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Abstract

The higher-order patterning of extra-cellular matrix in normal and pathological tissues has

profound consequences on tissue function. Whilst studies have documented both how fibro-

blasts create and maintain individual matrix fibers and how cell migration is altered by the

fibers they interact with, a model unifying these two aspects of tissue organization is lacking.

Here we use computational modelling to understand the effect of this interconnectivity

between fibroblasts and matrix at the mesoscale level. We created a unique adaptation to the

Vicsek flocking model to include feedback from a second layer representing the matrix, and

use experimentation to parameterize our model and validate model-driven hypotheses. Our

two-layer model demonstrates that feedback between fibroblasts and matrix increases matrix

diversity creating higher-order patterns. The model can quantitatively recapitulate matrix pat-

terns of tissues in vivo. Cells follow matrix fibers irrespective of when the matrix fibers were

deposited, resulting in feedback with the matrix acting as temporal ‘memory’ to collective

behaviour, which creates diversity in topology. We also establish conditions under which

matrix can be remodelled from one pattern to another. Our model elucidates how simple

rules defining fibroblast-matrix interactions are sufficient to generate complex tissue patterns.

Author summary

The organization of extracellular matrix in the body is diverse and often becomes dysregu-

lated in cancer. How such patterns emerge is poorly understood, in particular how the

interplay between the fibroblasts, which produce the matrix fibers, and the fibers them-

selves affects emergent organization. We created a unique adaptation to the Vicsek flock-

ing model to include feedback from a second layer representing the matrix. Fibroblasts

were able to deposit, degrade and rearrange fibers and the fibers could also contribute to

the vector of cell migration. We find that this feedback is sufficient to generate many com-

plex tissue patterns, as seen in vivo. The model is able to encapsulate key fibroblast and

matrix properties without compromising on scale, providing an insight into the co-evolu-

tion of two crucial components of tissues at the scale of millimeters.
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Introduction

The extracellular matrix (ECM) provides support and enables the functioning of tissues within

multicellular organisms [1, 2]. Depending on the tissue, the ECM can be organized in a myriad

of different ways [3–5] from highly aligned linear bundles in connective tissue such as tendons,

to largely anisotropic meshwork in basement membranes [6]. Curved bundles of ECM fibers

are found in mammary tissue that can be loose, diffuse curls or tightly coiled bundles, for

example in the dermis [7]. The patterning of ECM has large consequences on tissue function

and often becomes disregulated in disease. How these different topologies emerge and subse-

quently interconvert as organisms age and develop pathologies, such as cancer, remains largely

unknown. ECM is produced by a variety of different cells, with fibroblasts playing a particu-

larly prominent role [8–11]. Numerous studies have documented the biosynthetic pathways of

ECM production and some of the principles of fiber assembly [12, 13]. However, the relation-

ship between cell behavior and the emergent patterns of matrix organization at the mesoscale

(millimeter scale) is unclear. The problem is further complicated because cell behavior is

instructed by the ECM [14, 15], with cells aligning themselves with matrix fibers and respond-

ing to different matrix stiffness with altered cell signaling and cell migration [1, 16, 17].

Mechanoreciprocity and mechanotransduction have been shown to be crucial phenomena in

determining tissue and tumor evolution [18, 19]. The feedback between cell behavior and

matrix organization therefore presents a ‘chicken and egg’ problem when trying to understand

the development of higher order patterns. Does matrix structure exert a dominant role over

cell behavior that then reinforces the matrix topology? Or does cell behavior initiate matrix

patterning? The lack of matrix at the zygote stage of development suggests that cell behavior is

somehow the initial determinant of matrix patterning, but it does not preclude an important

role for feedback from the extracellular matrix in specifying pattern formation.

Fibroblasts are largely responsible for producing, degrading and rearranging matrix com-

ponents and enabling their assembly into larger complex structures. This latter process is

highly dependent on the integrin family of matrix receptors that span the plasma membrane

and connect the cell’s cytoskeleton to the extra-cellular matrix. Many perturbations have been

identified that lead to altered matrix anisotropy, including within integrins, integrin-associated

molecules, and the actin cytoskeleton, generating simple patterns of alignment and disorder.

There have been numerous studies documenting the diversity of fibroblast behavior [20, 21]

and the ability of cells to cooperate, often across many orders of magnitude [22–26]. Yet it

remains unclear how complex tissue patterns develop and why particular perturbations alter

such patterns. Tackling this problem experimentally is challenging due to the complexity of

systems with many cells and matrix components, and the difficulty of seeing in real time how

matrix is being organized. To understand how specific rules defining cell-matrix interactions

can generate emergent behaviors, we therefore turn to computational modeling.

Modeling of such behavior requires the inclusion of discrete fibers, rendering continuum

models less appropriate. A Cellular Potts model has been used in a previous study to explore

cell migration in ECM [27]; however, it is difficult to model explicit fibers to behave in a physi-

ologically reasonable way and to implement rules for cell adhesion specifically between the

cells and individual fibers without making the system far more complicated. Simple models of

nematically aligning self-propelled rods [28–30] serve as a good basis for modeling collective

cell behavior but move in a continuum fluid and have a simplistic averaging for coordination

between rods. Hybrid models with discrete fibroblasts and a continuum matrix have been

used to explore scarring in wound healing [31, 32] and fibroblast alignment [33]. Work by Dal-

lon et al. [34] explores interactions between the cells and matrix. They report that matrix feed-

back can reduce overall alignment, which we confirm here. The authors also show that a strip
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of aligned fibers that is sufficiently thick can cause the rest of the matrix to align similarly. Our

work builds on such hybrid models by incorporating cell-cell interactions and cell migratory

noise explicitly. Further, we model fibers discretely, allowing for an understanding of how an

individual fiber can influence cell motility.

The Vicsek model [35] has been used for many decades to explore collective behavior of

animals at high density, most notably shoals of fish and flocks of birds. In this approach,

migration of animals or cells is simulated with individual velocities. Crucially, the vector of

migration is determined by the combination of the level of intrinsic persistence [36] of a cell

(influenced by the magnitude of a Gaussian noise term [37]), henceforth called individual

migratory noise, and the propensity for a cell to align its directionality with that of nearby indi-

viduals. Within certain regions of parameter space this can generate rapid and effective align-

ment. Several extensions of the Vicsek model and models with similar neighbor alignment [29,

38, 39] or velocity alignment [40–42] have been developed to tackle specific biological ques-

tions [43], for example, how Dictyoselium discoideum can aggregate as a result of chemotaxis

towards pulses of cyclic adenosine monophosphate and when this switch to collective behav-

iour occurs [44]. However, in its simple form, the Vicsek model is not well suited to modelling

the interplay between cells and ECM. Matrix persists over long time scales and can be both

synthesized and degraded, whereas the alignment term in the Vicsek model only considers the

vector of individuals spatially local at the current time step. To circumvent this, we have devel-

oped a two-layer adaptation of the Vicsek model. One layer represents migratory cells and is

similar to the conventional Vicsek model, the second represents the matrix and records the

cumulative effect of cells on matrix synthesis and degradation. This second layer contributes

an additional term in the behavior of the cells that represents matrix feedback on cell behavior.

