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A B S T R A C T

Wolff’s Law and the Mechanostat Theory elucidate how bone tissues detect and convert mechanical stimuli into 
biological signals, crucial for maintaining bone equilibrium. Abnormal mechanics can lead to diseases such as 
osteoporosis, osteoarthritis, and nonunion fractures. However, the detailed molecular mechanisms by which 
mechanical cues are transformed into biological responses in bone remain underexplored. Yes-associated protein 
(YAP) and transcriptional coactivator with PDZ-binding motif (TAZ), key regulators of bone homeostasis, are 
instrumental in this process. Emerging research highlights bone cells’ ability to sense various mechanical stimuli 
and relay these signals intracellularly. YAP/TAZ are central in receiving these mechanical cues and converting 
them into signals that influence bone cell behavior. Abnormal YAP/TAZ activity is linked to several bone pa-
thologies, positioning these proteins as promising targets for new treatments. Thus, this review aims to provide 
an in-depth examination of YAP/TAZ’s critical role in the interpretation of mechanical stimuli to biological 
signals, with a special emphasis on their involvement in bone cell mechanosensing, mechanotransduction, and 
mechanoresponse.

The translational potential of this article: Clinically, appropriate stress stimulation promotes fracture healing, 
while bed rest can lead to disuse osteoporosis and excessive stress can cause osteoarthritis or bone spurs. Recent 
advancements in the understanding of YAP/TAZ-mediated mechanobiological signal transduction in bone dis-
eases have been significant, yet many aspects remain unknown. This systematic review summarizes current 
research progress, identifies unaddressed areas, and highlights potential future research directions. Advance-
ments in this field facilitate a deeper understanding of the molecular mechanisms underlying bone mechanics 
regulation and underscore the potential of YAP/TAZ as therapeutic targets for bone diseases such as fractures, 
osteoporosis, and osteoarthritis.

1. Introduction

In 1892, Julius Wolff, a German surgeon, posited that bone adapts to 
the mechanical loads under which it is placed, growing denser in areas 
of high pressure and resorbing in areas of low pressure [1]. This adaptive 
response of bones to mechanical stress is known as Wolff’s Law,which 
suggests that activities like exercise can strengthen bones, whereas 
inactivity can lead to bone density loss [2–4]. In 1987, Harold Frost 
expanded on this by introducing the mechanostat theory, suggesting 
bones sense mechanical stimuli and convert them into signals for 

remodeling, the underlying molecular and cellular mechanisms remain 
mostly unknown [5]. The Yes-associated protein (YAP) and transcrip-
tional coactivator with PDZ-binding motif (TAZ), central to the Hippo 
signaling pathway [6], have emerged as potential mediators of Wolff’s 
Law and the bone homeostasis theory.

YAP and TAZ share significant homology featuring similar yet 
distinct structural components [7,8]. These include a central WW 
domain, a conserved C-terminal sequence, and a 14-3-3 binding motif 
within the conserved N-terminal sequence. Notably, human YAP and 
TAZ possess one WW domain, while the mouse YAP variant contains 
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two, and TAZ maintains a single domain. Unique to YAP are an 
SH3-binding motif and a proline-rich region, elements not found in TAZ 
(9). Despite their structural similarities, the distinct features of YAP and 
TAZ contribute to their functional diversity. Both proteins interact with 
transcription factors through their WW domain, influencing the activity 
of various regulatory proteins such as RUNX2, c-Jun, and P73α, among 
others [9,10].

Moreover, YAP/TAZ are phosphorylated to be retained in the cyto-
plasm and to prevent them from entering the nucleus [11,12]. However, 
phosphorylated YAP/TAZ also engage in multiple signaling pathways 
including the Hippo [13,14], Wnt [15], and NF-κB pathways [16,17], 
which are crucial for processes like proliferation [18,19], apoptosis [20,
21], stem cell renewal [22,23], differentiation [24], and response to 
mechanical stress.

YAP/TAZ’s unique structures and active roles enable their interac-
tion with multiple signaling pathways. Within the Hippo pathway, 
activation leads to the phosphorylation of YAP/TAZ by MST1/2 and 
LATS1/2, resulting in their retention in the cytoplasm. When deacti-
vated, YAP/TAZ migrate into the nucleus and interact with TEAD 
transcription factors to execute their biological roles [25]. They also 
participate in canonical [26,27] and alternative [28] Wnt signaling 
influential in osteogenesis and play roles in NF-κB signaling relevant to 
osteoporosis [16] and osteoarthritis [17]. Additionally, they engage 
with MAPK signaling, and are vital in pathways driven by growth factors 
like TGFβ [29], BMPs [30], and EGFR [31], integrating signals from 
metabolic regulators, hormones, and various G-protein-coupled re-
ceptors (GPCRs) [32–34].

A critical aspect of YAP/TAZ function lies in their capacity to sense 
and respond to biomechanical signals, integrating these cues into 
cellular signaling networks. This process, known as mechano-
transduction [35,36], involves the translation of external mechanical 
stimuli into intracellular biological responses. Specific pathways trans-
mit mechanical signals to YAP/TAZ, which then modulate these cues 
into downstream signaling cascades. This modulation influences cellular 
activities, including proliferation, differentiation, and apoptosis. 
Consequently, YAP/TAZ-mediated signaling pathways play a vital role 
in coordinating cellular behavior with the mechanical context of the 
environment, impacting both pathological and physiological states in 
vivo.

