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Abstract
COVID-19 has been spreading continuously since its outbreak, and the detection of its manifestations in the lung via chest 
computed tomography (CT) imaging is essential to investigate the diagnosis and prognosis of COVID-19 as an indispensable 
step. Automatic and accurate segmentation of infected lesions is highly required for fast and accurate diagnosis and further 
assessment of COVID-19 pneumonia. However, the two-dimensional methods generally neglect the intraslice context, while 
the three-dimensional methods usually have high GPU memory consumption and calculation cost. To address these limita-
tions, we propose a two-stage hybrid UNet to automatically segment infected regions, which is evaluated on the multicenter 
data obtained from seven hospitals. Moreover, we train a 3D-ResNet for COVID-19 pneumonia screening. In segmenta-
tion tasks, the Dice coefficient reaches 97.23% for lung segmentation and 84.58% for lesion segmentation. In classification 
tasks, our model can identify COVID-19 pneumonia with an area under the receiver-operating characteristic curve value of 
0.92, an accuracy of 92.44%, a sensitivity of 93.94%, and a specificity of 92.45%. In comparison with other state-of-the-art 
methods, the proposed approach could be implemented as an efficient assisting tool for radiologists in COVID-19 diagnosis 
from CT images.
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1 Introduction

In December 2019, the novel coronavirus disease (COVID-
19) broke out and rapidly developed into a global epidemic 
[1–7]. COVID-19 presents rapid spread, strong virulence, 
and high mortality in critically ill patients. To date, the dis-
ease has been continuously attacked 224 countries, areas, 
or territories involving 291,413,610 confirmed COVID-19 
cases and 5,461,241 confirmed deaths according to World 

Health Organization (WHO). For COVID-19 screening, 
chest computed tomography (CT) imaging is considered 
as an indispensable tool for detection of manifestations in 
the lung associated with the disease [8–13]. The qualitative 
evaluation of infection in CT slices could provide important 
and useful information for COVID-19 diagnosis. However, 
the manual contouring of lung diseases requires tremendous 
time and effort. Automated tools can assist radiologists to 
accelerate autocontouring for COVID-19 infections in the 
clinical practice. Therefore, automated segmentation of 
COVID-19 from chest CT images is necessary for quantita-
tive assessment.

Recently, several deep learning (DL) methods have been 
developed for segmentation of COVID-19 in CT images 
[6, 14–22]. Serena et al. [23] reviewed the application of 
deep learning techniques in COVID-19 chest of pneumonia 
cases. Li et al. [23] employed the UNet to segment the lungs 
from CT scans to distinguish COVID-19 pneumonia from 
community acquired pneumonia. Fan et al. [24] presented 
a COVID-19 lung infection segmentation deep network 
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(Inf-Net) for CT images and introduced a semi-supervised 
segmentation system for COVID-19 lung infection. Gao 
et al. [25] developed a dual-branch combination network 
(DCN) for COVID-19 diagnosis that can simultaneously 
achieve individual-level classification and lesion segmenta-
tion. Moreover, Zhou et al. [21] proposed a fully automatic, 
rapid, accurate, and machine-agnostic method that can seg-
ment and quantify the infection regions on CT scans from 
different sources, which decomposes the 3D segmentation 
problem into three 2D ones, thereby reducing the model 
complexity by an order of magnitude. Shan et al. [17] pro-
posed a 3D segmentation method referred to as VB-Net. 
V-Net was combined with a bottleneck structure [26] to seg-
ment multiple structures including lungs, lung lobes, and 
infection regions.

It has to note that automatic and accurate segmentation 
of the infection region is still very challenging owing to the 
high variation in size, shape, and distribution of lesions in 
3D images. Moreover, some lesions, i.e., ground-glass opac-
ity (GGO), have low contrast and irregularity in bounda-
ries, leading to a degradation of the performance of solely 
interslice-based segmentation methods. Hence, we propose a 
DL-based automatic segmentation network for the quantita-
tive assessment of infected lesions for COVID-19, based on 
the hybrid densely connected UNet proposed by Li et al. [27] 
and the skip pathways proposed by Zhou et al. [28]. The pro-
posed network consists of two parts, a 2D network and a 3D 
network, referred to as two-stage hybrid UNet (TSH-UNet). 
The deep and efficient 2D network inherits the structure of 
UNet which is used to extract intraslice features and obtain 
a rough segmentation result of the CT images. In addition, 
compared with the method proposed by Li et al. [27], our 
model adopts long-range and short-range skip connections 
between the encoding part and the decoding part to enable 
low-level spatial feature preservation for better intraslice 
context exploration. The 3D network has a structure simi-
lar to that of the 2D network. Compared with the method 
proposed by Zhou et al. [28], it takes the context on the 
intraslice direction into consideration to effectively extract 
intraslice features and 3D contexts, which are jointly opti-
mized for accurate lung and infected lesion segmentation. 
We demonstrate the superiority of the proposed method over 
state-of-the-art methods from multiple perspectives. The 
main contributions of this study are summarized as follows:

1) We propose a novel lung and infected lesion segmenta-
tion network, TSH-UNet, which can extract the features 
of different layers and fully use context information, 
thereby balancing segmentation accuracy and network 
complexity.