By exploiting this model in combination with experimentation we explore the role of matrix

feedback in the generation of higher order patterns of ECM.

Results

Diverse matrix patterns are found in vivo and can be quantified

Second harmonic imaging of collagen fibers in different mouse tissues in vivo revealed various

patterns of matrix organization (Fig 1a). The position of fibroblasts was determined by using

mice with transgenic expression of a fluorescent nuclear marker, H2B-GFP, in fibroblasts. Of

note, the long axis of the nucleus indicates the orientation of the fibroblast cell body and a

clear correlation between fibroblast and matrix alignment is visible in stomach ECM and has

been previously documented [5].

To quantify the matrix diversity observed in vivo, we derived five metrics of matrix organi-

zation: long-range alignment of fibers (LRA), short-range alignment (SRA) (S1a Fig), percent-

age of high density matrix (HDM) (S1b Fig), curvature (Curv) (S1c Fig) and fractal dimension

(Frac) (S1d Fig). Collectively, these metrics can describe a range of matrix properties. For

example, a swirl-like matrix has low long-range alignment whilst maintaining some short-

range alignment (dermis, Fig 1a). Such a matrix would also have high curvature. The percent-

age of high density matrix encapsulates how homogeneous a matrix is. If cells are corralled,

hence channeled to cover specific regions, this would result in more high-density matrix (liver,

Fig 1a). Fractal dimension measures the self-similarity of the matrix and the extent to which

the one-dimensional fibers can fill two-dimensional space [45]. A diffuse matrix will have a

higher fractal dimension than matrix with large gaps and a non-aligned matrix, with fibers ori-

ented in many different directions will have a higher fractal dimension than an aligned matrix,

for example the spleen as compared to the stomach in Fig 1a. Examples of these metrics are

given in S1 Fig. Application of these metrics to both murine and human pathological matrix
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confirms the diversity of matrix organization. For easy visualization of the different metrics,

we generated star plots with five axes, each reflecting a different metric (Fig 1b).

Model description

To explore the mechanisms by which fibroblasts generate matrix patterns and how divergent

matrix topologies initially arise, we initially adapted the Vicsek flocking model with cells mov-

ing subject to individual migratory noise and influence by their local neighbors [35]. A fibro-

blast’s individual migratory noise reflects its persistent migration as a result of cell polarization

[46]. At time zero, cells were placed at random and each cell assigned a random orientation

(Fig 2) and a constant speed drawn from a Gaussian distribution. The change in the orienta-

tion of a cell is computed as a weighted function of three terms: individual migratory noise,

cell-cell guidance and matrix guidance. Unlike the original Vicsek model, cells were able to

coordinate their behavior nematically [28] and the extent of coordination could be explicitly

controlled by the cell-cell guidance term. Fibroblasts are modelled as a bead representing the

head of the cell, followed by two beads of twice the diameter representing the cell body, fol-

lowed by another smaller bead for the tail. This diamond-like shape has aspect ratio 1:3 and

reflects a typical cell morphology [47]. For a cell i at time t, θi(t) denotes its orientation, si
denotes its speed and (xi(t), yi(t)) denotes its position.

Individual migratory noise. Cells move along their long axis at a constant speed and the

individual migratory noise of a cell is modelled as a persistent random walk θi(t) + ηi(t), where

ηi(t) is Gaussian distributed with mean zero. The positional X and Y-components of this term

Fig 1. The ECM exhibits diversity in vivo. (A) Second harmonic imaging of collagen (orange) in various tissues from a PDGFR nuclear labelled mouse. PDGFR

positive nuclei (cyan) indicates fibroblast density. (B) Each matrix is characterized on a starplot below the image according to long-range alignment (LRA), short-

range alignment (SRA), percentage of high density matrix (HDM), curvature (Curv) and fractal dimension (Frac). Scale bars represent 100μm.

https://doi.org/10.1371/journal.pcbi.1007251.g001
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Fig 2. A multi-layered flocking model of cell-cell and cell-matrix interactions. (A) Migratory persistence of aligning or non-aligning fibroblasts seeded on a

thick aligned matrix (over 8 hour windows). On an aligned matrix, fibroblasts migrate with higher persistence (p = 0.0064, using a two-tailed t-test). (B) Schematic

showing the two-layer set up of the model. (C) Schematic describing the model. Cells flock with other cells they come into contact with and the fibers in the matrix

grid point underneath the head of the cell. At every time step, for each cell in turn we compute its change in orientation due to flocking with other cells, its change

in orientation due to flocking with the matrix below and its reorganization of the matrix in the grid point below via degradation, rearrangement and deposition of

fibers. In this schematic, there are four bins per grid point for fibers to be deposited in.

https://doi.org/10.1371/journal.pcbi.1007251.g002
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can be defined as

Xp ¼ cosðyiðtÞ þ ZiðtÞÞ: ð1Þ

Yp ¼ sinðyiðtÞ þ ZiðtÞÞ: ð2Þ

Cell-cell guidance. If a cell i is in direct contact with N cells, N> 0, then the X and Y-

components of the effect of cell guidance on i are defined as

Xc ¼
1

N

XN

j¼1

cosð~yjðtÞÞ; ð3Þ

Yc ¼
1

N

XN

j¼1

sinð~yjðtÞÞ; ð4Þ

where

~yjðtÞ ¼

(
yjðtÞ if j yjðtÞ � yiðtÞ j ðmod pÞ <

p

2
;

yjðtÞ þ
p

2
otherwise:

This adaptation constitutes the ability of fibroblasts to align in a nematic manner. For greater

tractability, an assumption of the model is that wc remains fixed for any non-zero value of N,

so that, provided a cell is in contact with at least one other cell, the degree of flocking will be

fixed. This means cell-cell guidance is independent of N for N> 0. The angle of cell-cell flock-

ing is an average of all N of a cell’s contacts. However, the confluence levels both in silico and

in vivo mean that N is kept small in practice.

Matrix guidance. If the head of a cell i is above a fiber k with orientation ϕk, then the X

and Y-component of the effect of matrix guidance of k on i are

Xm ¼ cosð ~�kðtÞÞ; ð5Þ

Ym ¼ sinð ~�kðtÞÞ; ð6Þ

where

~�kðtÞ ¼

(
�kðtÞ if j �kðtÞ � yiðtÞ j ðmod pÞ <

p

2
;

�kðtÞ þ
p

2
otherwise:

representing the ability of fibroblasts to move along fibers in a nematic manner.

