic alterations concerning genes linked to the featured subject, the possible
effects of interleukins, pathways, and administration of the agents blocking them in the
clone cells were analyzed and summarized.

4. Conclusions

IL-4, IL-13, IL-22, and IL-31 are detectable in the lesions and sera of patients suffering
from PCL. The JAK-STAT pathway has an established role in the oncogenesis of this tumor.
We summarized the effects of these cytokines in the course of cutaneous lymphomas. We
have shown that IL-4, IL-13, and activation of certain JAKs and STATs to be crucial in the
development of the tumoral microenvironment as well as in the progression of the disease.
IL-22 and IL-31, however, are not as important in the pathogenesis of PCL as they are

https://pubmed.ncbi.nlm.nih.gov/
https://pubmed.ncbi.nlm.nih.gov/
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in AD. Based on the publications, we have also described the effect of dupilumab and
ruxolitinib in the PCL patients misdiagnosed as AD, in PCL itself or AD itself and with
PCL in follow up during treatment (coexistence of two diseases). The progression of the
lymphoma was observed in most of cases. Thus, we would like to highlight, that in case
of severe AD or eczema, especially in a case of rapid evolution of the symptoms in an
older individual, it is necessary to perform a biopsy from the skin lesion. Subsequently, a
close pathological examination to exclude the possibility of PCL misdiagnosis/evolution
should be performed. However, as the authors, we would like to mention that we should
not avoid dupilumab in severe AD, especially concerning the portfolio of other systemic
drugs used in AD, such as cyclosporine A, methotrexate, and azathioprine, all with known
immunosuppressive potential. We realize the necessity of further research concerning the
role of IL-22 and IL-31 in PCL. Furthermore, the new biologic and small molecule drugs
should be used carefully in the treatment of AD in order not to worsen the course of the
cutaneous lymphomas.
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