2) We verify the performance of our network on datasets 
obtained from multiple centers to show the generaliza-

tion capabilities of our network, which can be applied 
to other centers in the future.

3) We use the results of the segmentation network to 
extract the lesions from the original CT images to clas-
sify COVID-19 pneumonia and other common types 
of pneumonia in an existing classification model (3D 
ResNet) [29], and the results are superior to those 
obtained through direct classification with the original 
image.

2  Methods

Herein, we developed a model for segmentation and clas-
sification tasks based on DL network for COVID-19 screen-
ing, as shown in Fig. 1. To achieve accurate lung and lesion 
segmentation, our segmentation network was constructed 
using a TSH-UNet combining a 2D network and a 3D net-
work. First, we trained the 2D network to obtain a coarse 
segmentation result; specifically, the 2D network adopts the 
skip pathway from UNet +  + [28, 30], where representative 
high-quality intraslice features can be extracted with deep 
convolutions. Then, a fine-tuning procedure was performed 
by jointly optimizing the 2D and 3D networks, where the 
interslice and intraslice features can be fully explored. For 
the classification task, the patients with COVID-19 pneu-
monia and other pneumonia were distinguished using 3D 
ResNet [29] with the segmentation results.

2.1  Segmentation network

2.1.1  Training 2D network

We used the 2D network in the first feature extraction stage 
to obtain a preliminary result. The UNet structure with long-
range and short-range skip connections was used to extract 
the features of different levels of COVID-19 CT images. 
The skip pathways change the connectivity of encoder and 
decoder subnetworks to aggregate the features of varying 
semantic scales, leading to a flexible feature fusion scheme.

We set I as the training samples with ground-truth labels 
G . Gx,y,z = c because each pixel (x, y, z) was identified as 
class c , where c could be the lung, lesion, or background. Let 
function TF denote the transformation from three adjacent 
slices to volumetric data. TF−1 denotes the inverse transfor-
mation from volumetric data to three adjacent slices. We 
transformed the input training samples, I , from volumetric 
data to three slices to obtain the input of 2D network, I2D 
(see Fig. 1). The 2D network segment lungs and lesions as 
follows:

(1)X2D = f2D
(

I2D;�2D
)
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where X2D denotes the feature map from the “upsampling 
layer,” and y2D denotes the corresponding pixel-wise prob-
abilities for input I2D . f2D represents the partial 2D network 
before the upsampling layer, and f2Drest represents the last 

(2)y2D = f2Drest
(

X2D;�2Drest

) layer of the 2D network. �2D and �2Drest denote the param-
eters in the corresponding network.

The 2D network consisted of 167 layers, including con-
volution layers, pooling layers, upsampling layers, transi-
tion layers, and a dense block. The dense block represented 
the cascade of several microblocks, where all layers were 

Fig. 1  Main framework of the proposed model. The structure of 
TSH-UNet for lung and lesion segmentation includes a 2D network 
and a 3D network, the detailed architecture of which can be found in 
supplementary Fig. 1 and supplementary Table 1. The input volume 
data are transformed into three consecutive slices and fed into the 2D 
network, yielding a coarse segmentation result. Then, after concate-
nation with the predicted volumes from 2D network, the input volume 
data are fed into 3D network to extract interslice features. Finally, the 
hybrid features are jointly optimized in the 3D network to accurately 
segment lungs and lesions. For classification, the region of interest is 
extracted using the segmentation result. The 3D network used in the 
classification part of our model is adapted from 3D ResNet. Finally, 
the model outputs the probability of COVID-19 pneumonia and com-

mon pneumonia. The 2D network consisted of 167 layers, including 
convolutional layers, pooling layers, upsampling layers, transition 
layers, and a dense block. The dense block represented the cascade 
of several microblocks, where all layers were directly connected. The 
transition layers were used to resize the feature maps, which were 
composed of a batch normalization layer and convolutional layer (1 
× 1) followed by an average pooling layer. We set the compression 
factor as 0.5 in the transition layers to prevent the feature maps from 
expanding. Bilinear interpolation was employed in the upsampling 
layer, followed by the sum of low-level features and a convolutional 
layer (3 × 3). In addition, batch normalization and the rectified linear 
unit were used before each convolutional layer in the architecture
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directly connected. The transition layers were used to 
resize the feature maps, which were composed of a batch 
normalization layer and convolution layer (1 × 1) followed 
by an average pooling layer. We set the compression factor 
as 0.5 in the transition layers to prevent the feature maps 
from expanding. Bilinear interpolation was employed in the 
upsampling layer, followed by the sum of low-level features 
and a convolutional layer (3 × 3). In addition, batch nor-
malization and the rectified linear unit were used before each 
convolution layer in the architecture.

2.1.2  Training 2D and 3D network

The 2D network can accurately extract intraslice features 
but neglects the spatial information between slices, which 
would lead to rough results. Compared to the 2D network, 
the 3D network can learn spatial information, but it is 
limited in terms of the field of view of the kernel and 
depth of the network, in addition to incurring a high com-
putational cost. To address these issues, we propose the 
two-stage hybrid network to jointly fuse and optimize the 
learned intraslice and interslice features for better lung 
and lesion segmentation.

