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Simple Summary: Metastatic epidural spinal cord compression (MESCC) is a disastrous complication
of advanced malignancy, and early diagnosis is important to prevent irreversible neurological
injury. MRI is the mainstay of diagnosis for MESCC, but it is expensive, and routine screening
of asymptomatic patients is not feasible. Staging CT studies are performed routinely as part of the
cancer diagnosis and represent an opportunity for earlier diagnosis and treatment planning. In this
study, we trained deep learning models for automatic MESCC classification on staging CT studies
using spine MRI and manual radiologist labels as the reference standard. On a test set, the DL models
showed almost-perfect interobserver agreement for the classification of CT spine images into normal,
low, and high-grade MESCC, with kappas ranging from 0.873–0.911 (p < 0.001). The DL models
(lowest κ = 0.873, 95% CI 0.858–0.887) also showed superior interobserver agreement compared
to two radiologists, including a specialist (κ = 0.820, 95% CI 0.803–0.837) and general radiologist
(κ = 0.726, 95% CI 0.706–0.747), both p < 0.001.
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Abstract: Background: Metastatic epidural spinal cord compression (MESCC) is a disastrous com-
plication of advanced malignancy. Deep learning (DL) models for automatic MESCC classification
on staging CT were developed to aid earlier diagnosis. Methods: This retrospective study included
444 CT staging studies from 185 patients with suspected MESCC who underwent MRI spine studies
within 60 days of the CT studies. The DL model training/validation dataset consisted of 316/358
(88%) and the test set of 42/358 (12%) CT studies. Training/validation and test datasets were labeled
in consensus by two subspecialized radiologists (6 and 11-years-experience) using the MRI studies
as the reference standard. Test sets were labeled by the developed DL models and four radiologists
(2–7 years of experience) for comparison. Results: DL models showed almost-perfect interobserver
agreement for classification of CT spine images into normal, low, and high-grade MESCC, with
kappas ranging from 0.873–0.911 (p < 0.001). The DL models (lowest κ = 0.873, 95% CI 0.858–0.887)
also showed superior interobserver agreement compared to two of the four radiologists for three-class
classification, including a specialist (κ = 0.820, 95% CI 0.803–0.837) and general radiologist (κ = 0.726,
95% CI 0.706–0.747), both p < 0.001. Conclusion: DL models for the MESCC classification on a CT
showed comparable to superior interobserver agreement to radiologists and could be used to aid
earlier diagnosis.

Keywords: deep learning model; metastatic spinal cord compression; metastatic epidural spinal cord
compression; CT; MRI; Bilsky classification; spinal metastases classification; spinal metastatic disease;
epidural spinal cord compression

1. Introduction

The spinal column is the most common site for metastases, and spinal metastases
affect up to 40% of cancer patients [1]. Spinal metastases can lead to pain and potentially
devastating complications, including metastatic epidural spinal cord compression (MESCC),
which can lead to paralysis and bowel and bladder dysfunction. Permanent neurological
dysfunction in MESCC can be prevented if the condition is detected early and confirmed on
imaging, allowing appropriate treatment to be initiated. Unfortunately, if the presentation
of MESCC is delayed and the patient is non-ambulatory at presentation, it is unlikely that
they will regain the ability to walk [2,3].

To aid in the earlier diagnosis of MESCC, cancer clinicians, patients, and their families
need to be aware of the early signs and symptoms of MESCC. Symptoms preceding
neurological dysfunction in patients with MESCC include pain (most common and can
involve a change in the characteristics of existing pain), altered sensations/paresthesias
(e.g., numbness and tingling), and reduced ambulation. However, these symptoms can be
subtle and non-specific, especially in those with opioid analgesics, and can overlap with
existing pain from spine degeneration. In addition, patients may be asymptomatic in the
early stages of MESCC, which in combination with the non-specific symptoms, means that
a definitive diagnosis of MESCC with imaging can be delayed [4].

Prior studies and the UK NICE guidelines on metastatic cord compression in adults
(2008) advise that an MRI is the initial imaging of choice for the accurate diagnosis of
MESCC [5,6]. An MRI provides a detailed assessment of both osseous and soft tissue
metastases along the spinal canal and can assess the degree of MESCC and the status
of the spinal cord [7]. MESCC is typically classified using the Spine Oncology Study
Group (Bilsky) grading scale [8]. The grading scale is important for treatment plan-
ning and consists of a six-point classification, which can be subdivided into two key
groups. Low-grade disease (0, 1a, and 1b grades) can be targeted for initial radiotherapy
(e.g., external beam radiotherapy or stereotactic radiosurgery) and high-grade
disease (1c, 2, and 3 grades) with contact or compression of the spinal cord can be consid-
ered for initial surgical decompression and subsequent radiotherapy [9].