The X and Y-components of cell i are then written as a weighted function of the three

terms:

Xi ¼
1

wp þ wc þ wm
ðwpXp þ wcXc þ wmXmÞ; ð7Þ

Yi ¼
1

wp þ wc þ wm
ðwpYp þ wcYc þ wmYmÞ; ð8Þ
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where wp = 1 − wc − wm, 0� wp, wc, wm� 1. If a cell is not in contact with any other cell, or

above any fiber then wc or wm respectively are set to zero. The orientation of cell i at time t + 1

is then computed as

yiðt þ 1Þ ¼ tan� 1
Yi

Xi

� �

; ð9Þ

which must then be adjusted for quadrant of the arctan function so that

yiðt þ 1Þ ¼

(
yiðt þ 1Þ if Xi � 0;Yi � 0;

yiðt þ 1Þ þ p if Xi < 0;

yiðt þ 1Þ þ 2p if Xi � 0;Yi < 0:

Finally cell position is updated so that

xiðt þ 1Þ

yiðt þ 1Þ

" #

¼
xiðtÞ þ sicosðyiðt þ 1ÞÞve
yiðtÞ þ sisinðyiðt þ 1ÞÞve

" #

ð10Þ

where ve is a proxy for volume exclusion defined by

ve ¼

(
0:25 if the head bead of a cell is overlapping with any other bead of another cell;

1 otherwise

The distance between cells which is considered as an overlap is set by the user but for this

work was set as the inner 75% of the cell’s area.

Matrix updates. We modified the Vicsek model to include a second layer, consisting of a

grid of matrix fibers. This meant the model comprised two layers: a top layer of fibroblasts,

and an underlying layer of extra-cellular matrix. The ECM layer was arranged in a grid and

each grid point was associated with matrix ‘fibers’ that could be oriented in eight possible bins

(in increments of π/8 radians within the range [0, π] to reflect the nematic behavior of the sys-

tem). When the head of a cell moved over a grid point it would update the fibers contained

within the grid point. When establishing the model, we considered where fiber deposition

would occur. In S2 Fig we show experimentally that fibronectin is produced throughout the

cell and initially deposited in the front half of the cell, well ahead of the nucleus. We therefore

chose to have cells depositing matix fibers below their heads. Fibers could be generated, deleted

or assigned a different directionality, representing the deposition, proteolytic degradation and

rearrangement of the matrix, respectively (Fig 2).

Fiber deposition. A cell with orientation θ deposits fibers according to the deposition rate

in the grid point below its head in the bin which θ falls in [5]. If π� θ� 2π, fibers are depos-

ited in the bin in which θ − π falls, since fibers are apolar.

Fiber degradation. All bins in the grid point below a cell’s head will be depleted according

to the degradation rate.

Fiber rearrangement. Fibers from the two neighboring bins will be moved to the bin

which θ falls in at the specified rearrangement rate. The bins wrap around, so that if θ falls in

bin 1, rearrangement will happen with its two neighboring bins: bin 2 and bin 8.

Choosing fibers for matrix guidance. Our main innovation to the original Vicsek model

is in adding the ability of cells to be guided by the matrix fibers below it whilst simultaneously

producing and reorganizing these fibers. We hypothesized that the migratory behavior of

fibroblasts would be influenced by the emergent matrix organization and that this feedback
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would influence the matrix topology that ultimately emerges. To investigate directly if fibro-

blasts were indeed guided by the underlying ECM, we analyzed the migration of fibroblasts

plated on matrices with differing degrees of alignment. Specifically, aligning and non-aligning

fibroblasts generated respectively aligned and non-aligned matrix over the course of seven

days. These original fibroblasts were then removed and new aligning fibroblasts were ran-

domly seeded on both the aligned and non-aligned matrix (S7 Text). We found that the fibro-

blasts moving on the aligned matrix had significantly increased persistence as compared with

the same fibroblast phenotype moving on the non-aligned matrix (Fig 2a, p = 0.0064, two-

tailed t-test). This implies that it is not just the presence of matrix but the topology of the

matrix that determines cell motility.

Having established experimental justification for matrix guidance we added this mecha-

nism into the model (Fig 2b and 2c). A cell will flock with fibers in the grid point below its

head, the bin is determined according to a Gillespie algorithm that takes into account the den-

sity of fibers in each bin; therefore, bins with the highest number of fibers have the highest

probability of being chosen. The cell will then flock with the left bound of that bin.

Sequence of model updates. The order of events in the simulations at each time-step is

given as:

1. Compute new cell orientations

2. Compute and update changes to matrix grid points

3. Compute and update new cell positions.

Model implementation and parameter choice is described in the Supporting Text.

An overview of quantification of matrix metrics

Here we briefly describe how the five metrics are determined. A full description of their deriva-

tion is given in S2 Text.

Long-range alignment (LRA) and short-range alignment (SRA). The alignment for an

individual fiber is computed as the median angle of deviation between that fiber and all fibers

within a pre-defined neighbourhood length; a longer length for LRA and a shorter length for

SRA. The alignment of a matrix image at this specified neighbourhood length is given as the

mean of the alignment of individual fibers [5].

High density matrix (HDM). Matrix images are thresholded against a pre-defined value.

Pixels above this threshold are considered to be fibers, whilst the remaining pixels are back-

ground. HDM is then computed as the percentage of fibers in the image.

Curvature (Curv). For each matrix image, by using a Gaussian filter with a large radius, a

mask is derived showing the principal matrix fiber structure. The mask lines are then traversed

by increments of a pre-defined curvature window. Curvature at that point, is the change in

angle between one line segment and the next. The Curv metric is then the average of curvature

values for the entire image [48].

Fractal dimension (Frac). For each matrix image, by using a Gaussian filter with a small

radius, a mask is derived showing more in detail matrix fiber structure than the curvature

masks. We then computed the box counting fractal dimension of the mask. For boxes of a

given size, the number of these boxes required to cover the mask is computed. For boxes with

side-length of ever-decreasing sizes, the number of boxes required to cover the mask is com-

puted. Box dimension is then defined as the limit of how the number of required boxes to

cover the mask scales with box side-length [45, 48].
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Individual migratory persistence and cell-cell guidance alone can generate

alignment

We initially explored the interplay between cells’ individual migratory noise and cell-cell guid-

ance (Fig 3a, S3 Fig). The fibroblasts still deposited matrix into the second layer of the model,

but wm was set to zero, reflecting the cells moving completely independently of the fibers. The

model enables us to see different fibroblast and matrix patterning emerging over time (S1–S4

Videos). The top row of Fig 3a shows that in the absence of cell-cell guidance only isotropic

matrix is generated, regardless of the level of individual migratory noise. Increasing the cell-

cell guidance term leads to the formation of both anisotropic matrix and a spatially non-uni-

form distribution of both matrix and cells (Fig 3a, S3 Fig).

Crucially this analysis showed that individual migratory noise (η) and cell-cell guidance

(wc) alone were not able to generate the wide diversity of patterns seen in vivo (Fig 1) [6, 7].

Interestingly, there was surprisingly little variation in curvature amongst patterns and long-

range alignment (LRA) and short-range alignment (SRA) are highly correlated (Fig 3b and 3c,

S3c Fig). This analysis indicates that noise and cell-cell guidance can generate a limited diver-

sity of patterns, with the main emergent pattern besides isotropic matrix being uniform

alignment.