First, we obtained a preliminary segmentation result 
from the 2D network. Subsequently, we set the transfor-
mation function (see Fig. 1) to obtain volumetric data 
from the slices to fine-tune the model. Thus, the feature 
map, X2D , and output of 2D network, y2D , were trans-
formed from slices to volumetric data, X′

2D
 and y′

2D
 . Then, 

we concatenated the original samples, I  with the contex-
tual output information, y′

2D
 , and fed it into the 3D net-

work to extract visual features with 3D contexts. In this 
study, the 3D network was composed of 65 convolutional 
layers, with a growth rate of 32. In comparison with its 
2D counterpart, the 3D network decreased the number of 
microblocks in each dense block, resulting in low GPU 
memory consumption and high memory consumption for 
3D convolutions. The other part of the 3D network was 
similar to that of the 2D counterpart. In this manner, the 
3D network was trained based not only on the features 
distilled from original images but also on the pre-defined 
coarse segmentation results from the 2D network. The 
guidance from supporting context pixels made it easier to 
find the optimal solution, which improved the efficiency 
of the 3D network. The training process of 3D network 
is as follows:

where X3D is the volumetric feature extracted from 3D net-
work, and Z represents the hybrid feature, which is the sum 

(3)X3D = f3D
(

I, y
�

2D
;�3D

)

(4)Z = X3D + X
�

2D

of intraslice and interslice features. f3D represents the 3D 
network, and �3D represents the parameters thereof. Then, 
the hybrid feature is trained:

where ys denotes the predicted pixel-wise probabilities 
obtained from f3Drest , and �3Drest denotes the parameters in 
the corresponding network. The architecture information 
of 2D and 3D networks is detailed in the supplementary 
Table 1. The input CT slice/volume type is Hounsfield units 
(HU).

2.1.3  Loss function and training strategy

During training, the weight cross-entropy function [31] 
was employed as the loss function, which is expressed 
as follows:

where pc
i
 represents the possibility that voxel i belongs 

to class c , p̂c
i
 represents the label of voxel i in the ground 

truth, and wc
i
 denotes the weight.The logarithm base is 2, 

the weights of the loss function are as follows: 0.78, 0.65, 
and 8.57.

To train TSH-UNet, we employed transfer learning 
[32–34] to improve the performance of the network. First, 
the parameters of the encoder part in the 2D network were 
obtained from pre-trained DenseNet (object classification 

(5)ys = f3Drest
(

Z;�3Drest
)

(6)L
(

p, p̂
)

= −
∑N

i=1

∑3

c=1
wc
i
pc
i
logp̂c

i

Table 1  Datasets and demographic characteristics of patients with 
COVID-19 pneumonia for segmentation tasks

Cohorts Cases Slices Gender Age

M F

Training dataset 
(n = 28)

28 8,064 15 13 56±19 (24–86)

Validation dataset 
(n = 8)

8 2,160 1 7 51±14 (25–68)

Testing dataset 
(n = 12)

12 5,617 7 5 61±14 (30–85)

Total 48 15,841 23 25 55±17 (24–86)
Independent cohorts (external testing dataset)
AMU (n = 8) 8 235 3 5 50±17 (21–86)
BCH (n = 8) 8 666 4 4 43±21 (24–92)
BYH (n = 14) 14 1,761 6 8 43±14 (17–68)
ZRH (n = 9) 9 583 5 4 51±20 (25–80)
HPRH (n = 8) 8 2,528 5 3 43±13 (22–63)
HHCH (n = 8) 8 344 4 4 53±19 (27–86)
Total 55 6,117 27 28 47±17 (17–92)
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trained) [35] while the decoder part are trained with the 
random initialization. We first trained the 2D network 
separately to extract intraslice features and obtain a rough 
segmentation result. The 3D network was fine-tuned with 
the result produced by the 2D network, concatenating 
with the original 3D chest CT volume. Finally, we jointly 
optimized the 3D interslice features along with the 2D 
intraslice features to yield accurate segmentation of lung 
and lesion.

Python version 3.6 was used in our deep learning model, 
which was implemented in the open framework tensorflow 
(version: 1.4.0) and keras (version: 2.0.8). The model was 
run on a single NVIDIA Titan GPU. TSH-UNet was trained 
for 500 epochs using the SGD optimizer with a batch size of 
1. The initial learning rate lr was set as 0.01, and it decayed 
according to the equation lr = lr × (1 − i∕t)0.9 , where i 
denotes the iterations step, and t denotes the total iteration 
number. For data augmentation, different transformations, 
including scaling between 0.8 and 1.2 and random mirror-
ing, were randomly applied to all training data to prevent 
the overfitting problem. After data enhancement, the total 
number of slices during training was 24,192. The test data 
were input into the trained TSH-UNet, and the network auto-
matically segmented the lung and lesions of COVID-19.