If an MRI is contraindicated, then a CT myelography, a more invasive procedure, can
be considered for the diagnosis of MESCC. Conventional contrast-enhanced CT is another
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potential option for MESCC diagnosis. It is performed at frequent intervals in cancer
patients to stage the overall cancer burden and assess response to treatment [10]. Staging
CT studies present an opportunity for earlier diagnosis of MESCC in asymptomatic patients
or those with unclear symptomatology or pre-existing back pain. If there is suspicion of
MESCC on the staging CT, then a detailed clinical assessment can be undertaken, and a
definitive MRI performed. Currently, small studies have shown the utility of a staging
CT versus an MRI for the diagnosis of MESCC. Crocker et al. (2011) looked at 41 patients
with suspected MESCC and reported a sensitivity of 89% and a specificity of 92% for the
detection of MESCC when compared to a subsequent MRI [11].

A deep learning (DL) tool for automatic detection of MESCC on a CT could alert the
reporting radiologist and clinicians, allowing for an expedited MRI for the confirmation
and the treatment planning of MESCC. This could provide earlier treatment to prevent
permanent neurological dysfunction and reduce the requirement for health resources. Prior
deep learning in CT and MRI of the spine have shown great promise, especially for the
detection of lumbar disc herniation [12] and lumbar spinal stenosis [13,14]. Deep learning
for the detection and classification of spinal metastases on CT and MRI is in an early phase
and mainly focuses on the detection [15], bone segmentation and metastatic burden [16],
or the prediction of a metastasis versus a primary tumor type [17]. To our knowledge, no
deep learning tool has been trained to assess MESCC using a staging CT.

The main aims of this study are the following:

1. Develop a deep learning model for automatic detection of MESCC on a staging CT.
To our knowledge, this has not been done previously and could expedite earlier
diagnosis of MESCC and identify suitable patients for initial radiotherapy versus
surgical decompression.

2. Model training and testing will be done using reference standard MESCC gradings
on staging CT studies provided by experienced radiologists using axial T2-weighted
MRI scans (the current gold standard for MESCC evaluation) performed within two
months of the CT.

3. Once the deep learning model is trained, the clinical performance of the model will be
compared with that of both subspecialized radiologists with experience in reporting
advanced spine imaging and general radiologists on a test set.

2. Materials and Methods

The study was conducted in accordance with the Declaration of Helsinki and approved by
the Institutional Review Board of the National Healthcare Group (NHG), Singapore. A waiver
of consent was granted as this was a retrospective study, and minimal risk was involved.

2.1. Dataset Preparation

Retrospective extraction and anonymization of the MRI spines and corresponding
staging CT studies from patients with spinal metastatic disease and suspicion of thoracic
MESCC were performed over a twelve-year period from September 2007 to September 2019
at the National University Hospital, Singapore. Adult patients (≥ 18 years of age) were
included, with imaging studies selected across different MRI and CT scanners (Philips,
GE, and Siemens). Corresponding MRI and staging CT studies with a time gap of up to
two months (sixty days) were included. MRI and CT studies with spinal instrumentation,
poor image quality (e.g., motion artifacts), and non-thoracic spine regions were excluded.
CT studies with contrast (portal-venous phase) were included, with the exclusion of non-
contrast studies. Supplementary Tables S1 and S2 provide details on the CT and MRI
scanner types and parameters, respectively.

The dataset from the National University Hospital, Singapore, was split randomly
into 88% for the training/validation set and 12% for the test set. This percentage split is
acceptable for deep learning datasets [18].
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2.2. Dataset Labelling

Imaging data for training were manually reviewed and labeled by two experienced
radiologists; a musculoskeletal radiologist (JTPDH; 11-years-experience) and a neuroradi-
ologist (AM; 6-years-experience). Each specialist labeled at least 150 staging CT studies
independently. Using a freely available annotation tool (LabelImg—https://github.com/
tzutalin/labelImg, accessed on 9 May 2022), bounding boxes were manually deployed at
the region of interest (ROI) around the thoracic spinal canal (C7-T1 to the termination of
the spinal cord at T12-L3). The cervical region was not evaluated as CT neck studies are
not a routine component of our institutional staging CT protocol. Labels were placed on
individual axial contrast-enhanced CT images using the corresponding axial T2-weighted
MRI images as the reference standard. The axial CT images were provided in three standard
Hounsfield unit (HU) window widths (W) and levels (L) for accurate visual assessment;
Abdominal soft tissue window (W:400, L:50), spine soft tissue window (W:200, L:100), and
bone windows (W:1500, L:300).

Using bounding boxes, the labeling radiologists graded the MESCC using the Bil-
sky classification [8]. The Bilsky classification has six categories with low-grade disease
(0, 1a, and 1b) potentially treatable with first-line radiotherapy and high-grade disease
(1c, 2, and 3) more likely to be treated surgically. A chart of the different Bilsky grades was
provided to all labelers (Figure 1). Osteoarthritic findings along the vertebra and disk spaces
(e.g., disk herniations, osteophytes, and ligamentum flavum ossification) leading to spinal
canal narrowing were labeled and excluded from the analysis [19,20].