In order to test experimentally if matrix feedback was dispensable for alignment, as the

model suggested, we treated fibroblasts that generate an aligned matrix with the ‘functional

upstream domain’ (FUD) of Streptococcus pyogenes. FUD prevents effective matrix assembly

from soluble fibronectin into insoluble fibrils [49]. Cell migration is instructed by this fibril

form and not the soluble form. In this way treatment with FUD precludes the cells from being

guided by the matrix and we are able to eliminate matrix feedback (Fig 3d). The addition of

FUD to fibroblast cultures efficiently prevented matrix fiber bundling but did not alter the

migratory persistence of fibroblasts (Fig 3e) or prevent the progressive alignment of fibroblasts

over time (Fig 3f). Taken together, these analyses indicate that a limited repertoire of matrix

patterns can be generated in the absence of matrix feedback.

Matrix feedback generates diverse matrix patterns

We next considered the effect of introducing varying levels of matrix feedback whilst keeping

the level of cell-cell guidance fixed at a level that is consistent with previous work and reflects

experimental results [5] (wc = 0.03 as indicated by the pink strip in Fig 3a). This value of cell-

cell guidance provides a physiologically plausible level of coordination between cells such that

cells with no individual migratory noise will align and cells with high individual migratory

noise will not align. Given the restricted selection of patterns that can be generated by cell-cell

guidance alone, we fixed cell-cell guidance at a biologically justifiable level and varied matrix

feedback [5]. Fig 4a shows that varying matrix feedback greatly increased the diversity of

matrix organization (see also S4 Fig).

Starting with zero matrix feedback, cells with low individual migratory noise produced an

aligned matrix characterized by high long-range alignment, high short-range alignment and

low curvature (Fig 4a and 4b, red box). Increasing matrix feedback for these cells generated a

matrix with high short-range alignment but low long-range alignment, medium curvature and

a high proportion of high-density matrix (Fig 4a and 4b, yellow box). As documented in S5

Fig, cells with high individual migratory noise produced a diffuse isotropic matrix with high

Frac and Curv and low SRA and LRA, and a low HDM (Fig 4a and 4b, blue box). Increasing

matrix feedback for these cells produced a swirl-like but diffuse matrix with high short-range

alignment, low long-range alignment and mid-range percentage of high-density matrix and

curvature (Fig 4a and 4b, green box).
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Fig 3. Fibroblasts can align without matrix feedback. (A) Matrix patterns produced from cell-cell interactions alone with varying noise and cell-cell guidance.

From left to right noise η = (0, 0.07, 0.14, 0.21), from top to bottom wc = (0, 0.03, 0.06, 0.1). The pink row, showing cell-cell guidance set at wc = 0.03, is fixed for

the rest of the simulations in this manuscript. Scale bar represents 100μm. (B) The effect on LRA of increasing cell-cell guidance (wc) for cells with low individual

migratory noise (η = 0, orange) and high individual migratory noise (η = 0.14, blue). N = 5 simulations per point in parameter space. (C) Corresponding effect

on SRA or increasing cell-cell guidance. (D) Immunofluorescence of fibronectin deposited by aligning fibroblasts in the presence or absence of a Fibronectin

blocking peptide (FUD). FUD blocks ECM formation. Scale bars indicate 500μm. (E) Migratory persistence of aligning cells in the presence or absence of FUD

(taken over 16 hour intervals). (F) Long-range alignment over time of fibroblasts in the presence or absence of FUD. Inhibition of ECM formation by FUD

treatment did not change rate of alignment.

https://doi.org/10.1371/journal.pcbi.1007251.g003
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To investigate further the effect of matrix feedback we performed a comprehensive analysis

varying individual migratory noise, cell-cell guidance and matrix feedback together. To obtain

an overview of this exploration of parameter space, we used principal component analysis

(PCA) to reduce the dimensionality of our matrix metrics [50] (Fig 4c). Dimensionality reduc-

tion into two principal components could explain 85% of the variance. The loadings plot

shows that the first principal component is related to an increase in short-range alignment,

high-density matrix and a decrease in fractal dimension, largely describing the effects of

increasing matrix feedback. The second principal component related to an increase in long-

range alignment with a small reduction in curvature and high-density matrix, resembling the

effects of increasing cell-cell guidance. Importantly, the addition of the matrix feedback term

expanded the diversity of matrix outputs visible on the PCA plot (note the expanded region

covered by the black dots in Fig 4c). Pairwise analysis of the metrics revealed that the addition

of matrix feedback could produce patterns in new areas of metric-space (S5a and S5b Fig). In

particular, matrix could now be produced with low long-range alignment but high short-range

alignment, high percentage of high-density matrix (30%) and a wide range of curvatures. This

describes the spectrum of ‘swirl-like’ patterns created by matrix feedback.

Interestingly, matrix feedback could act as a secondary mechanism for generating short-

range alignment of cells with high individual migratory noise (S5b Fig, blue line). However,

for cells with low individual migratory noise, matrix feedback actually antagonizes the matrix

alignment that would result from the cell-cell guidance term alone. S5b Fig also shows that

starting with two cell phenotypes (with high (blue line) and low (yellow line) individual migra-

tory persistence respectively), as matrix feedback increases, the patterning of the two cell-types

converges.

Further, an increase in matrix feedback causes the curvature of cells with low migratory

noise to increase, fractal dimension of both cell types to decrease and high-density matrix of

Fig 4. Matrix feedback generates diverse patterning. (A) Matrix patterns produced from varying noise and cell-matrix feedback, cell-cell guidance fixed at wc
= 0.03. Simulations are of 800 cells (40% confluence) over a time-course of seven days. From left to right noise η = (0, 0.07, 0.14, 0.21), from top to bottom wm
= (0, 0.04, 0.12, 0.2). Scale bar represents 100μm. (B) Four representative matrix patterns from A are characterized with a starplot according to the metrics of

long-range alignment (LRA), short-range alignment (SRA), percentage of high density matrix (HDM), curvature (Curv) and fractal dimension (Frac). (C)

PCA of simulations exploring parameter space, reducing metric-space down into two prinicpal components explains 85% of variance and shows the areas in

metric-space that can be reached with matrix feedback.

https://doi.org/10.1371/journal.pcbi.1007251.g004
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both cell types to increase (S5b Fig). These changes reflect the increased ‘corralling’ of the cells

as they follow and reinforce tracks of matrix fibers that were laid down at early time points

(S5 Video). Visually, the result is pronounced swirl-like patterning. The matrix serves as a

memory component to the flocking model, causing cells that would eventually normally align

through cell-cell guidance to feedback with non-aligned matrix that had been deposited early

on, thereby reducing overall alignment.

Similarly, for simulations run at sub-confluence, matrix feedback enhanced diversity of pat-

terns (S5c and S5d Fig). While it is well-documented that cell shape is dynamic through space

and time [51, 52], fibroblasts often display an elongated morphology [5, 47]. We hypothesized

that different cell shapes in our coarse-grained model would not cause significant perturba-

tions to the system. We confirmed this by running simulations with three distinct cell shapes

(S6 Fig) [47]. We excluded the possibility that curvature was caused by the number of grid

points comprising the matrix or the number of bins at each grid point by running a subset of

simulations with finer grid points and more bins (S2 Text, S7 Fig). In conclusion, these analy-

ses show that matrix feedback increases the diversity of emergent matrix organization, and

enables more accurate recapitulation of matrix observed in real tissue.