In addition, as target cells of Wolff’s law and the bone homeostasis 
theory, bone cells sense various mechanical cues and respond to bio-
logical signals depending on YAP/TAZ. Crucially, the dysregulation of 
YAP/TAZ is implicated in a variety of bone diseases, including devel-
opmental abnormalities [37], osteoporosis [16,38], and arthritis [39]. 
Through their intricate regulation of cellular activity [40] and response 
to environmental cues [41,42], YAP/TAZ represent key players in the 
dynamic interplay of cell signaling pathways, offering promising targets 
for therapeutic interventions in bone-related disorders and beyond.

Therefore, the purpose of this review is to comprehensively sum-
marize the key role of YAP/TAZ as core elements in the transduction of 
mechanical stimuli into biological signals, with a particular focus on 
their role in bone cell mechanosensing, mechanotransduction, and 
mechanoresponse.

2. YAP/TAZ in Hippo and other signaling

2.1. YAP/TAZ in Hippo signaling

YAP and TAZ are central to the Hippo signaling pathway, initially 
detailed in Drosophila in 2003 [43,44]. This pathway’s core consists of 
MST1/2 and LATS1/2 kinases and its key effectors, YAP/TAZ [45]. 
Activation of Hippo leads to the phosphorylation of YAP/TAZ by 
LATS1/2, prompted by MST1/2 with MOB1’s help, resulting in YAP/-
TAZ’s cytoplasmic retention and degradation [46–48]. MAP4K4 also 
acts upstream, facilitating LATS1/2 phosphorylation [49,50]. When the 
Hippo pathway is deactivated, YAP/TAZ migrate into the nucleus to 

regulate transcription [51,52]. Interestingly, MST1/2 can influence 
bone cells like osteoblasts and osteoclasts independently of YAP/TAZ, 
contributing to bone homeostasis [53,54]. The study of the Hippo 
signaling pathway through high-pressure models provides strong evi-
dence to support this [55].The effect of LATS1/2 on bone tissues remains 
unreported, yet YAP/TAZ are known to manage bone health outside the 
Hippo pathway’s influence.

2.2. YAP/TAZ in non-Hippo signaling

Beyond the Hippo pathway, YAP and TAZ are crucial in various non- 
Hippo signaling pathways, especially those involving growth factors 
critical for skeletal regulation. Growth factors activate YAP/TAZ, 
influencing bone cell fate and skeletal health.

TGFβ1 enhances TAZ and Smad to promote bone remodeling [56]. 
BMP-2 promotes osteogenic differentiation through the 
Smad1/5/8-YAP/TAZ complex [57]. VEGF and BMP2 activate TAZ 
together to enhance bone regeneration [58], IGF1 increases TAZ to 
promote osteogenic differentiation of mesenchymal stem cells [59], 
while FGF-2 does the opposite, inhibiting mineralization and reducing 
TAZ [60]. TNFα decreases TAZ [56], and regulates the NF-κB pathway 
through YAP, affecting the expression of IL-6, RANKL, and osteoprote-
gerin [61]. Endocrine factors like glucocorticoids upregulate TAZ, pro-
moting osteoblastogenesis over adipogenesis [62,63]. LPA and S1P, 
through GPCRs, suppress LATS1/2, activating YAP/TAZ [64]. ESR1, or 
estrogen receptor alpha (ERα), is crucial in modulating YAP/TAZ ac-
tivity by preventing YAP’s nuclear entry. Downregulation of ERα′s 
c-terminal activation function (AF) domain-2 enhances YAP expression 
[65]. However, ERα retains YAP/TAZ in the cytoplasm, leading to 
degradation via LATS1/2 or MST1/2 kinases [66–68]. The soluble bio-
logical signals that can regulate YAP/TAZ expression are summarized in 
Fig. 1.

3. Role of YAP/TAZ in mechano-sensing

Bone cells navigate a complex landscape of mechanical signals from 
various sources, including neighboring cells, tissue fluids, and the 
extracellular matrix (ECM). These signals, encompassing ECM protein 
composition, stiffness, viscoelasticity, substrate topology, and fluid 
shear [69], are crucial for the regulation of bone cell behavior. Ac-
cording to Wolff’s law and the bone homeostasis theory, bone cells 
possess the innate ability to detect and respond to these mechanical 

Fig. 1. Role of YAP/TAZ in soluble biological signals in bone. The localization 
of YAP/TAZ is influenced by various soluble signaling factors. For example, 
molecules such as FGF-2, RANK, ERα, VEGF, and S1P/LPA can regulate the fate 
of YAP/TAZ through direct action or the classical Hippo signaling pathway, 
causing it to remain in the cytoplasm or be degraded by the proteasome. 
Conversely, upstream signals from BMP-2, IGF-1, TGF-β, GC, and DEX drive 
YAP/TAZ to the nucleus, where they interact with the TEAD and Smad pro-
tein families.
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stimuli, although the precise molecular mechanisms remain partially 
understood. Recent evidence supports a unified model where YAP/TAZ 
serve as central mediators in translating mechanical cues into cellular 
responses, affirming their indispensable role in mechanosensing and 
subsequent cellular adaptation [70,71]. These mechanical signals are 
summarized as mechanosensing in Fig. 2.