The CT test set was labeled using the visual scale and corresponding MRI studies by
the specialized radiologist (JTPDH) with 11-years-experience and provided the reference
standard. The reference radiologist did not have access to the outputs of the DL model. The
DL models were compared against human readers on an internal test set for interobserver
variability. The internal test set was labeled independently by subspecialist musculoskeletal
radiologists (SEE; 7-years-experience, and FEM; 5-years-experience) and two body radiolo-
gists who primarily report staging CT studies (HYO; 2 years, AJLC; 5-years-experience).
Prior to labeling, all readers were provided with a visual grading scale and reviewed five
practice cases showing a range of low and high-grade Bilsky gradings on corresponding
axial MRI and CT images. For the formal assessment, all readers were blinded to the
reference standard, DL model gradings, and corresponding MRI studies.

2.3. Deep Learning Model Development

A deep learning pipeline with the sequential region of interest (ROI) detection and
classification was developed for automated CT Bilsky analysis. Figure 2 shows our proposed
pipeline, which consists of two major steps. First, we employed the Faster R-CNN [21] with
the Resnet50 [22] backbone network and fine-tuned this detector on the CT scans to detect the
ROIs. Second, multimodal learning models were trained for the ROI classification with the
available three different windows, namely the abdominal, bone, and spine windows. In our
setting, we argue that each different window can be regarded as one different modality with
exclusive characteristics. Therefore, multimodal learning methods were developed to leverage
the complementary information from different windows for more accurate analysis [23].

In detail, we developed two multimodal learning methods, called separated win-
dow learning (SWL) and combined window learning (CWL). For SWL, we trained one
convolutional prototypical network [24] with Resnet50 [25] as its backbone network ar-
chitecture for each window. Then, we utilized either an average fusion mechanism or a
max fusion mechanism at the prediction level to aggregate the complementary information
from different windows for the final prediction. In average fusion, we calculate the final
prediction probability for each grading as the average of prediction probabilities from the
three networks trained in each window. In max fusion, the model predicts the CT Bilsky
grading with maximum prediction probability among all the three networks.

https://github.com/tzutalin/labelImg
https://github.com/tzutalin/labelImg
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Figure 1. Bilsky grading of metastatic epidural spinal cord compression (MESCC) on MRI and corre-
sponding staging CT of the thoracic spine. Axial contrast-enhanced staging CT studies (portal-venous
phase) and corresponding axial T2-weighted (repetition time in msec/echo time in msec, 5300/100)
MRI were used. Deep learning model training was performed by radiologists using bounding boxes
to highlight the region of interest at each axial CT image. Grade 0/normal: No epidural disease,
Grade 1a: Epidural disease with no thecal sac indentation, Grade 1b: Epidural disease with thecal sac
indentation, Grade 1c: Epidural disease touching the cord with no displacement, Grade 2: Spinal
cord compression with some cerebrospinal fluid (CSF) visible, Grade 3: Spinal cord compression with
no CSF visible at the site of compression.

Figure 2. Machine learning pipeline development for both model training and model deployment in
a clinical setting. ROI = Region of Interest.

While the SWL method shows the potential of the multimodal learning paradigm, we
also found that the separated window training suffers from an undesirable space usage
issue due to the large model size. Each window in SWL requires a separated network, and
the three different windows result in the tripling of the model size. When there is a memory
limit in the final deployment environment (e.g., mobile phone), a smaller model size would



Cancers 2022, 14, 3219 6 of 15

always be desirable. To alleviate this issue, we developed combined window learning
(CWL). In this method, we shared the weights of the networks trained in different windows
apart from the batch normalization layers [26], which are used to mitigate the discrepancy
for input CT scans from different windows. Such a design leads to a single network with
model-specific batch normalization layers, which keeps the model size almost constant as
the batch normalization layers occupy a negligible amount of memory. Finally, we applied
either average fusion or max fusion to aggregate all the information from three different
windows for the final prediction (Figure 3). The hyper-parameters of our framework are
optimized with a hold-out validation set, which is a standard operation in the machine
learning community [27].

Figure 3. Overview of the developed deep learning pipeline. The developed deep learning pipeline
takes input images with information from three different windows. For the first step, a region of
interest (ROI) detector is applied to all images of the three windows. In the second step, a window-
specific classifier is applied to calculate the prediction probability for each windowed image. We
have developed both a separated window learning (SWL) method and a combined window learning
(CWL) method. In the separated window learning (SWL) method, three separate networks are trained
for the information from three different windows. In the combined window learning (CWL) method,
a single network with window-specific batch normalization layers is trained on all windowed images
to reduce the memory size. Multimodal fusion techniques, specifically average fusion and max fusion,
are applied at the prediction probability vectors to aggregate all the complementary information from
images of different windows for the final prediction.

Finally, one additional benefit of our developed multimodal learning methods is
their robustness against missing windowing information. For inputs with incomplete
windowing information, our methods can simply aggregate all the available windowing
information for the final prediction. All of our models were developed using the Apache
SINGA [28] platform and MLCask [29], which is a highly efficient pipeline management
system for data analytics, facilitating the management of several versions of the developed
algorithms. The code of the deep learning model (SpineAI@NUHS-NUS) is available
at https://github.com/NUHS-NUS-SpineAI/SpineAI-Bilsky-Grading-CT, accessed on
9 May 2022.