2.2  Classification network

We trained a classification network for diagnostic analysis 
after our segmentation network operation to distinguish 
COVID-19 pneumonia from other types of pneumonia (see 
Fig. 1). The input of the diagnostic classification model was 
the intersection of raw image and the segmentation results, 
and further diagnostic prediction was made using CT volu-
metric data with and without COVID-19 pneumonia. As 
TSH-UNet was trained using CT volumetric data, the net-
work used in the classification part of our model was also a 
3D classification model. We normalized the height, width, 
and depth of the segmentation results to 128 × 128 × 64. The 
3D classification network considered a tensor as the input 
and output the diagnostic probability of COVID-19 pneumo-
nia and other common types of pneumonia. The 3D network 
used in the classification part of our model was adapted from 
3D ResNet [29], which has five layers. The first layer is a 
normal 1 × 1 × 1 convolutional layer and the second to fourth 
layers are residual layers. Each layer is composed of three 
residual modules. The multiple residual connections were 
used to continuously extract local and global context fea-
tures. A fully connected layer and soft-max activation func-
tion were used to calculate the predicted diagnostic prob-
ability. Finally, the output of the network was the category 
of the maximum probability. In addition, the cross-entropy 
loss between the predicted results and ground-truth labels 

was used to train the 3D classification network. We used 
the stochastic gradient descent (SGD) optimizer to train the 
network, and the training batch size was 4.

2.3  Evaluation metrics

The Dice coefficient and Hausdorff distance were employed 
to evaluate the lung and lesion segmentation performance. 
The Dice coefficient [36] is typically used to calculate the 
similarity or overlap between two samples, and it repre-
sents the degree of coincidence between the segmentation 
result and ground-truth labels. The Hausdorff distance [37] 
indicates the similarity between two sets. In addition, we 
applied four other metrics [38] to evaluate the accuracy of 
the segmentation results, i.e., the volumetric overlap error 
(VOE), relative volume difference (RVD), average symmet-
ric surface distance (ASD), and root mean square symmetric 
surface distance (RMSD). Moreover, we compared the seg-
mentation results with the ground-truth labels to quantify 
the accuracy value of the results.

The confusion matrix was employed to evaluate the per-
formance of the classification. From the confusion matrix, 
false positive (FP), false negative (FN), true positive (TP), 
and true negative (TN) values were obtained, four metrics 
for performance evaluation were calculated as below: accu-
racy, sensitivity, specificity, and area under the receiver-
operating characteristics curve (AUC).

3  Datasets

3.1  Dataset for segmentation

This study was approved by the multiple institutional review 
board of Renmin Hospital of Wuhan University (RHWU), 
Anhui Medical University (AMU), Beijing Chaoyang Hos-
pital (BCH), Beijing Youan Hospital (BYH), Zhuhai Ren-
min Hospital (ZRH), Henan Provincial Renmin Hospital 
(HPRH), and Hubei Huangshi Central Hospital (HHCH), 
all in China. Written informed consent was waived by the 
institutional review board for the retrospective study.

We collected high-resolution CT images of 103 patients 
with COVID-19 pneumonia from the abovementioned 
hospitals in China, including 48 cases of COVID-19 from 
RHWU (Optima CT680, GE Medical Systems; tube volt-
age: 140 kVp; slice thickness: 0.625 mm), 14 cases from 
BYH (iCT 256, Philips; tube voltage: 140 kVp; slice thick-
ness: 0.9 mm), 9 cases from ZRH (SOMATOM Definition 
Flash, Siemens; tube voltage: 120 kVp; slice thickness: 
10 mm), and 8 cases each from AMU (LightSpeed VCT, 
GE Medical Systems; tube voltage: 120 kVp; slice thick-
ness: 5 mm), BCH (NeuViz 64 In, NMS; tube voltage: 120 
kVp; slice thickness: 1 mm), HPRH (CT 780, UIH; tube 
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voltage, 120 kVp; slice thickness: 1 mm), and HHCH (Per-
spective, Siemens; tube voltage: 130 kVp; slice thickness: 
7 mm). We divided the data from RHWU into a training 
dataset (28 cases), validation dataset (8 cases), and testing 
dataset (12 cases) and set the dataset from other centers as 
the external testing dataset. The dataset and demographic 
characteristics of patients for segmentation tasks are pro-
vided in Table 1.

The lesions were manually annotated by trained radiolo-
gists from RHWU, AMU, BCH, BYH, ZRH, HPRH, and 
HHCH as the ground-truth labels. The region of the lung 
was first delineated slice-by-slice. As the shapes of the 
lesions were generally irregular, we marked all representa-
tive lesions and suspicious lesions. All the radiologists were 
asked to jointly evaluate suspicious lesions to reduce human 
error. We annotated the ground-truth labels as background 
(black), lung (red), and lesions (green), as shown in Fig. 2.

In addition, we chose the online datasets (COVID-19 
CT Lung and Infection Segmentation Dataset) [39]. This 
dataset contains raw and labeled COVID-19 CT scans. 
Lung and infections are labeled by two radiologists and 
verified by an experienced radiologist.