3.1. Surface topography

Surface topography plays a pivotal role in modulating the behavior 
of bone cells. Research demonstrates that the microenvironment, 
particularly the surface roughness, significantly influences human 
mesenchymal stem cells (MSCs) and their osteogenic potential. For 
instance, MSCs grown on hydroxyapatite discs with specific surface 
roughness exhibit enhanced osteogenic differentiation. This process is 
closely tied to the organization of F-actin fibers and correlates with the 
expression levels of YAP/TAZ, suggesting a direct link between cellular 
structure and gene expression [72].

Moreover, the architecture of the substrate surface, such as those 
found on silk fibroin substrates with high β-sheet content, can lead to 
increased cell spreading, more organized cytoskeletal structures, and 
larger focal adhesion areas. These physical cues are not just passively 
experienced by cells but actively transduce signals that result in the 
nuclear translocation and activation of YAP/TAZ along with RUNX2, a 
key transcription factor in bone development [73].

Additionally, advanced manufacturing techniques like lithography 
or electrospinning that create specific topographical features can direct 
the orientation of MSCs and their differentiation into chondrocytes, 
further underscoring the mechanosensitive nature of these cells [74]. 
Interestingly, while certain topographical cues such as oriented grooves 
and specific ranges of topography are shown to promote osteogenic 
differentiation, they do not universally affect YAP/TAZ expression, 
indicating a complex interaction between physical stimuli and cellular 
response mechanisms [75].

This nuanced understanding highlights the significance of surface 
topography in guiding stem cell fate and emphasizes the critical role of 
YAP/TAZ as mediators of mechanotransduction in bone cells.

3.2. Stiffness

Tissue stiffness is a critical factor in maintaining homeostasis, with 
its disruption leading to conditions like osteoarthritis [76] and osteo-
porosis [77] In vitro studies reveal that the stiffness of the culture matrix 

significantly affects cell fate decisions.
In matrices with high stiffness (15–40 kPa), YAP/TAZ predominantly 

localizes in the nucleus, facilitating osteogenic differentiation. 
Conversely, on softer matrices (0.7–1 kPa), YAP/TAZ shifts to the 
cytoplasm, altering cell morphology to a smaller and rounder shape. 
This dynamic suggests that ECM stiffness modulates YAP/TAZ activity 
[35], thereby influencing cell fate independently of the Hippo pathway.

Enhancing the stiffness of scaffolds [78], such as mineralized 
collagen glycosaminoglycan (MC-GAG) scaffolds, leads to increased 
osteogenic differentiation in a YAP/TAZ-dependent manner [79]. 
Similarly, guided bone regeneration techniques that increase membrane 
stiffness also promote bone formation through YAP/TAZ activation 
[80].

The degradability of matrix materials, alongside stiffness, plays a 
vital role in mesenchymal stem cell (MSC) behavior. MSCs show 
enhanced spreading and nuclear YAP/TAZ localization on stiffer, non- 
degradable hydrogels. This effect is inverted in degradable matrices, 
indicating that both stiffness and degradability dictate YAP/TAZ local-
ization and, consequently, cell differentiation pathways [80].

MSCs exhibit varied responses to matrix stiffness based on cell vol-
ume. In different stiffness conditions, appropriate cell volume allows for 
the formation of stress fibers and focal adhesions, crucial for YAP/TAZ 
nuclear localization and osteogenic differentiation. This observation 
underscores the complexity of the mechanotransduction process, 
involving multiple factors like cell size, matrix stiffness, and material 
properties.

Recent models have further elucidated the relationship between 
matrix stiffness, cell behavior, and YAP/TAZ dynamics, introducing 
concepts like "memory stiffness" in MSCs. These models predict how 
changes in substrate stiffness over time can influence MSC fate, offering 
insights into the mechanobiological regulation of bone cell differentia-
tion [81].

In summary, the stiffness of the cellular environment plays a crucial 
role in dictating cell fate through the modulation of YAP/TAZ locali-
zation. This relationship between mechanical cues and cellular re-
sponses is pivotal for understanding and manipulating bone tissue 
engineering and regeneration strategies.

3.3. Adhesion area/micro-patterning

The manipulation of adhesion areas and micro-patterning signifi-
cantly influences bone cell functions, particularly impacting mesen-
chymal stem cell (MSC) commitment. A constrained adhesion area 
reduces cell spreading and alters the cytoskeletal configuration, leading 
to a state characterized by denser cortical actin and fewer stress fibers. 
This environmental cue directly regulates the subcellular localization 
and activity of YAP/TAZ, with expanded cells showing enhanced nu-
clear YAP/TAZ presence and transcriptional activity, while restricted 
ones exhibit cytoplasmic localization of these factors [70]. 
Micro-patterned fibronectin islands demonstrate that the adhesive area 
available to MSCs dictates their spreading behavior [35,82]and, under 
3D culture conditions, the YAP/TAZ activity of C-MSC is reduced, which 
promotes the differentiation of cells into fat and cartilage [83]. Conse-
quently, YAP/TAZ localization—ranging from nuclear in well-spread 
cells to cytoplasmic in more confined ones [84]. Furthermore, 
designing isotropic micropatterns has allowed for precise control over 
cell adhesion and spreading, highlighting the adhesion area’s dominant 
role over spreading in influencing YAP/TAZ nuclear localization and 
osteogenic differentiation.