2.4. Statistical Analysis

All statistical analyses were carried out using version 16 (StataCorp LLC, College
Station, TX, USA), with significance placed at a 2-sided p < 0.05. Assuming that kappa of
approximately 0.9 is to be obtained, a minimum of 138 studies (staging CTs) were needed to
provide a 95% confidence interval width of 0.1. Over the 12-year study period, a more than

https://github.com/NUHS-NUS-SpineAI/SpineAI-Bilsky-Grading-CT
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sufficient sample of 185 subjects with 444 CT studies was obtained. Descriptive statistics
for categorical variables were presented as n (%) and the mean ± standard deviation
(range) for continuous variables. Inter-observer agreement for trichotomous (normal, low,
and high-grade) and dichotomous (normal/low versus high-grade, and normal versus
low/high-grade) Bilsky gradings were assessed with Gwet’s kappa to take into account the
high proportion of normal gradings. Sensitivity, specificity, and AUCs were also presented
for the two groups of dichotomous Bilsky gradings only.

Levels of agreement were defined for Gwet’s kappa as follows: <0 = poor, 0–0.2 = slight,
0.21–0.4 = fair, 0.41–0.6 = moderate, 0.61–0.8 = substantial, and 0.81–1 = almost-perfect
agreement. Further, 95% confidence intervals (CIs) were calculated.

3. Results
3.1. Patient Characteristics in Datasets

Data collection over the 12-year study period identified 185 patients with 444 CT studies
and corresponding MRI spines. Of the 444 CT studies, 86 were excluded as they were either
non-contrast (no intravenous contrast administered in 28/86, 32.6%), covered only the cervical
or lumbosacral region (49/86, 57.0%), instrumentation was present (4/86, 4.7%), had an
interval greater than 60 days between the CT and the MRI (3/86, 3.5%), or were of poor
image quality (2/86, 2.3%). Overall, 358 CT staging studies from 185 patients were available
for analysis.

Overall, the mean age of the 185 patients was 60 ± 12(SD) (range:18–93 years). The
patients were more frequently male (96/185 patients, 51.9%), with breast and lung ma-
lignancies the most frequent cancer subtypes (86/185 patients, 46.5%). The majority of
thoracic MESCC was located at the thoracolumbar border between T11-L3 (75/185 patients,
40.5%). The patient demographics, types of cancer, and distribution of MESCC along the
thoracic spine are shown in Table 1.

Table 1. Patient demographical data and characteristics for the deep learning model train-
ing/validation and test datasets.

Characteristics
Internal Training/Validation

Set
(n = 155)

Internal Test Set
(n = 30)

Age (years) * 60 ± 12.1 (18–93) 58 ± 11.6 (32–76)
Women 77 (49.7) 12 (40.0)

Men 78 (50.3) 18 (60.0)

Cancer Subtype
Lung 36 (23.2) 8 (26.7)
Breast 33 (21.3) 9 (30.0)
Colon 15 (9.7) 3 (10.0)

Prostate 13 (8.4) 0 (0)
Renal cell carcinoma 12 (7.7) 2 (6.7)
Multiple Myeloma 10 (6.5) 1 (3.3)

Hepatocellular carcinoma 8 (5.2) 1 (3.3)
Nasopharyngeal carcinoma 6 (3.9) 0 (0)

Others 22 (14.2) 6 (20.0)

No. of staging CT thoracic studies 316/358 (88) 42/358 (12)

MESCC location
Diffuse thoracic # 49 (15.5) 8 (19.0)

C7-T2 21 (6.6) 2 (4.8)
T3-T10 97 (30.7) 14 (33.3)
T11-L3 128 (40.5) 15 (35.7)

No epidural disease 21 (6.6) 3 (7.1)
Note- MESCC = Malignant epidural spinal cord compression. * The values are mean ± SD (range) for numerical
variables and n (%) for categorical variables. # Two or greater sites of thoracic epidural disease.



Cancers 2022, 14, 3219 8 of 15

The internal imaging data comprising 358 CT staging studies were randomly split into
316 (88%) CTs for training/validation and 42 (12%) CTs for testing, respectively. Figure 4
provides a flow chart of the overall study design.

Figure 4. Flow chart of the overall study design and deep learning model development. The model
performance was compared with a specialist radiologist (reference standard) and four radiologists.
* All CT studies had a corresponding MRI of the thoracic region available. ROI = Region of interest.
MSK = musculoskeletal radiologist (specialised in reading spine studies).