3.2  Dataset for classification

The dataset of patients for classification tasks are provided 
in Table 2. We collected the high-resolution CT images 
of 439 patients from RHWU, including 224 patients 
with clinical confirmed COVID-19 pneumonia and 215 
patients with other common types of pneumonia, which 
was divided into a training dataset (160 COVID-19, 160 
other pneumonia) and test dataset (64 COVID-19, 55 other 
pneumonia). We also collected data on 184 cases from 
AMU (30 COVID-19, 33 other pneumonia; Aquilion, 
Toshiba; tube voltage: 120 kVp; slice thickness: 5 mm), 
BYH (30 COVID-19, 31 other pneumonia; iCT 256, 
Philips; tube voltage: 120 kVp; slice thickness: 5 mm), and 

ZRH (30 COVID-19, 30 other pneumonia; SOMATOM 
Definition Flash, Siemens; tube voltage: 120 kVp; slice 
thickness: 5 mm) for an external validation dataset.

For segmentation and classification datasets, we con-
verted all CT images from the DICOM format into the 3D 
NII format to train our model. The threshold value of the 
CT images was normalized to the range of [− 1000, 200]. 
The last step was to find the largest connected domain in 
the image to distinguish the background from the lung. 
This step was to extract region of interest and remove 
unnecessary background.

4  Results

4.1  Segmentation results

To analyze the performance of our TSH-UNet on a volu-
metric dataset, we compared it with several semantic seg-
mentation networks, including the fully convolutional net-
work (FCN) [40], SegNet [41], Li et al. [23], Wang et al. 
[42], Müller et al. [43], and H-DenseUNet [27]. Li et al. 
[23] was using 2D UNet. Wang et al. [42] was using 2D 
UNet +  + , Müller et al. [43] was using 3D UNet +  + . We 
tested our TSH-UNet on the testing dataset from RHWU, 
and the evaluation metrics were calculated as listed in 
Table 3. As for the metric of lung, TSH-UNet achieved 
a dice of 97.00%. For the metric of lesions, TSH-UNet 
achieved a dice of 89.22%, outperforming other networks. 
The Dice and accuracy of lung and lesion segmentation 
using TSH-UNet was the highest. The Dice of the lung, 
Dice of the lesion, accuracy of the lung, and accuracy 
of lesion were 0.62–8.88%, 0.57–16.22%, 0.80–4.08%, 
and 1.17–20.10% higher than those of other networks, 
respectively.

The representative segmentation results on the testing 
dataset of different networks are shown in Fig. 3. It is clear 
that TSH-UNet delivered the best performance in terms 

Fig. 2  a Raw CT image: the 
red and green lines represent 
the outlines of lung and lesions, 
respectively. b Ground-truth 
label: the black, red, and green 
regions represent background, 
lung, and lesions, respectively.
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of both lung and lesions. The FCN segmented the con-
tour of the lung, but the edges were zigzag-shaped, which 
caused errors. SegNet and Li et al. [23] obtained relatively 
accurate results for lung segmentation. However, their per-
formance was poorer that of TSH-UNet in terms of the 
Dice coefficient and accuracy. Moreover, the segmentation 
result of our TSH-UNet was better than that of H-DenseU-
Net in lung and lesion, and we attribute this improvement 
to long-range and short-range skip connections.

From Fig. 3, it is observed that TSH-UNet can achieve 
better results than the 2D network. Our TSH-UNet can 
accurately segment small lesions (see the blue arrows in 
Fig. 3) that the 2D network cannot, which explains the 
second stage hybrid architecture of our model, a fine-
tuning procedure that obtains a more accurate result and 
improves the dice and accuracy of both lung segmentation 
and lesion segmentation. The trained TSH-UNet operates 
in an end-to-end manner, where the 3D contexts can also 
help extract more representative interslice features. The 
two-stage hybrid architecture jointly optimizes the 2D 
and 3D networks, where the hybrid feature can be fully 
explored. With the hybrid features extracted from the 2D 
slices and 3D contexts on the z-axis, our model can seg-
ment small lesions, which the 2D network neglects (see 
the blue arrows in Fig. 3). The 3D display of the results 
of Wang et al. [42] and our TSH-UNet can be found in 
supplementary Fig. 2. Moreover, we found that only Mül-
ler et al. [43] can achieve better performance than that of 
the Wang et al. [42]. Because of the extraction of the 3D 
contents along the intraslice direction. However, 3D kernel 
consumes large GPU memory, because of which Müller 
et al. [43] took much more training time to converge com-
pared to that required for Wang et al. [42]. The training of 
Wang et al. [42] took about 12 h using a single NVIDIA 
Titan GPU, while two-stage hybrid fine-tuning took 5 h. 

Table 2  Datasets and demographic characteristics of patients with 
COVID-19 pneumonia for classification tasks

Cohorts COVID-19 Other pneu-
monia

Total

Training dataset (n = 320) 160 160 320
Testing dataset
(n = 119)

64 55 119

Total 224 215 439
Independent cohorts (external validation dataset)
AMU (n = 63) 30 33 63
BYH (n = 61) 30 31 61
ZRH (n = 60) 30 30 60
Total 90 94 184

Table 3  Comparison of lung and lesion segmentation results on the test dataset

Model Lung
Dice (%) Hausdorff (mm) VOE (%) RVD (%) ASD (mm) RMSD (mm) Accuracy (%)

FCN 88.12±3.18 42.47±27.30  − 9.61±16.97  − 7.81±16.85 18.53±6.87 1.35±0.61 93.15±8.78
SegNet 95.47 ± 2.84 37.59±47.08  − 5.16±6.76  − 4.83±6.29 13.53±10.58 0.91±0.56 96.43±1.35
Li et al. [23] 95.85 ± 2.11 20.30±7.45     3.39±6.46  − 3.98±5.77   8.55±6.76 0.63±0.47 95.38±2.03
Wang et al. [42] 95.72 ± 2.26 20.55±8.11  − 5.15±3.82  − 4.85±3.55   9.61±7.98 0.79±0.60 96.06±0.35
Müller et al. 