3.4. Micro/nano pillars

The structure and organization of micro- and nano-pillars signifi-
cantly affect MSC spreading and differentiation [85]. MSCs navigating 
between fibronectin-coated micropillars display preferential nuclear 
localization of YAP/TAZ, which correlates with enhanced osteogenic 

Fig. 2. Role of YAP/TAZ in mechanosensing. When cells are subjected to me-
chanical stimulation, YAP/TAZ senses this change and translocates to the nu-
cleus to regulate the expression of target genes. Such mechanical stimulations 
include various factors, such as the surface of the topography, stiff matrix, 
adhersive area, micro/nano pillars, stretch force, shear stress and vibration.

X. Chen et al.                                                                                                                                                                                                                                    Journal of Orthopaedic Translation 51 (2025) 13–23 

15 



differentiation [35]. Specifically, micropillars designed with particular 
dimensions encourage MSCs to adopt osteogenic pathways, further 
evidenced by increased YAP nuclear localization and RUNX2 expression 
[86]. In addition, the elastic modulus of the surface of micro nano col-
umns can affect the mechanical response of cells, promote the nuclear 
localization of YAP/TAZ, and thus promote the differentiation of MSCs 
into osteoblasts [87].

3.5. Stretch

Applying stretch forces to cells results in cytoskeletal deformation, 
significantly affecting YAP/TAZ localization and activity [88]. Experi-
ments with dynamic stretching, applying a 3 % strain at a frequency of 1 
Hz, have shown to transfer cytoskeletal strain to the nucleus, prompting 
YAP/TAZ nuclear localization in MSCs [89,90]. This mechanical cue 
enhances osteogenic differentiation, as evidenced by experiments with 
human periodontal ligament cells and MSCs subjected to cyclic 
stretching [90]. Such mechanical stimuli not only inhibit MSC prolif-
eration but also bolster osteoblastic differentiation through mechanisms 
involving the YAP/BMP2 axis [91]. Inflammatory macrophages, when 
exposed to cyclic stretching, promote MSC osteogenesis by activating 
YAP, demonstrating the synergy between mechanical forces and cellular 
signaling in bone cell differentiation.

3.6. Shear stress

Shear stress, a prevalent mechanical force in vivo, influences bone 
cell behavior and fate, including osteogenic differentiation and chon-
drocyte activity [92,93]. YAP/TAZ, acting as mechanical sensors, 
respond to shear stress, modifying their activity and localization within 
the cell [94]. Fluid flow shear stress (FFSS) and substrate stiffness have 
been identified as promoters of osteogenic activity in osteosarcoma cells 
via YAP activation [95]. Moreover, low-intensity shear stress, as 
generated in microfluidic systems, activates TAZ, enhancing MSC oste-
ogenic differentiation [96]. The application of oscillatory fluid shear 
stress (FSS) has been shown to increase osteogenic differentiation in 
bone marrow stem cells (BMSCs) by upregulating YAP levels [80]. 
Interestingly, the absence of the mechanosensitive ion channels 
Piezo1/2 diminishes the osteogenic response to FSS, highlighting the 
integral role of mechanical signaling pathways in bone cell physiology 
[97].

3.7. Vibration

Exposure to low-magnitude, high-frequency vibrations, especially in 
the presence of estrogen, has been shown to suppress YAP/TAZ 
expression in vitro. These specific vibration conditions (≤1 g magnitude 
and ≥30 Hz frequency) lead to the dephosphorylation of YAP, which 
correlates with a reduction in osteocyte apoptosis [98]. Additionally, 
such low-intensity vibrations have been observed to mitigate the effects 
of microgravity on MSCs, particularly the nuclear shuttling of YAP, 
suggesting a potential therapeutic avenue for maintaining bone health in 
environments characterized by reduced mechanical loading [99].

4. Role of YAP/TAZ in mechano-transduction (upstream 
mechanical signals)

This section delves into the mechanisms through which extracellular 
mechanical signals are relayed to the cell interior, affecting YAP/TAZ 
activity and localization, which is summarized in Fig. 3. In previous 
reviews, we mentioned that RASSF2, MST2, and Ajuba, as well as 
LATS1/2, can influence downstream YAP/TAZ [100]. However, after 
reviewing the literature, we found no evidence that these factors 
modulate YAP/TAZ to affect osteocytes under mechanical stimulation. 
Therefore, we focus only on the regulatory role of LATS1/2.