How fibroblasts organize the matrix affects pattern formation

We next explored the effect of varying the different components of the matrix organization. In

the previous simulations, fibroblasts had just deposited a single fiber at each time step, which

had simply increased the number of underlying matrix fibers oriented in the direction of cell

migration. We now varied the effect of cell migration on matrix fibers in three different ways:

cells could increase the number of fiber elements, cells could re-align existing fiber elements,

and cells could degrade existing filament elements, mimicking proteolysis. This manipulation

of the second layer of the model allowed us to observe how dynamic remodeling of the ECM

might affect matrix patterns by mapping new points in metric space onto the original PCA

given in Fig 4c. To reflect the idea that matrix feedback is likely to have a lesser role at early

time-points when little ECM has been deposited, we modified the model to take into account

matrix feedback as a function of fiber density (see Methods). The original points from Fig 4c

are shown faintly on S8a, S8c, S9a and S9c Figs. Analysis was run that combined varying the

deposition and rearrangement parameters under conditions of low matrix feedback with either

high or low noise (shown in S8 Fig), and high feedback with either high or low noise (shown

in S9 Fig).

An increase in deposition rate results in higher HDM and higher curvature, under both

high and low feedback regimes. Further, higher deposition rate causes lower LRA as the matrix

becomes so dense that there is a loss of order. A higher rearrangement rate leads to fibers

being organized into thicker bundles, leading to more high-density matrix especially for cells

with high migratory noise (compare yellow and orange boxes S8b and S9b Figs). The effects of

matrix reorganization remain largely constant regardless of level of matrix feedback (S8 and

S9 Figs). These data demonstrate that varying matrix deposition and re-organization further

enhance the diversity of matrix patterns. However, the overall effects of varying how cells reor-

ganize the matrix are subtler than the absolute level of matrix feedback.

Diverse matrix patterns found in vivo can be mimicked in silico
with matrix feedback

We next sought to relate insights from our model to physiologically observed ECM in Fig 1,

shown again in Fig 5a and 5b. Through our exploration of parameter space we inferred param-

eters that would be able to generate similar matrix patterns, using a comparable number of
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fibroblasts (N = 200 cells, corresponding to 10% confluence) to the in vivo systems (Table 1, S5

Text). By reducing cell speed and making the fiber grid twice as fine to increase precision of

matrix fiber positioning, the model was able to recapitulate all of these in vivo matrix patterns

across the same mesoscale (Fig 5c). Nevertheless, given that the in vivo matrix patterns are

more prone to noise within their biological component features as compared to the more

exacting in silico simulation studies, great care was taken to pace comparisons on an equal

footing, see S6 Text for an in-depth discussion. An interesting discussion on the effects of cell

speed on emergent patterning due to distance travelled by cells between samplings can be

found in [34].

The corralled and spatially heterogeneous patterns observed in the dermis and liver suggest

that matrix feedback is required to generate these patterns and their high curvature is indica-

tive of high migratory noise. We have shown that low individual migratory noise and non-

zero cell-cell guidance alone are sufficient to generate a highly aligned matrix (Fig 2) like the

stomach. The individual strand-like pattern of the spleen suggests a very low level of cell-cell

coordination. The starplots characterizing the in silico matrix match the in vivo starplots

closely after normalization (Fig 5d). Importantly, the ‘swirl-like’ patterns seen in the dermis

and liver required matrix feedback (Table 1).

Fig 5. The model can recapitulate ECM diversity in vivo. (A) Second harmonic imaging of collagen (orange) in various tissues from a PDGFR nuclear labelled

mouse. PDGFR positive nuclei (cyan) indicates fibroblast density. (B) Each matrix is characterized on a starplot below the image according to long-range alignment

(LRA), short-range alignment (SRA), percentage of high density matrix (HDM), curvature (Curv) and fractal dimension (Frac). (C) In silico matrix that mimics the in
vivo patterns above. Differences in parameters for generating such matrix patterns are given in Table 1. (D) Corresponding normalized starplot of in silico matrix. Scale

bars represent 100μm.

https://doi.org/10.1371/journal.pcbi.1007251.g005

Table 1. Differences in parameter values for generating in silico matrix in Fig 5c.

Dermis Liver Spleen Stomach

Noise (η) 0.1 0.1 0.01 0.02

Cell-cell guidance (wc) 0.03 0.03 0 0.03

Matrix feedback (wm) 0.4 0.8 0.01 0

https://doi.org/10.1371/journal.pcbi.1007251.t001
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Interconversion between matrix patterns is inhibited by high matrix

feedback

Matrix patterns are known to change in cancer and in ageing [7]. Having studied the emergent

generation of matrix patterns, we next sought to study the interconversion from one matrix

pattern to another. Matrix organization revealed by Gomori trichrome staining of collagen in

a normal region of human dermis is characterized by curved matrix fibers, similar to the

mouse (Fig 6a). In contrast, a region of dermis from the same individual that is adjacent to a

melanoma exhibits altered matrix organization (Fig 6a), with fibers that are more aligned near

the melanoma (Fig 6b). Consistent with a previous report that targeted BRAF inhibition in

melanoma activates stromal fibroblasts [53], a comparison of ECM organization in the same

patient prior to therapy and post-therapy indicated that when the treatment is failing, matrix

alignment increases and curvature and fractal dimension decrease (S10 Fig). These analyses

show that matrix can be dynamically remodeled over time [6].

Having observed matrix interconversion in pathological samples, we considered it in our

model. At high levels, matrix feedback would simply constrain fibroblasts to migrate along

existing ECM and preclude changes in matrix pattern. Fig 2 demonstrated that fibroblasts

exhibit matrix feedback, but we wanted to determine if this was permissive for matrix remod-

eling or might be so high that it prevented matrix remodeling. We turned to the model to

establish the conditions under which matrix conversion could be achieved. To mimic the

Fig 6. Modelling conversion between matrix patterning in silico. (A) Matrix images of normal dermis (left) as compared to the melanoma border

(right). (B) Corresponding starplot characterizing normal dermis (green line) and melanoma (pink line). (C) Long-range alignment (LRA) over time

beginning with in silico dermis for varying levels of matrix feedback: wm = 0 (grey lines), wm = 0.2 orange lines, wm = 0.4 blue lines. Deposition

rate = 10. Solid lines show simulations with degradation and rearrangement rates set to zero, whilst dotted lines show simulations with degradation

and rearrangement rates set to five. At day 10, when matrix feedback wm = 0.2, simulations with fiber degradation and rearrangement are significantly

more aligned (p-value = 9e-04, two-tailed t-test). N = 25 simulations per point in parameter space. (D) Corresponding in silico matrix showing before

and after conversion. Colour brightness has been normalized across images. Scale bars correspond to 100μm.