[43]
95.96±1.92 10.09±2.74  − 5.07±6.47  − 4.75±6.29   4.75±6.28 0.34±0.35 95.15±2.36

H-DenseUNet 96.38±1.64 11.14±3.15     2.15±1.12     2.19±1.16   3.48±2.26 0.32±0.26 96.63±0.03
TSH-UNet 97.00±1.26   8.95±2.23  − 0.44±2.44  − 0.41±2.41   2.73±2.10 0.27±0.28 97.23±0.93
Model Lesion

Dice (%) Hausdorff (mm) VOE (%) RVD (%) ASD (mm) RMSD (mm) Accuracy (%)
FCN 73.00±7.86 23.67±8.64   29.71±25.11   40.14±36.03 11.25±0.60 0.71±0.40 64.48±12.52
SegNet 81.98±5.65 17.69±5.02   10.62±16.34   12.91±19.72   8.54±5.09 0.70±0.49 78.44±9.09
Li et al. [23] 84.88±2.55 17.90±6.69   10.71±10.95   12.04±12.52   7.92±4.26 0.63±0.38 80.84±5.74
Wang et al. [42] 84.44±2.75 18.28±5.89   13.19±9.57   14.71±11.56   7.19±4.19 0.58±0.39 79.44±5.35
Müller et al. 

[43]
88.65±3.25 10.54±2.72  − 6.16±8.71  − 5.62±8.32   3.97±1.56 0.31±0.18 83.41±5.17

H-DenseUNet 83.80±2.88 15.70±5.11   16.56±13.13   19.15±15.30   6.66±2.85 0.49±0.26 77.81±7.01
TSH-UNet 89.22±1.93   8.47±2.55   12.24±8.18   7.33±3.63   3.64±1.52 0.29±0.15 84.58±3.48
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In other words, the total training time for TSH-UNet was 
about 17 h, while that of Müller et al. [43] was around 35 h.

We validate our method and comparison methods 
on the online datasets to prove the generalization per-
formance of our TSH-UNet. The experimental results 
are summarized in Table 4 and Fig. 4. Compared to the 
results in Table 3, the results of the online datasets were 
slightly worse, but our method achieved reasonable per-
formance on the results of both lung segmentation and 
lesion segmentation. For lung segmentation, the Dice 
coefficients of different methods were higher than 80%, 
and the accuracy were above 80%. For lesion segmenta-
tion, the Dice coefficients of TSH-UNet was 67.23%, and 
the accuracy was 73.44%.

From Fig. 4, we can find that the three 3D networks, 
Müller et  al. [43], H-DenseUNet, and our TSH-UNet 
can better segment the regions of lesion because of the 

extraction of the 3D contents along the intraslice direction. 
However, some small regions of lesion were segmented 
in the results of Müller et al. [43] and H-DenseUNet (see 
the blue arrows). Our TSH-UNet can accurately segment 
lesions because of the second-stage hybrid architecture of 
our model, fine-tuning our model to obtain a more accu-
rate result.

4.2  Multicenter verification for segmentation tasks

We randomly selected 55 cases from six hospitals to illus-
trate the effectiveness and generalization performance of 
our TSH-UNet. We selected 8 cases each from AMU, BCH, 
HPRH, and HHCH, 9 cases from ZRH, and 14 cases from 
BYH as the external validation dataset to verify our model. 
A few representative metrics are shown in Table 5, and the 
results are shown in Fig. 5. The segmentation of the lung 
and different lesions was satisfactory. For lung segmenta-
tion, the Dice coefficients of all centers were 94%, and the 

Fig. 3  Representative segmen-
tation results of testing dataset 
obtained from different segmen-
tation networks. We selected 
one typical slice as an example 
to elucidate the difference 
between results
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accuracy was above 97%. For lesion segmentation, the Dice 
coefficients were approximately 80%, and the highest accu-
racy was 88.69%.

4.3  Classification results

To investigate the performance of COVID-19 classifi-
cation tasks with and without segmentation, we trained 
a 3D ResNet to identify COVID-19 pneumonia using 
the intersection of raw image and the lesion segmen-
tation results as the input. With the lesion segmenta-
tion results of our network, the classification network 
could achieve a more accurate result in test datasets, as 
shown in Fig. 6. The classification network achieved 
an accuracy of 84.03%, a sensitivity of 86.36%, a spec-
ificity of 83.02%, and an AUC of 0.84 for COVID-19 
screening without using segmentation results. When 
the segmentation results of TSH-UNet were used, the 
network could distinguish COVID-19 from other com-
mon types of pneumonia with an accuracy of 92.44%, 
a sensitivity of 93.94%, a specificity of 92.45%, and 
an AUC of 0.92. The experimental results showed that 
the performance of could be improved using segmenta-
tion results.