4.1. Stiffness/N-cadherin(HAVDI l)-YAP/TAZ

N-cadherin serves as a critical link between the extracellular matrix 
and the cytoskeleton, playing a pivotal role in cartilage and bone 
development [99]. Under mechanical tension, N-cadherin interacts with 
actin filaments, facilitating the transduction of mechanical signals 
[101]. In environments where matrix stiffness is moderate (10–15 kPa), 
the exposure of N-cadherin’s HAVDI adhesion motif leads to alterations 
in cytoskeletal tension and Rho signaling [102], culminating in 
increased YAP/TAZ phosphorylation and reduced nuclear presence of 
RUNX2. Further observations reveal that MSCs cultured on substrates 
that mimic this stiffness experience a decrease in Rac1 activity, myosin 
IIA expression, and focal adhesion formation, alongside a significant 
reduction in cell proliferation [103].

4.2. Stiffness-αSMA-YAP/TAZ

Alpha-smooth muscle actin (α-SMA) plays a crucial role in cellular 
response to mechanical stress, interacting closely with actin to modulate 
cell contractility [104]. This interaction significantly influences the ac-
tivity and localization of the mechanosensitive factors YAP/TAZ. In 
environments with low matrix stiffness (3 kPa), α-SMA is notably absent 
from stress fibers, leading to increased YAP phosphorylation and its 
cytoplasmic retention, thereby reducing MSC contractility. Conversely, 
the presence of α-SMA within stress fibers on stiffer matrices enhances 
YAP/TAZ nuclear localization and promotes the formation of mineral-
ized nodules, indicating a direct link between cytoskeletal dynamics, 
α-SMA expression, and osteogenic activity mediated by YAP/TAZ [105].

4.3. Stiffness/energy-AMPK-YAP/TAZ

AMP-activated protein kinase (AMPK) is a key regulator of cellular 
energy balance, responding to changes in mechanical forces such as 
shear stress [106]. Activation of AMPK leads to an increase in ATP 
production and actin polymerization, which in turn enhances stress fiber 
formation and stretches the cytoskeleton [107]. This mechanical feed-
back results in the nuclear translocation of YAP from the cytoplasm, 
indicating a mechanism where cellular energy status and mechanical 
cues converge to regulate YAP/TAZ localization and activity. Studies 
have shown that hMSCs cultured on stiffer substrates exhibit increased 
glucose uptake, mitochondrial activity, and YAP/TAZ nuclear presence, 
promoting osteogenic differentiation [108]. Conversely, inhibiting 
AMPK activity results in decreased stress fiber formation and reduced 
nuclear presence of YAP/TAZ, highlighting the critical role of AMPK in 

Fig. 3. Role of YAP/TAZ in mechanotransduction. This illustration shows how 
mechanical signals from outside the cell are converted into intracellular re-
sponses, affecting both the activity and positioning of YAP/TAZ. It reveals that 
stimulation through HAVDI and SWI/SNF suppresses YAP/TAZ activity, 
causing it to remain in the cytoplasm. In contrast, mechanical stimuli involving 
PLC-γ, PIEZO1, GPCR, integrin, AMPK, and α-SMA promote the movement of 
YAP/TAZ into the nucleus.
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mediating the effects of mechanical stiffness on YAP/TAZ signaling and 
osteogenesis.

4.4. Integrin-FAK-F-actin-RhoA-Rock-YAP/TAZ

The cell’s extracellular environment significantly influences fate 
decisions by transforming mechanical stimuli into biochemical signals 
via cell–cell adhesion mechanisms [109]. The process begins with 
increased substrate stiffness, prompting integrins to cluster and activate 
focal adhesion kinase (FAK) [110,111]. This activation leads to the 
reorganization of the actin cytoskeleton (F-actin), which is further 
modulated by the Rho/ROCK pathway [111]. RhoA, upon activation by 
GTP binding, enhances mechanical force transmission to the cytoskel-
eton, while ROCK phosphorylation facilitates the remodeling of skeletal 
proteins. This cascade not only mediates mechanical signal transduction 
but also propels YAP/TAZ into the nucleus, thereby boosting the oste-
ogenic differentiation potential of mesenchymal stem cells (MSCs) [35,
112]. This sequence of events underscores the critical role of the 
integrin-FAK-F-actin-RhoA-ROCK pathway in modulating MSC fate 
through mechanical cues.

4.5. PLC-PIP2-PA-PDZGEF1/2-RAP2-RhoA-MST1/2/M4K4/6/7- 
LATS1/2-YAP/TAZ

Phospholipase Cγ (PLCγ) plays a pivotal role in cytoskeletal remod-
eling, facilitated by its interaction with phosphatidylinositol 4,5- 
bisphosphate (PIP2) and phosphatidic acid (PA) [33]. Under condi-
tions of low matrix stiffness (1 kPa), PLCγ activates the RAP2 GTPase 
through a cascade involving PIP2, PA, PDZGEF1, and PDZGEF2. This 
activation triggers MAP4K4/6/7 and Arhgap29, leading to a decrease in 
cytoskeletal tension and a reduction in YAP/TAZ activity. Interestingly, 
eliminating LATS1/2 or MST1/2 alongside MAP4Ks nullifies RAP2’s 
influence on YAP/TAZ, indicating a complex regulatory network. This 
discovery highlights how YAP/TAZ are integral to the 
mechano-transduction processes initiated by PLCγ and its downstream 
effectors, affecting cell behavior in response to varying mechanical en-
vironments [32].