https://doi.org/10.1371/journal.pcbi.1007251.g006
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situation in melanoma, we explored if an in silico generated ‘dermal matrix’ (Fig 5) would be

altered by changing the properties of the fibroblasts once the initial dermal matrix had been

deposited. As the matrix at the melanoma border exhibited higher alignment (LRA and SRA)

than the normal dermis, we reduced the noise of the fibroblasts to zero in the model following

the phase of initial matrix deposition. In line with expectation, the model predicts that high

levels of matrix feedback will lead to fibroblast migration being channeled into following

Fig 7. Modelling conversion between matrix patterning in vitro. (A) Non-aligning fibroblasts were seeded onto a pre-existing anisotropic matrix. The pre-

existing matrix is shown in yellow, new matrix produced over the duration of the assay is shown in blue and the composite image after four days is shown on

the right. (B) Corresponding zoomed-in phase imaging of cell-body organization. For the first two days cells follow the matrix and align, but this order

breaks down by day 3. (C) Aligning fibroblasts were seeded onto a pre-existing isotropic matrix. (D) Corresponding zoomed-in phase image of cell-body

organization. On day 1 cell body orientation is disorganized and follows the isotropic matrix. By day 3 fibroblasts start to ignore the matrix and align. Scale

bars represent 100μm.

https://doi.org/10.1371/journal.pcbi.1007251.g007
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existing matrix, thereby preventing matrix remodelling (Fig 6c, blue line). However, lowering

matrix feedback to 0 permitted a gradual transition from ‘dermal’ matrix to a more aligned

matrix (grey line). The emergent matrix showed hybrid features with retention of the original

‘dermal’ matrix (Fig 6c). We therefore explored how adding fiber rearrangement and degrada-

tion might interplay with matrix feedback and conversion between matrix patterns (Fig 6c,

dotted lines). At a middle level of matrix feedback (wm = 0.2, Fig 5c orange line), enabling

fibroblasts to rearrange and degrade fibers produces a significantly more aligned matrix

(p = 9e-04, two tailed t-test). These analyses demonstrate how, when transitioning between

two different matrix types, cells can take instruction from the original matrix [34] and produce

a hybrid matrix that can have different patterning to de novo matrix generation (Fig 6d). In

particular, high matrix feedback precludes interconversion by limiting fibroblasts to following

existing matrix structures. We therefore conclude that matrix feedback needs to be both non-

zero but also not too high. It has the benefit of diversifying matrix pattern, but cannot be so

strong as to prevent matrix remodeling.

To address this experimentally, we seeded aligning fibroblasts on a thick non-aligned

matrix and non-aligning fibroblasts on an aligned matrix, and observed over four days how

the cells behaved on the matrix, and the patterning of the new matrix they produced (Fig 7).

The original matrix is shown in yellow, with the emergent organization of the fibroblasts at dif-

ferent times shown in phase-contrast below. The new matrix produced by these fibroblasts is

shown in blue. In both cases the fibroblasts display an initial tendency to follow the original

matrix (day 1), but then revert to their preferred phenotype (day 3-4), being able to ignore the

original matrix and produce a new matrix on top. Together, our adapted two-layer nematic

Vicsek model and supporting experimental analyses demonstrate that matrix feedback enables

diverse emergent patterns, including curved matrix structure, and the strength of matrix feed-

back is not sufficient to lock the system indefinitely, therefore enabling transitions to occur

over a timescale of days.

Discussion

Simple rules give rise to complex patterns in many natural systems, from Turing’s work on

how a zebra gets its stripes to fractal self-similarity in ferns. Previous work [5, 23] has shown

how cell-cell interactions can lead to alignment in vitro. However, fibroblast and ECM organi-

zation will co-evolve in vivo in both normal and pathological tissues. Whilst there have been

in-depth studies on how fibroblasts organize matrix via contractile forces generating local

alignment around a cell [54], or between two contractile cells [5], and the effects of matrix on

the movement of individual fibroblasts, surprisingly little is known about how the interplay

between these two fundamental mechanisms act in tandem to self-organize. The emergent

organization of ECM has critical consequences for tissue function but a mechanistic under-

standing of how some of these more complex ECM patterns arise is lacking.

To address these issues, we developed a nematic two-layer Vicsek flocking model, explicitly

modelling matrix fibers and cells. The extent of matrix feedback and rates of matrix fiber depo-

sition, degradation and rearrangement could all be adjusted in the model. The model enabled

us to see both layers, the fibroblasts and the matrix, evolving simultaneously, which remains

highly challenging in experimental systems. The model predicts that varying just the cell-cell

guidance component without any matrix feedback can generate aligned and isotropic matrix,

a finding that we have confirmed experimentally [5]. Introducing matrix feedback increased

diversity of tissue patterns, generating matrix with varying long-range alignment, short-range

alignment, percentage of high-density matrix, curvature and fractal dimension in metric-

space. Matrix guidance of cells occurs irrespective of when the matrix fibers were deposited,
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resulting in feedback with the matrix acting as temporal ‘memory’ to collective behavior which

creates diversity in topology. This temporal dimension of the model together with the ability

to read and write between the two layers of fibroblast and matrix are novel extensions to the

Vicsek model. Importantly, many of the patterns generated by the model are highly reminis-

cent of in vivo tissues at the mesoscale across millimeters. Recent work on dense suspensions

of active filaments has shown it is also possible to produce swirl-like patterns of active fila-

ments for specific values of persistence length and Péclet number [55], however this is depen-

dent on a high packing fraction. Conversely, our model is able to produce diverse patterning

even at low confluence, closer to cell density in certain tissues in vivo.

It has been hypothesized that matrix feedback could cause fibroblasts to align [22]. Our

experiments suggest that it is cell-cell interactions which drive initial alignment without a

requirement for ECM, but that matrix feedback plays a crucial role in determining cell motility

when the matrix is thick and can facilitate alignment under specific conditions. How matrix

feedback affects cell speed is not explored here, however a change in cell speed could affect the

cells interaction with matrix, affecting the memory component of matrix feedback. These

more nuanced effects of matrix feedback would be a topic of future interest.

Whilst the relatively few rules of the system allows for mathematical tractability and model-

ling on the scale of millimeters, the model lacks some more subtle matrix features such as

matrix cross-linking, which we expect would act to limit matrix reorganization, and environ-

mental cues such as chemoattractants in wound healing [32, 33] and in collective behaviour of

dictyoselium [44]. Additional work in this direction could add further insights into the effects

of these phenomena. It would be of particular interest to use this model to better understand

the transition between matrix topologies as seen in development [10, 11] and ageing. A natural

extension of the model would be to move into three dimensions, in order to more clearly

understand the in vivo context. In three dimensions cell motility is different [56, 57], and we

conjecture that matrix feedback would be even stronger due to cells moving through, rather

than on top of, matrix. However, continuing to model at the mesoscale level in three-dimen-

sions would be computationally expensive. Finally, it would be interesting to use a deep learn-

ing network to see how well the model matches to matrix evolution in vitro and in vivo and

how the model parameters change in these environments. Unlike other modeling approaches

which take the ECM to be a surrounding fluid [22, 28–30, 32, 34], our two-layer Vicsek model

has met the need for explicit representation of cells and matrix fibers, whilst remaining com-

putationally inexpensive.