We also compared the classification results by using 
the lesion segmentation results that outputted from Wang 
et al. [42], Müller et al. [43], and H-DenseUNet, respec-
tively. For Wang et al. [42], the classification network 
could distinguish COVID-19 from other common types 

of pneumonia with an accuracy of 84.03%, a sensitivity 
of 86.36%, a specificity of 83.02%, and an AUC of 0.87. 
While for Müller et al. [43], the network achieved an accu-
racy of 85.71%, a sensitivity of 87.88%, a specificity of 
84.91%, and an AUC of 0.90. Accordingly, the network 
achieved an accuracy of 89.08%, a sensitivity of 90.91%, a 
specificity of 88.68%, and an AUC of 0.86 with the results 
of H-DenseUNet. The similar results were also achieved 
on training datasets (see Supplementary Fig. 3 and Sup-
plementary Fig. 4).

4.4  Multicenter verification for classification tasks

Our classification network was validated using mul-
ticenter data to demonstrate its generalization perfor-
mance. We chose 63 cases from BYH (including 30 
patients with COVID-19 and 33 patients with other com-
mon types of pneumonia), 61 cases AMU (including 
30 patients with COVID-19 and 31 patients with other 
common types of pneumonia), and 60 cases from ZRH 
(including 30 patients with COVID-19 and 30 patients 
with other common types of pneumonia) as the test data-
sets to verify TSH-UNet. We directly fed the multicenter 
data into the trained model to obtain multicenter diag-
nosis results.

As shown in Fig. 7, the network achieved an accu-
racy of 70.11%, a sensitivity of 70.21%, a specificity 
of 68.89%, and an AUC of 0.78 without the input of 
segmentation results. When the segmentation results 

Table 4  Comparison of lung 
and lesion segmentation results 
on the online datasets

Model Lung
Dice (%) VOE (%) RVD (%) Accuracy (%)

FCN 82.58±4.64   4.37±2.71   4.24±2.59 84.44±5.05
SegNet 82.20±4.29 12.66±3.81 11.85±3.32 87.83±5.43
Li et al. [23] 84.38±4.53   6.38±2.03   6.16±1.92 87.19±5.13
Wang et al. [42] 84.38±4.53   6.38±2.03   6.16±1.92 87.19±5.13
Müller et al. [43] 81.29±4.86   4.51±2.77   2.59±4.42 82.49±5.94
H-DenseUNet 83.86±4.60   6.82±5.95   7.10±6.59 81.25±5.50
TSH-UNet 85.49±3.98   1.95±1.19   0.13±2.26 85.59±4.48
Model Lesion

Dice (%) VOE (%) RVD (%) Accuracy (%)
FCN 63.97±3.84 21.31±11.92   7.99±20.86 68.43±8.38
SegNet 64.90±2.58 33.77±17.77   5.13±36.19 72.03±15.76
Li et al. [23] 62.48±4.14 27.93±16.09   9.05±25.71 68.62±11.27
Wang et al. [42] 65.55±2.48 25.86±18.67 14.32±22.32 73.89±11.78
Müller et al. [43] 56.98±4.83 72.96±16.38 52.92±8.93 90.29±5.30
H-DenseUNet 55.03±3.94 40.84±19.16 32.86±13.26 70.32±10.84
TSH-UNet 67.23±0.65 23.39±7.95 12.17±18.59 73.44±7.56
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of TSH-UNet were used, the network could distinguish 
COVID-19 from other common types of pneumonia 
with an accuracy of 82.07%, a sensitivity of 81.91%, 
a specificity of 81.11%, and an AUC of 0.89. The net-
work achieved an accuracy of 77.72%, a sensitivity of 
78.72%, a specificity of 77.78%, and an AUC of 0.82 
with the results of Wang et al. [42]. When the segmenta-
tion results of Müller et al. [43]were used, the network 
could distinguish COVID-19 from other common types 
of pneumonia with an accuracy of 78.80%, a sensitivity 
of 79.79%, a specificity of 78.89%, and an AUC of 0.85. 
The network achieved an accuracy of 71.20%, a sensi-
tivity of 71.2%, a specificity of 70.00%, and an AUC of 
0.80 with the results of H-DenseUNet.

5  Discussion

DL-based techniques could provide accurate and effi-
cient solutions in COVID-19 diagnosis, prognosis, and 
treatment. Automatic lung and lesion segmentation of 
lungs, lobes, and infected regions or lesions in chest CT 
images could assist physicians in the clinical COVID-
19 diagnosis process and further in quantification and 
assessment.

We proposed a DL-based two-stage network for quanti-
tative infected lesion assessment for COVID-19. The main 
structure of our framework, i.e., TSH-UNet, was a combi-
nation of a 2D network (UNet structure) and a 3D network 

Fig. 4  Representative seg-
mentation results of the online 
datasets obtained from different 
segmentation networks. We 
selected one typical slice as an 
example to elucidate the differ-
ence between results
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(UNet structure). Our TSH-UNet effectively extracted 
intraslice features and 3D contexts in intraslice direction, 
which were used for accurate lung and infected lesion seg-
mentation. We employed an efficient and deep 2D network 
to extract sufficient intraslice features. The advantages of 
long-range and short-range skip connections and a densely 
connected path were combined in our 2D network. Through 
combination of the rough result output by the 2D network 
and the raw images, the 3D network was fine-tuned. Finally, 
the accurate segmentation was obtained by jointly optimiz-
ing the 2D intraslice features and 3D interslice features in 

the 3D network. The results showed that the performance of 
TSH-UNet was better than that of state-of-the-art networks 
for medical image segmentation.