3.2. Reference Standard

The axial images and the CT Bilsky gradings for the internal training/validation and
test datasets are shown in Table 2. For the internal training/validation set, there was a
predominance of normal or low-grade Bilsky gradings (12071/13400 ROIs, 90.1%), with
high-grade Bilsky grading (1c, 2, and 3) accounting for 1329/13400 ROIs (9.9%). In the
testing data, high-grade Bilsky grading (1c/2/3) comprised 203/2735 ROIs (7.4%) with
a predominance of either normal or low-grade disease (2532/2735 ROIs, 92.6%) at the
remaining sites.

Table 2. Reference standard Bilsky grades for metastatic epidural spinal cord compression.

MESCC Grade on CT Internal Training/Validation
Set Internal Test Set

Normal/Bilsky 0 10,594 (79.1%) 2323 (84.9%)
Low-grade Bilsky (1a, 1b) 1477 (11.0%) 209 (7.6%)

High-grade Bilsky (1c, 2, 3) 1329 (9.9%) 203 (7.4%)

Totals 13,400 2735
Note- Values are numbers (%). A region of interest (bounding box) for Bilsky grade was drawn at each axial
contrast-enhanced CT image using axial T2-weighted MRI as a reference standard. MESCC = Malignant Epidural
Spinal Cord Compression.

3.3. Trichotomous Bilsky Classification

On the test set, all versions of the DL model showed almost perfect agreement (kappa
range 0.873–0.911, all p < 0.001) for trichotomous Bilsky classification (normal, low, and high-
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grade) (Table 3). The CWL average fusion model showed the highest kappa of 0.911 (95% CI
0.899–0.923), which was superior to the lowest kappa for the SWL spine window (κ = 0.873,
95% CI 0.858–0.887), p < 0.001. There was no significant difference in interobserver agreement
between the average fusion models using the CWL or SWL methods with kappas of 0.911
(95% CI 0.899–0.923) and 0.904 (95% CI 0.892–0.917), respectively, p = 0.484. In comparison to
the readers, all versions of the DL model, including the SWL spine window model (κ = 0.873,
95% CI 0.858–0.887) showed superior interobserver agreement compared to the specialist FEM
(κ = 0.820, 95% CI 0.803–0.837) and general radiologist HYO (κ = 0.726, 95% CI 0.706–0.747),
both p < 0.001. There was no significant difference in interobserver agreement between the
best performing model (CWL average fusion, κ = 0.911, 95% CI 0.899–0.923) and the best
performing readers including AJLC (κ = 0.907, 95% CI 0.895–0.919) and SEE (κ = 0.907, 95%
CI 0.895–0.919), p = 0.397 and p = 0.451, respectively.

Table 3. Internal test set classifications using trichotomous and dichotomous Bilsky gradings on
staging CT.

Trichotomous Grading Dichotomous Grading

Normal, Low and High Normal/Low vs. High Normal vs. Low/High

Reader Kappa
(95% CI) p-Value Kappa

(95% CI) p-Value Kappa
(95% CI) p-Value

AJLC 0.907
(0.895–0.919) <0.001 0.960

(0.952–0.968) <0.001 0.915
(0.903–0.928) <0.001

SEE 0.907
(0.895–0.919) <0.001 0.963

(0.956–0.971) <0.001 0.928
(0.916–0.940) <0.001

FEM 0.820
(0.803–0.837) <0.001 0.954

(0.945–0.963) <0.001 0.816
(0.796–0.836) <0.001

HYO 0.726
(0.706–0.747) <0.001 0.975

(0.968–0.981) <0.001 0.683
(0.656–0.710) <0.001

Combined
method

Abdomen-
window

0.891
(0.878–0.904) <0.001 0.966

(0.959–0.974) <0.001 0.929
(0.917–0.941) <0.001

Bone-
window

0.903
(0.891–0.916) <0.001 0.965

(0.957–0.972) <0.001 0.901
(0.887–0.915) <0.001

Spine-
window

0.901
(0.888–0.914) <0.001 0.972

(0.965–0.979) <0.001 0.927
(0.915–0.939) <0.001

Max
Fusion-1

0.909
(0.896–0.921) <0.001 0.968

(0.961–0.975) <0.001 0.919
(0.906–0.932) <0.001

Average
Fusion-1

0.911
(0.899–0.923) <0.001 0.968

(0.961–0.975) <0.001 0.929
(0.917–0.941) <0.001

Separated
method

Abdomen-
window

0.885
(0.871–0.899) <0.001 0.938

(0.928–0.949) <0.001 0.914
(0.900–0.927) <0.001

Bone-
window

0.897
(0.884–0.910) <0.001 0.953

(0.944–0.962) <0.001 0.908
(0.894–0.921) <0.001

Spine-
window

0.873
(0.858–0.887) <0.001 0.971

(0.964–0.978) <0.001 0.889
(0.874–0.905) <0.001

Max
Fusion

0.891
(0.878–0.905) <0.001 0.956

(0.947–0.965) <0.001 0.915
(0.901–0.928) <0.001

Average
Fusion

0.904
(0.892–0.917) <0.001 0.962

(0.954–0.970) <0.001 0.923
(0.910–0.935) <0.001
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3.4. Normal/Low Versus High-Grade Dichotomous Bilsky Classification

All versions of the DL model showed almost perfect agreement for dichotomous
normal/low versus high-grade MESCC (Table 3), with kappas ranging from 0.938 (95% CI
0.928–0.949) for the SWL abdomen window to 0.972 (95% CI 0.965–0.979) for the CWL spine
window, with a significant difference between the two models, p < 0.001. There was no
significant difference in interobserver agreement between the best performing model (CWL
spine window, κ = 0.972, 95% CI 0.965–0.979) and all the readers, including HYO the best
performing reader (κ = 0.975, 95%CI 0.968–0.981), p = 0.466.