4.6. PIEZO1-YAP/TAZ

PIEZO1, a cation channel sensitive to mechanical changes in the 
extracellular environment, is vital for maintaining bone homeostasis. It 
functions by sensing and relaying mechanical signals through its distinct 
trimer helix structure [113]. The absence of PIEZO1, as seen in knockout 
mice, leads to reduced bone mineral density and impaired healing of 
fracture calluses, underlining its critical role in bone strength and repair 
[114]. Additionally, silencing PIEZO1 in MLO-Y4 cells decreases the 
expression of the YAP/TAZ target gene CYR61, alongside a blockade of 
calcium influx, highlighting the interplay between PIEZO1 activity, 
calcium signaling, and YAP/TAZ-mediated gene expression [115]. 
Conversely, activating PIEZO1 enhances YAP’s nuclear localization and 
osteogenic differentiation, mediated through the activation of RUNX2, 
indicating PIEZO1’s potential as a therapeutic target for bone regener-
ation strategies [116].

4.7. SWI/SNF-YAP/TAZ

The SWI/SNF complex, a significant player in chromatin remodeling, 
acts as a canonical mechanotransductor. ARID1A, a component of this 
complex, serves as a mechanical switch [117,118]. In conditions of low 
mechanical stress or disrupted mechanical signaling, ARID1A-bound 
SWI/SNF directly interacts with YAP/TAZ, preventing their associa-
tion with TEAD transcription factors and leading to their cytoplasmic 
retention. In contrast, under high mechanical force, SWI/SNF dissociates 
from YAP/TAZ, facilitating their nuclear translocation and subsequent 
transcriptional regulatory functions [119]. This mechanism 

demonstrates the SWI/SNF complex’s pivotal role in modulating 
YAP/TAZ activity in response to mechanical cues.

4.8. GCPR- YAP/TAZ

G protein-coupled receptors (GPCRs) modulate YAP/TAZ activity in 
a G protein-specific manner. The activation of YAP/TAZ is primarily 
mediated through Gα12/13 proteins, triggered by external signals like 
lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P). This 
activation pathway facilitates the closure of the Hippo signaling cascade 
and promotes the nuclear localization of YAP/TAZ, enhancing their 
transcriptional output [32]. Conversely, the Gαs subunit acts to inhibit 
YAP/TAZ activity; signaling molecules such as glucagon and adrenaline 
activate Gαs, leading to YAP/TAZ cytoplasmic sequestration and 
degradation [120]. This intricate regulation by GPCRs illustrates the 
diverse mechanisms through which YAP/TAZ activity can be finely 
tuned in response to various extracellular signals.

5. Role of YAP/TAZ in mechano-response (downstream 
biological signals)

After outlining how bone cells sense mechanical signals and their 
transmission to YAP/TAZ, we delve into how YAP/TAZ convert these 
signals into specific cellular responses. This process, pivotal for bone 
homeostasis and development, encompasses several downstream bio-
logical signals triggered by YAP/TAZ activity. The downstream biolog-
ical signals are summarized as mechanoresponses in Fig. 4.

5.1. YAP/TAZ-RUNX2

YAP/TAZ, upon nuclear entry, associate with RUNX2, a key tran-
scription factor in bone metabolism [23]. YAP’s nuclear localization is 
facilitated by its interaction with the PY motif of RUNX2 [121], whereas 
TAZ connects to RUNX2 via its WW domain [122]. This interaction can 
either stimulate or inhibit RUNX2’s transcriptional activity, depending 
on the context [123]. Mechanical stress leads to the nuclear trans-
location of the YAP/RUNX2 complex, enhancing osteogenic differenti-
ation and bone formation. Interestingly, YAP and TAZ can exhibit 
competitive dynamics in binding to RUNX2, with potential implications 
for osteocalcin expression and osteogenesis regulation [124]. TAZ’s 
direct interaction with RUNX2 particularly augments osteocalcin 

Fig. 4. Role of YAP/TAZ in mechanoresponse. This figure depicts how YAP/ 
TAZ regulates bone diseases by entering the nucleus and binding with specific 
target genes. These genes are associated with mesenchymal stem cells, osteo-
blasts, chondrocytes, osteocytes, and osteoclasts, influencing their proliferation 
and apoptosis. As a result, this regulation plays a crucial role in bone devel-
opment and conditions such as osteoporosis, osteoarthritis, bone tumors, 
and fractures.
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promoter activity, underscoring TAZ’s role in promoting bone formation 
under mechanical tension [125].

5.2. YAP/TAZ-SOX9

SOX9, crucial for cartilage formation, works alongside SOX5/6 to 
boost its function. The deletion of MOB1 leads to YAP overexpression 
and a corresponding decrease in SOX9, SOX5, and SOX6 levels, hinting 
at YAP’s role in modulating cartilage-related gene expression. Overex-
pressed YAP/TAZ in chondrocytes results in diminished SOX9 expres-
sion, suggesting that YAP/TAZ may directly influence cartilage 
morphology by binding to the SOX9 promoter [17,126]. This interaction 
underscores the complex regulatory network involving YAP/TAZ in 
cartilage development and disease processes such as achondroplasia.