In addition, we verified the generalization performance 
of our TSH-UNet on CT image datasets obtained from dif-
ferent centers. The CT protocols and settings of CT images, 
including CT equipment and slice thickness, varied depend-
ing on the centers. Thus, the CT images obtained from mul-
tiple centers were different. Finally, we used the intersection 
of raw image and the segmentation results as the input to 
classify COVID-19 pneumonia and other common types of 

Table 5  Representative 
evaluation metrics of the 
segmentation results for 
different centers

Lung
Dice (%) VOE (%) RVD (%) Accuracy (%)

AMU 97.25 ±0.44 5.18 ± 0.76 5.04 ± 0.72 99.80 ± 1.20
BCH 98.40 ± 0.41 2.53 ± 0.87 2.49 ± 0.85 99.66 ± 0.40
BYH 98.55 ± 0.21 2.72 ± 0.48 2.68 ± 0.46 99.91 ± 0.21
ZRH 98.26 ± 0.77 3.14 ± 1.50 3.08 ± 1.43 99.83 ± 0.13
HPRH 94.91 ± 1.18 6.77 ± 1.94 6.53 ± 1.81 98.25 ± 1.54
HHCH 94.62 ± 1.16 5.81 ± 3.27 5.60 ± 3.12 97.47 ± 1.27
Lesion

Dice (%) VOE (%) RVD (%) Accuracy (%)
AMU 78.49 ± 4.58 20.06 ± 9.14 17.92 ± 7.59 87.48 ± 6.75
BCH 79.06 ± 6.32 12.86 ± 5.37 11.97 ± 4.82 84.29 ± 7.83
BYH 82.38 ± 5.64 16.30 ± 10.41 14.74 ± 8.94 88.69 ± 7.60
ZRH 78.36 ± 5.20 16.78 ± 8.07 18.73 ± 9.52 72.78 ± 7.50
HPRH 79.22 ± 3.27 17.02 ± 9.49 15.34 ± 7.88 86.71 ± 3.63
HHCH 77.77 ± 3.17 16.93 ± 6.43 17.98 ± 8.12 78.15 ± 8.08

Fig. 5  Representative segmentation results of different centers. We selected one typical slice from the datasets as an example
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pneumonia in 3D ResNet. Compared to direct classification 
results when using the original CT images, our segmentation 
results improved the accuracy of the classification network. 
This is important in the clinical diagnosis of COVID-19 
pneumonia.

Although our TSH-UNet achieved promising segmenta-
tion of infected lesions and classification results in COVID-
19, there are several limitations in this study. First, segmen-
tation errors may occur in the process of segmentation. There 
are two main reasons for the segmentation error: one is the 
TSH-UNet has been verified in CT scans from 6 centers for 
segmentation and 3 centers for classification. However, the 
size of dataset is relatively small, resulting in insufficiency 
of data diversity. In the future, more CT scans from different 
centers could be added as training and validation dataset to 
improve the performance of the proposed model. Another 
one is tiny lesions are inherently not easy to segment, and 
it is difficult for convolution operations in deep learning to 
extract the tiny information. We could additionally employ 
attention mechanism like self-attention to focus specifically 
on tiny lesions in the future. Besides, early stopping strategy 
can be considered to prevent network overfitting. Second, 
for our proposed model, we apply the TSH-UNet to seg-
ment the infected regions without classification of types of 
lung lesions, i.e., GGO, consolidation, or other patterns. In 

future work, multi-class infection labeling network will be 
integrated into the current model. Finally, with regard to 
clinical practice, more detailed clinical information, such 
as follow-up treatment, was unavailable for validation of the 
proposed model. Nonetheless, the integration of COVID-19 
lesions segmentation and classification in this study allowed 
for a diagnostic evaluation of the model.

6  Conclusion

In this study, we proposed a DL-based method TSH-UNet 
to automatically segment infected regions, which efficiently 
solved the problem that the 2D network ignores the infor-
mation of volumetric context and 3D network suffers from 
high GPU memory consumption and calculation cost. With 
single-model basis, our method excelled others by a large 
margin on lung and lesion segmentation. Experiments on 
multiple centers datasets proved the superiority and the 
generalization capability of our network. In addition, the 
results of the segmentation network were used to extract the 
lesions from the original CT images to classify COVID-19 
pneumonia and other common types of pneumonia in an 
existing classification model (3D ResNet). The classifica-
tion model achieved the best accuracy with the segmentation 

Fig. 6  ROC curves and confusion matrixes of the classification model using results of different segmentation network on the testing datasets
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results of our TSH-UNet compared with other segmentation 
network and those obtained through direct classification with 
the original image, indicating the contribution of our TSH-
UNet to the subsequent diagnosis of COVID-19 pneumonia.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s11517- 022- 02619-8.
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