All versions of the DL model showed high AUCs ranging from 0.953 (95% CI 0.934–0.971)
for the SWL spine window to 0.971 (95% CI 0.961–0.981) for the SWL max fusion model,
with no significant difference between the models (p= 0.746) (Table 4). The best performing
model (SWL max fusion model, AUC = 0.971, 95% CI 0.961–0.981) had superior performance
compared to all readers including FEM and HYO with the best human performance (AUC
= 0.891, 95% CI 0.863–0.918 and AUC = 0.891, 95% CI 0.863–0.919, respectively), both p <
0.001. Sensitivities for all model versions (range: 92.6–98.0%) were superior to all the readers
(range: 66.5–80.8%), with the lowest model sensitivity (92.6% for SWL spine window, 95%
CI 88.1–95.8%) significantly greater than the highest reader sensitivity for FEM (80.8%, 95%
CI 74.7–86.0%), p < 0.001. The DL models and readers all showed high specificities ranging
from 94.8% (95% CI 93.8–95.6%) for the SWL abdomen window to 99.8% for SEE (95% CI
99.5–99.9%).

Table 4. Internal test set sensitivity, specificity, and AUCs for the DL model and radiologists using
dichotomous Bilsky grading (normal/low versus high) on CT.

Reader Sensitivity (95% CI) Specificity (95% CI) AUC (95% CI)

AJLC 66.5 (59.6–73.0) 98.9 (98.5–99.3) 0.827 (0.795–0.860)

SEE 59.1 (52.0–65.9) 99.8 (99.5–99.9) 0.794 (0.760–0.828)

FEM 80.8 (74.7–86.0) 97.3 (96.6–97.9) 0.891 (0.863–0.918)

HYO 78.8 (72.5–84.2) 99.3 (98.9–99.6) 0.891 (0.863–0.919)

Combined method

Abdomen-window 96.6 (93.0–98.6) 97.2 (96.5–97.8) 0.969 (0.956–0.982)

Bone-window 95.6 (91.8–98.0) 97.1 (96.4–97.8) 0.964 (0.949–0.978)

Spine-window 95.1 (91.1–97.6) 97.8 (97.2–98.4) 0.965 (0.949–0.980)

Max Fusion-1 96.6 (93.0–98.6) 97.4 (96.7–97.9) 0.970 (0.957–0.982)

Average Fusion-1 96.6 (93.0–98.6) 97.4 (96.7–97.9) 0.970 (0.957–0.982)

Separated method

Abdomen-window 96.6 (93.0–98.6) 94.8 (93.8–95.6) 0.957 (0.943–0.970)

Bone-window 97.0 (93.7–98.9) 96.0 (95.1–96.7) 0.965 (0.953–0.978)

Spine-window 92.6 (88.1–95.8) 97.9 (97.3–98.4) 0.953 (0.934–0.971)

Max Fusion-1 98.0 (95.0–99.5) 96.2 (95.3–96.9) 0.971 (0.961–0.981)

Average Fusion-1 95.6 (91.8–98.0) 96.9 (96.1–97.5) 0.962 (0.948–0.977)

3.5. Normal Versus Low/High-Grade Dichotomous Bilsky Classification

All versions of the DL model showed almost perfect agreement for dichotomous nor-
mal versus low/high-grade MESCC (detection of any grade of disease), with kappas ranging
from 0.889 (95% CI 0.874–0.905) for the SWL spine window to 0.929 (95% CI 0.917–0.941) for
both the CWL abdomen window and average fusion methods, with a significant difference
between SWL spine window and both the CWL abdomen window and average fusion methods
(both p < 0.001) (Table 3). The best performing models (CWL abdomen window and av-
erage fusion methods, κ = 0.929 (95% CI 0.917–0.941) showed superior interobserver agree-
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ment compared to the specialist FEM (κ = 0.816, 95% CI 0.796–0.836) and general radiologist
HYO (κ = 0.683, 95% CI 0.656–0.710), both p < 0.001. There was no significant difference
between the best performing models (CWL abdomen window and average fusion methods,
κ = 0.929 (95% CI 0.917–0.941) compared to the best performing specialist reader SEE (κ = 0.928,
95% CI 0.916–0.940), p= 0.636).