By coupling cell-cell and cell-matrix interactions together, we have shown how simple rules

can produce diverse tissue patterns. The model offers a potential hypothesis for how many of

the complex patterns seen in vivo could arise at the mesoscale level. Our multi-layered flocking

model unifies cell and matrix behaviors and provides new mechanistic understanding of the

consequences of matrix feedback, including its importance for curved matrix patterns and

how high levels of feedback hamper matrix remodeling. Such observations are likely to prove

important as robust strategies in tissue engineering [2], where the role of ECM-mediated

growth and repair is of central importance.

Methods

Software and visualization

The model is written in C++. Data analysis was carried out in R and image processing was

done in Fiji (ImageJ). Visualization of the matrix is done using openGL. For each grid point, a

line showing the orientation of the density of the most recently selected bin is shown, with a
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color gradation from white to black as a function of that density up to a cut off of 25, which

corresponds to a black line. Example visual output is shown in S1 Fig.

Computing persistence

To avoid bias in computing cell persistence due to cell collisions, cells were tracked at low lev-

els of confluence. The program Metamorph was used for cell tracking. A range of time inter-

vals T was chosen over which persistence should be computed. At each point time t, the

persistence was taken to be the mean directionality ratio of all cells, computed as

PðtÞ ¼
j ðxiðtÞ � xiðt � TÞ j

PT
k¼1
j ðxiðtÞ � xiðt � kÞ j

ð11Þ

Varying matrix feedback as a function of fiber density

We computed the persistence of sub-confluent cells moving on glass and on a thick aligned

matrix (Fig 2a) for windows of one and two hours. Cells tracked for at least one hour were

recorded and a spline tracing the cell’s trajectory was produced using the loess package in R (α
= 0.5). This was in order to smooth the intracellular movement, which resulted in many small

fluctuations in the trajectories. For each cell, the median persistence for each cell was com-

puted as described above. Simulations of single cells with varying values of Var(η) were run

and the persistence computed for one and two-hour windows. The experimental results

were then matched with simulations using a least squares approach to select the most likely

value of Var(η) given a cell’s persistence. The distribution of noise in the simulations that

matched the cells moving on glass was Var(η) = 0.13. Simulations were then run for the same

level of noise and incremental values of wm between 0 and 1. The persistence of these simula-

tions was then compared with the persistence of the cells moving on thick aligned matrix.

Using a least squares approach, the most likely value of matrix feedback on a thick matrix is

wm = 0.27.

Fig 3e and 3f suggest that for the duration of the four-day FUD experiment (where there is

zero matrix guidance) as compared to the control experiment, there was no difference in the

persistence or the emergence of alignment. We therefore assume that the control fibroblasts

undergo little to no matrix guidance with matrix fibers produced for these first four days.

Defining this mathematically we say that for days 1-4, wm f(d) = 0, where d is fiber density.

On the other hand, as described above, matrix feedback is estimated to be wm = 0.27 for an

aligned matrix produced over seven days. Defining this mathematically we say that by the end

of day 7, wm f(d) = 0.27, where d is fiber density. Using these two way-points at day 4 and day

7, we then ran simulations computing average fiber density across the entire matrix at different

times. We took d to be the number of fibers in the bin selected for matrix guidance in each

matrix grid point. Simulations showed that the average fiber densities could be defined as

�d ¼

(
5 at day 4;

10 at day 7:

We then used the way-points to define a linear function with conditions f(5) = 0 and f(10) =

1, where wm would then be a user-defined maximal level of matrix feedback. We therefore
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write this function as:

f ðdÞ ¼

(
0 if d � 5;

d � 5

5
if 5 � d � 10;

1 if d � 10:

and redefine the X and Y-components of cell i as defined in Eqs (7) and (8), in order that the

components will be correctly weighted:

Xi ¼
1

wp þ wc þ f ðdÞwm
ðwpXp þ wcXc þ f ðdÞwmXmÞ; ð12Þ

Yi ¼
1

wp þ wc þ f ðdÞwm
ðwpYp þ wcYc þ f ðdÞwmYmÞ; ð13Þ
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Supporting information

S1 Fig. Metrics characterizing matrix. (A) Schematic of patterns with different values of

long-range alignment (LRA) and short-range alignment (SRA). (B) Schematic demonstrating

different values of high-density matrix (HDM). (C) Schematic showing examples of low and

high curvature (Curv). (D) Schematic examples of patterns with different fractal dimension

(Frac), including a Hilbert curve as an example of a pattern with a fractal dimension of two.

from https://commons.wikimedia.org/wiki/File:Hilbert_curve.svg, licensed under Creative

Commons.

(TIFF)

S2 Fig. Analyzing where fibroblasts deposit fibronectin. Two examples exploring where

fibroblasts produce fibronectin. Fibroblasts were plated, and then began to spread and com-

mence migration. They were then fixed and stained for F-actin (bottom left panels) to reveal

their dominant protrusion and hence direction of migration, fibronectin (top left panels) and

paxillin to reveal points of substrate attachment (top right panels). A composite image is

shown in the bottom right panels. Scale bar represents 10μm.

(TIFF)

S3 Fig. Emergent in silico matrix patterns from cell-cell interactions. (A) Aligned matrix

generated with parameters η = 0, wc = 0.03, wm = 0. (B) Isotropic matrix generated with param-

eters η = 0, wc = 0, wm = 0. Images from simulations showing fibroblasts (top) and correspond-

ing matrix (bottom) over six days. Scale bar represents 100μm. (C) The effect of increasing

cell-cell guidance (wc) on matrix organization for cells with low individual migratory noise
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(η = 0, orange) and high individual migratory noise (η = 0.14, blue). N = 5 simulations per

point in parameter space.

(TIFF)

S4 Fig. Matrix and fibroblast patterns emerging over time with matrix feedback. Images

from simulations showing fibroblasts (top) and corresponding matrix (bottom) over six days.

(A) Swirl-like matrix generated with parameters set at η = 0, wc = 0.03, wm = 0.2. (B) Diffuse

swirl-like matrix generated by η = 0.14, wc = 0, wm = 0. For all simulations deposition rate = 1,

degradation rate = 0, rearrangement rate = 0. Scale bar represents 100μm.

(TIFF)

S5 Fig. Emergent in silico matrix patterns from matrix feedback. (A) Pair-wise analysis

comparing metric-space covered by cells without matrix feedback (red) and with matrix feed-

back (black) showing the differences between patterns. N = 10 simulations per point in param-

eter space. Matrix patterns produced from varying noise and cell-matrix feedback, cell-cell

guidance fixed at wc = 0.03. Simulations are of 800 cells over a time-course of seven days. (B)

The effect of increasing matrix feedback for cells with low individual migratory noise (η = 0,

orange) and high individual migratory noise (η = 0.14, blue). Error bars show 95% confidence

intervals. Simulations run with 800 cells and N = 20 simulations per point in parameter space.

(C) PCA of sub-confluent simulations into two components explains 82% of variance. (D)

Pairwise analysis comparing cells in sub-confluent conditions without matrix feedback (red)

against cells with matrix feedback (black) whilst varying cell-cell flocking and noise. Simula-

tions are of 50 cells over a time-course of seven days.