5.3. YAP/TAZ-WNT/β-catenin

The relationship between the Wnt/β-catenin and YAP/TAZ signaling 
pathways plays a critical role in regulating cellular processes crucial for 
bone health. Research has shown that YAP/TAZ activation is contingent 
upon the status of the classical WNT/β-catenin pathway; YAP/TAZ 
become active when this pathway is engaged, but are sequestered in a 
destruction complex when the pathway is inactive [26,27]. These dy-
namic underscores the integral role of YAP/TAZ within the Wnt 
signaling framework, influencing osteoblast proliferation and differen-
tiation [127,128]. Moreover, YAP/TAZ activation by Wnt3a and 
Wnt5a/b through a non-classical signaling route emphasizes their 
versatility as downstream effectors in Wnt signaling, contributing to 
bone formation and angiogenesis, and affecting fracture healing pro-
cesses [28,129]. This evidence suggests that YAP/TAZ serve as pivotal 
nodes at the intersection of classical and non-classical Wnt signaling 
pathways, influencing bone physiology.

5.4. YAP/TAZ-NF-κB

YAP/TAZ are significantly involved in modulating the NF-κB 
signaling pathway, particularly within the context of chondrocyte 
regulation in osteoarthritis and osteoclast activity in osteoporosis. TAZ’s 
interaction with TAK1 serves as an inhibitory mechanism against the 
NF-κB pathway, reducing osteoclast differentiation and bone resorption. 
Conversely, the absence of TAZ activates the TAK1/NF-κB axis, exac-
erbating osteoporosis conditions [16]. In the realm of osteoarthritis, 
YAP’s ability to suppress NF-κB activity by modulating TAK1 and IKKs 
phosphorylation highlights its potential as a therapeutic target for 
mitigating cartilage degradation [17]. These observations delineate the 
critical roles of YAP/TAZ in skeletal disease pathology through their 
influence on NF-κB signaling, offering insights into potential strategies 
for disease management and treatment.

5.5. YAP/TAZ-AP1

The AP1 complex, composed of transcription factors c-Jun and c-Fos, 
plays a crucial role in osteoclast differentiation [130]. Although AP1 
does not directly bind to YAP/TAZ, it forms a functional complex with 
YAP/TAZ and TEAD, significantly enhancing the expression of YAP/TAZ 
target genes [94]. This interaction, particularly notable at active 
enhancer sites where c-Jun is present, underscores the regulatory in-
fluence of the YAP/TAZ/TEAD/AP1 complex on osteoclastogenesis and 
bone resorption [130,131]. The use of verteporfin to inhibit YAP activity 
also leads to a decrease in AP1 and RANKL activities, showcasing a 
therapeutic pathway to modulate bone resorption processes [94].

5.6. YAP/TAZ-CCN1/2

YAP/TAZ activities drive the expression of the CCN family of pro-
teins, including CCN1 and CCN2, which are pivotal in bone biology 

[132]. CCN1, known for its role in angiogenesis (Cyr61), is essential for 
bone formation, with its knockdown leading to diminished bone for-
mation in vivo [133,134]. Conversely, overexpressing CCN1 can sup-
press osteoclastogenesis [134]. CCN2, or connective tissue growth factor 
(CTGF), acts as an osteolytic factor and is prominently expressed in the 
context of bone invasion by breast cancer cells, leading to significant 
bone destruction [135]. The application of anti-CCN2 antibodies in such 
models has been shown to reduce osteoclast numbers and inhibit tumor 
progression, highlighting CCN2’s role in bone resorption [136,137]. 
Abnormalities in CCN1 and CCN2 expression implicate YAP/TAZ dys-
regulation in bone and cartilage disorders, including cartilage dysplasia, 
pointing to their critical roles in maintaining bone integrity and 
signaling pathways involved in bone diseases.

6. Role of YAP/TAZ in bone diseases

YAP/TAZ’s influence extends beyond cellular functions to impact 
various skeletal diseases. Their roles in bone diseases highlight the broad 
implications of their dysregulation, which summarized in this section 
and in Table 1.

6.1. Development deformities

In bone development, YAP and TAZ also play significant roles. 
Knocking out YAP and TAZ in mice leads to severe skeletal develop-
mental defects. When YAP and/or TAZ knocked in Osx-Cre mice, the 
mortality rate of newborn mice is extremely high, and surviving mice 
exhibit issues such as spinal curvature and cranial deformities [138]. 
Similarly, knocking out YAP and TAZ in Prx1-Cre or Osx-Cre mice, result 
in embryonic lethality [38]. Furthermore, knockout of TAZ in Col2-Cre 
mice results in growth retardation and incomplete skeletal development 
in newborn pups [139]. Double knockout of YAP/TAZ in Col2α1-cre+ve 

mice, embryo specimens exhibit skeletal deformities such as 
barrel-shaped chest, abnormal sternum, and nasal bone morphological 
abnormalities [140]. However, there are no relevant reports on the role 
of YAP and TAZ in clinical bone developmental disorders.

Table 1 
The role of YAP/TAZ in various bone diseases.