All versions of the DL model showed high AUCs ranging from 0.899 (95% CI 0.881–0.918)
for the CWL abdomen window to 0.924 (95% CI 0.910–0.938) for the SWL Spine-window with
no significant differences (p = 0.451) (Table 5). All SWL models showed superior AUC compared
to all readers, including FEM with the highest AUC of 0.866 (95% CI 0.848–0.885), all p < 0.001.
Sensitivities for all model versions (range: 83.0–92.7%) were superior to two of the readers AJLC
(58.5%, 95% CI 53.6–63.3%), and SEE (68.4%, 95% CI 63.7–72.9%), all p < 0.001. The highest DL
model sensitivity of 92.7% (SWL spine window, 95% CI 89.7–95.0%) showed no evidence of a
difference to HYO, with the highest reader sensitivity of 89.3% (95% CI 85.9–92.1%), p = 0.094.
All versions of the DL model showed high specificities ranging from 92.2 to 96.8%. All model
versions showed higher specificities compared to two of the human readers, with the lowest
SWL spine window specificity of 92.2% (95% CI 91.0–93.2%) greater compared to FEM (87.6%,
95% CI 86.2–88.9%) and HYO (78%, 95% CI 76.3–79.7%), both p < 0.001.

Table 5. Internal test set sensitivity, specificity, and AUCs for the DL model and radiologists using
dichotomous Bilsky gradings (normal versus low/high) on CT.

Reader Sensitivity (95% CI) Specificity (95% CI) AUC (95% CI)

AJLC 58.5 (53.6–63.3) 99.5 (99.2–99.8) 0.790 (0.766–0.814)

SEE 68.4 (63.7–72.9) 99.1 (98.6–99.4) 0.838 (0.815–0.860)

FEM 85.7 (81.9–88.9) 87.6 (86.2–88.9) 0.866 (0.848–0.885)

HYO 89.3 (85.9–92.1) 78.0 (76.3–79.7) 0.837 (0.820–0.854)

Combined method

Abdomen-window 83.0 (79.0–86.5) 96.8 (96.0–97.5) 0.899 (0.881–0.918)

Bone-window 88.3 (84.7–91.2) 93.8 (92.7–94.7) 0.910 (0.894–0.927)

Spine-window 84.1 (80.2–87.5) 96.5 (95.7–97.2) 0.903 (0.885–0.921)

Max Fusion-1 87.1 (83.5–90.2) 95.3 (94.4–96.1) 0.912 (0.895–0.929)

Average Fusion-1 85.2 (81.4–88.5) 96.4 (95.6–97.1) 0.908 (0.891–0.926)

Separated method

Abdomen-window 89.1 (85.7–91.9) 94.6 (93.6–95.5) 0.918 (0.903–0.934)

Bone-window 89.0 (85.6–91.9) 94.2 (93.1–95.1) 0.916 (0.900–0.932)

Spine-window 92.7 (89.7–95.0) 92.2 (91.0–93.2) 0.924 (0.910–0.938)

Max Fusion-1 89.6 (86.2–92.3) 94.6 (93.6–95.5) 0.921 (0.905–0.936)

Average Fusion-1 89.3 (85.9–92.1) 95.3 (94.3–96.1) 0.923 (0.907–0.938)

4. Discussion

MESCC is a potentially devastating complication of advanced cancer, and early diag-
nosis is important to prevent irreversible neurological injury. An MRI is the mainstay of
diagnosis for MESCC, but it is expensive and routine screening of asymptomatic patients
is not feasible. Staging CT studies are performed routinely as part of the cancer diagno-
sis and treatment follow-up. Over 62 million CT studies are performed annually in the
USA, and a large proportion are staging CT studies [30]. Detection of MESCC on staging
CT represents an opportunity for earlier diagnosis, initiation of less invasive treatment
(e.g., radiotherapy and systemic therapy), and prevention of permanent neurological dys-
function. In this study, we trained several DL models for automatic MESCC Bilsky grading
on staging CT studies using corresponding MRI spine images and manual radiologist
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labels. On a test dataset, the DL models showed almost-perfect interobserver agreement for
trichotomous Bilsky classification (normal, low, and high-grade), with kappas ranging from
0.873–0.911 (p < 0.001). All versions of the DL model (lowest κ = 0.873, 95% CI 0.858–0.887)
showed superior interobserver agreement compared to the specialist FEM (κ = 0.820, 95%
CI 0.803–0.837) and general radiologist HYO (κ = 0.726, 95% CI 0.706–0.747), both p < 0.001.

The DL models also showed almost perfect interobserver agreement for both dichoto-
mous groupings, with kappas of 0.938–0.972 (p < 0.001) for high-grade Bilsky MESCC classifi-
cation and kappas of 0.889–0.929 (p < 0.001) for any grade of MESCC. For distinction of any
grade of MESCC, the best performing DL model (κ = 0.929, 95% CI 0.917–0.941) showed supe-
rior interobserver agreement compared to the specialist FEM (κ = 0.816, 95% CI 0.796–0.836)
and general radiologist HYO (κ = 0.683, 95% CI 0.656–0.710), both p < 0.001. The DL models
showed superior sensitivities (range = 92.6–98.0%) to all readers for the classification of high-
grade Bilsky disease, which is important to ensure that this time-critical disease is detected
early and appropriate treatment is planned. For detection of any grade of MESCC, the DL
models showed high sensitivities (range = 83.0–92.7%) and specificities (range = 92.2–96.8%).