(TIFF)

S6 Fig. Exploring the effect of cell shape on the five metrics. (A) Heatmaps showing long-

range alignment (LRA) for simulations with CAFs with an elongated, teardrop and rounded

morphology (top, middle and bottom rows respectively). Schematics of these cell shapes are

shown on the left. In the first column of heatmaps, matrix feedback is fixed at zero (wm = 0)

whilst noise (η) and cell-cell guidance (wc) are varied incrementally. In the second column, wc
= 0 whilst η and wm are varied and in the third column, η = 0 whilst wc and wm are varied.

Comparing the heatmaps row-wise shows that a different cell shape causes little difference in

LRA. N = 5 simulations per point in parameter space. Simulations are of 500 cells. Parallel

analysis is done for short-range alignment (SRA), high-density matrix (HDM), curvature

(Curv) and fractal dimension (Frac) in figures B, C, D and E respectively.

(TIFF)

S7 Fig. Parameter sensitivity analysis. (A) The effect of increasing cell aspect ratio on matrix

organization for cells with low individual migratory noise (η = 0, orange) and high individual

migratory noise (η = 0.14, blue). N = 5 simulations per point in parameter space. Error bars

show 95% confidence intervals. Simulations run with 800 cells. (B) Example stills varying

number of matrix grid point and the number of bins per grid point with corresponding star-

plots below. Scale bar represents 100μm.

(TIFF)

S8 Fig. Analyzing the effects of varying deposition and rearrangement of fibers on matrix

pattern formation with low matrix feedback (wm = 0.04). (A) PCA for aligning cells with low

deposition rate (light orange circle, η = 0, depRate = 2, degRate = 1, reRate = 0), aligning cells

with high deposition rate (dark orange circle, η = 0, depRate = 10, degRate = 1, reRate = 0),

non-aligning cells with low deposition rate (light blue circle, η = 0.14, depRate = 2, degRate = 1,

reRate = 0) and non-aligning cells with high deposition rate (dark blue circle, η = 0.14,
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depRate = 10, degRate = 1, reRate = 0). Blue arrow indicates change in deposition rate for

non-aligning cells, yellow indicates change in deposition rate for aligning cells. Background

points and loadings are from Fig 3c. (B) Corresponding example stills of the matrix produced

by different conditions and their starplots. N = 10 simulations per point in parameter space.

(C) PCA for aligning cells with low rearrangement rate (light orange circle, η = 0, depRate = 1,

degRate = 0, reRate = 0), aligning cells with high rearrangement rate (dark orange circle, η = 0,

depRate = 1, degRate = 0, reRate = 10), non-aligning cells with low rearrangement rate (light

blue circle, η = 0.14, depRate = 1, degRate = 0, reRate = 0) and non-aligning cells with high

rearrangement rate (dark blue circle, η = 0.14, depRate = 1, degRate = 0, reRate = 10). Blue

arrow indicates change in rearrangement rate for non-aligning cells. Background points and

loadings are from Fig 3c. (D) Corresponding example stills of the matrix produced by different

conditions and their corresponding starplots. N = 10 simulations per point in parameter

space. Scale bars represent 100μm.

(TIFF)

S9 Fig. Analyzing the effects of varying deposition and rearrangement of fibers on matrix

pattern formation with high matrix feedback (wm = 0.2). (A) PCA for aligning cells with low

deposition rate (light orange circle, η = 0, depRate = 2, degRate = 1, reRate = 0), aligning cells

with high deposition rate (dark orange circle, η = 0, depRate = 10, degRate = 1, reRate = 0),

non-aligning cells with low deposition rate (light blue circle, η = 0.14, depRate = 2, degRate = 1,

reRate = 0) and non-aligning cells with high deposition rate (dark blue circle, η = 0.14, dep-

Rate = 10, degRate = 1, reRate = 0). Blue arrow indicates change in deposition rate for non-

aligning cells, yellow indicates change in deposition rate for aligning cells. Background points

and loadings are from Fig 3e. (B) Corresponding example stills of the matrix produced by dif-

ferent conditions and their corresponding starplots. N = 10 simulations per point in parameter

space. (C) PCA for aligning cells with low rearrangement rate (light orange circle, η = 0, dep-

Rate = 1, degRate = 0, reRate = 0), aligning cells with high rearrangement rate (dark orange cir-

cle, η = 0, depRate = 1, degRate = 0, reRate = 10), non-aligning cells with low rearrangement

rate (light blue circle, η = 0.14, depRate = 1, degRate = 0, reRate = 0) and non-aligning cells

with high rearrangement rate (dark blue circle, η = 0.14, depRate = 1, degRate = 0, reRate = 10).

Blue arrow indicates change in deposition rate for non-aligning cells. Background points and

loadings are from Fig 3e. (D) Corresponding example stills of the matrix produced by different

conditions and their corresponding starplots. N = 10 simulations per point in parameter

space. Scale bars represent 100μm.

(TIFF)

S10 Fig. In vivo matrix is remodelled in disease and ageing. (A) Zoomed in example simula-

tion image showing matrix in orange and elliptical cell nuclei in blue oriented in the direction

of travel of the cell (left) as compared with the in vivo image of the murine stomach (right).

Scale bars represent 25μm. (B) Second harmonic imaging of collagen (orange) in young and

old mouse dermis (C) Corresponding starplots. (D) Gomori Trichrome staining showing

from left to right: normal dermis, melanoma border, pre-therapy and post-therapy resistance

with matrix shown in blue. Epidermis is denoted with an ‘e’, dermis with a ‘d’ and melanoma

with an ‘m’. Corresponding staining of the matrix alone is shown in Fig 5a. Scale bars repre-

sent 100μm.

(TIFF)

S1 Text. Simulation setup.

(DOCX)
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S2 Text. Quantification of matrix patterns.
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S3 Text. Exploring parameter space.
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S4 Text. Fibroblast organization of the matrix fibers affects pattern formation.
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S5 Text. Raw values and normalization of matrix metrics.

(DOCX)

S6 Text. Choosing parameters for mimicking in vivo tissues.

(DOCX)

S7 Text. Experimental methods.

(DOCX)

S1 Video. Video showing matrix output of simulation of seven-day assay. Parameters are

set at η = 0, wc = 0.03, wm = 0.2 with deposition rate = 1, rearrangement rate = 0, degradation

rate = 0.

(MP4)

S2 Video. Video showing cell bodies corresponding to the matrix produced in S1 Video.

(MP4)

S3 Video. Video showing matrix output of simulation of seven-day assay. Parameters are

set at η = 0.14, wc = 0.03, wm = 0.12 with deposition rate = 2, rearrangement rate = 1, degrada-

tion rate = 1.

(MP4)

S4 Video. Video showing cell bodies corresponding to the matrix produced in S3 Video.

(MP4)

S5 Video. Video showing how high matrix feedback leads to corralling of five cells η = 0, wc

= 0, wm = 0.4.

(MP4)
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