When comparing the CWL and SWL methods, there was no clear improvement in the
interobserver agreement or AUCs with the more memory-space-intensive SWL method.
Fusion (Max or average) for both the CWL and SWL methods showed comparable or
marginal increased interobserver agreement and AUCs compared to the single window
models. However, multimodal fusion methods are still preferred as they are robust when
faced with missing windowing information. They can simply aggregate all the available
windowing information for the final prediction.

Deep learning is being used to aid the imaging diagnosis of many different condi-
tions, including liver segmentation [31] and vertebral segmentation for evaluation of the
spine [32]. Other deep learning applications in spinal conditions include degenerative
lumbar spinal stenosis on an MRI [13], automated segmentation of the spinal cord for
radiotherapy planning [33], and prediction of treatment outcomes and complications in
spinal oncology [34]. Deep learning for automated detection of spinal canal compromise
and spinal cord compression has been investigated on MRI. Merali et al. (2021) trained a
deep learning algorithm to detect compression of the spinal cord on MRI of the cervical
spine due to spondylosis [35]. Overall, 201 surgical patients were assessed, and their deep
learning model had 88% sensitivity, 89% specificity, and an AUC of 0.94. Most recently,
Hallinan et al. (2022) developed a deep learning model for the prediction of low and
high-grade Bilsky classification on MRI of the thoracic spine. On internal and external
testing, the DL model showed high agreement (κ = 0.92–0.94, p < 0.001) for two-grade
Bilsky classification, which was similar to specialist labelers (κ = 0.95–0.98, all p < 0.001),
including a spine surgeon, a radiation oncologist, and a radiologist [36].

The developed CT Bilsky DL model could improve the care of patients with compli-
cations arising from spinal metastases. Firstly, CT studies with high-grade MESCC could
be triaged for expedited radiologist review and definitive MRI, which is important for
accurate surgical and/or radiotherapy planning. This would also provide a window of
opportunity to institute treatment before neurological deficits set in, especially in patients
with unclear symptoms, e.g., back pain masked by analgesia. In addition, CT studies with
no or low-grade Bilsky disease could be managed without requiring an MRI, which could
save on healthcare costs. It should be emphasized that the CT DL model would only be
an adjunct to the clinical radiologist and multidisciplinary team. MESCC management
is not only dependent on imaging features and relies on clinical presentation, including
mechanical pain and neurological dysfunction.

Our study has several limitations. Firstly, we assessed the Bilsky classification of
MESCC on a CT scan using axial portal-venous images. We did not have the original
source images, coronal or sagittal reconstructions available for all CT scans over the study
period. The use of multiplanar images (especially sagittal images) could further improve
the radiologist and DL model performance. Secondly, CT scans with a corresponding
MRI within two months were analyzed. This may have allowed for interval progression
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of the disease in the interim. Thirdly, the CT scans were obtained from a database of
patients with known MESCC with a high proportion of positive cases with epidural disease.
Testing the model on external datasets will be useful to ensure the model is generalizable.
Fourth, we used two-grade Bilsky MESCC classification with Bilsky grade 1c designated
as high-grade MESCC. This is contentious, as individuals with Bilsky grade 1c do not
typically have neurological dysfunction requiring expedited surgical intervention. Fifth,
we did not evaluate the accuracy of the Bilsky MESCC classification along the cervical spine.
Future work could assess the utility of the model on the cervical region, but this would
involve collecting a CT neck dataset. Finally, labeling the CT images for DL model training
was a highly-supervised, labor-intensive process. Subsequently, more comprehensive
datasets could use semi-supervised learning, which reduces the data annotation burden by
leveraging unlabeled data to boost the DL model performance [37–39].

5. Conclusions

In conclusion, we developed a deep learning (DL) model for the Bilsky grading of
metastatic epidural spinal cord compression on staging CT studies. The deep learning
model had a superior interobserver agreement for the detection of trichotomous Bilsky
grading (normal, low, and high-grade) compared to general and specialist radiologists. The
deep learning model could be used to triage patients for an urgent MRI if there is high-grade
disease or reduce the need for an MRI when there is no evidence of high-grade disease on
CT. Future work using our CT MESCC deep learning model would involve adding clinical
data (e.g., cancer subtype, neurological impairment, and pre-existing medical conditions)
to improve the selection of patients for more aggressive therapy, including stereotactic body
radiotherapy (SBRT) and surgery [40]. Additional work would also involve the prospective
deployment of the deep learning model onto the institutional radiology reporting system.
Implementation can be challenging as dedicated IT infrastructure is required. A user-
friendly seamless integration into the daily workflow will be essential to ensure radiologists
utilize the model without limitations [41].
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