Bone diseases Specific knockout Phynotype References

Developmental 
deformities

YAPf/f; TAZf/f 

Osx-Cre
Skeletal deformity (138)

YAPf/f; TAZf/f 

Prx1-Cre
Embryonic death (38)

YAPf/f; TAZf/f 

Osx-Cre
Developmental 
abnormalities

(38)

TAZf/f Col2-Cre Skeletal dysplasia (139)
YAPf/f; TAZf/ 

Col2α1-Cre + ve
Skeletal deformity (140)

Osteoporosis YAPf/f; TAZf/ff 

Prx1-Cre
Increase in bone mass (38)

YAPf/f; TAZf/f 

Osx-Cre
Decrease in bone mass (38)

YAPf/f; TAZf/f 

Dmp1-Cre
Decrease in bone mass (38)

YAPf/f; TAZf/f 

Osx-Cre
Decrease bone 
resorption

(138)

TAZf/f Col2-Cre Decrease in bone mass (139)
TAZf/f RANK-Cre Decrease in bone mass (16)

Osteoarthritis YAPf/f Col2-Cre Inhibit osteoarthritis (39)
YAPf/f Col2-Cre Exacerbate 

osteoarthritis
(17)

Bone fracture YAPf/f; TAZf/f 

Osx-Cre
Spontaneous long bone 
fractures

(142)

YAPf/f; TAZf/f 

Osx-Cre
Inhibit fracture repair (138)

YAPf/f; TAZf/f 

Dmp1-Cre
Increase bone fragility (143)

TAZf/f Col2-Cre Delay fracture healing (139)
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6.2. Osteoporosis

The roles of YAP and TAZ have attracted significant attention in 
osteoporosis. Deletion of YAP/TAZ in Prx1-Cre mice during the MSCs 
stage increases bone mass. However, deletion of YAP/TAZ during the 
osteoblast and osteocyte stages with Osx-Cre and Dmp1-Cre mice, re-
sults in a decrease in bone mass [138]. In the Col2-Cre mouse model, 
conditional knockout of TAZ resulted in a decrease in bone mass [139]. 
Conditional knockout of TAZ in osteoclasts using RANK-Cre mice lead to 
osteoporosis [16]. Importantly, there is currently no reported in vivo 
data on the conditional knockout of YAP in osteoclasts. In addition, we 
found a decrease in TAZ expression in clinical osteoporosis bone tissues 
and osteoclasts, suggesting that TAZ may be a potential therapeutic 
target for osteoporosis and osteolytic diseases.

6.3. Osteoarthritis

YAP/TAZ play important and complex roles in the occurrence and 
treatment of osteoarthritis. Conditional knockout of YAP in chon-
drocytes with Col2-Cre exacerbated cartilage destruction in osteoar-
thritis [39]. Interestingly, YAPf/f Col2-cre mice were no significant 
cartilage damage when there was not undergone inflammatory stimu-
lation [17]. Moreover, there is evidence to suggest that upregulation of 
TAZ can inhibit inflammation and to some extent promote the repair of 
osteoarthritis [141]. Further research reveals that YAP/TAZ participates 
in the process of cell matrix hardening in synovial cells of osteoarthritis 
patients, forming a vicious cycle [137]. With the aggravation of the 
severity of osteoarthritis, the number of YAP positive chondrocytes 
gradually decreased in articular cartilage of human patients. Therefore, 
YAP/TAZ is expected to become a potential target for the future treat-
ment of osteoarthritis.

6.4. Bone fracture

YAP/TAZ are pivotal in the process of fracture healing. Conditional 
knockout of YAP/TAZ with Osx-Cre leads to impaired fracture healing 
[142] and spontaneous long bone fractures [138]. Additionally, condi-
tional knockout of YAP/TAZ in osteocytes with Dmp1-Cre reduces bone 
mechanical properties, which are crucial for bone repair [143]. How-
ever, another study indicated that overexpression of YAP in Col2-Cre 
mice inhibits osteogenesis within cartilage, potentially delaying frac-
ture repair [124]. In contrast, conditional knockout of TAZ in the same 
mouse model inhibits fracture healing [139]. It is worth mentioning that 
the role of YAP/TAZ in different types of cell mediated osteoporotic 
fracture healing has not been reported. These findings provide impor-
tant insights into understanding the molecular mechanisms of fracture 
healing and lay a foundation for further translating research results from 
animal models into clinical applications.

6.5. Osteosarcoma

In the progression of osteosarcoma, the nuclear localization of YAP/ 
TAZ plays a crucial role [144]. Deletion of Trp53 and Rb1 genes in mice 
leads to spontaneous osteosarcoma, which is closely related to the 

presence of YAP/TAZ in the nucleus. In addition, the disease progression 
caused by these gene defects can be delayed through VP intervention 
[145]. Overexpression of TAZ accelerates the development of osteosar-
coma [146]. Notably, using three-dimensional scaffolds with adjustable 
mechanical properties for osteosarcoma cell culture, revealing the cor-
relation between matrix hardness, cell growth, and YAP/TAZ nuclear 
translocation [147]. These findings are consistent with Rothzerg’s view, 
pointing to a new possibility of YAP/TAZ as a potential therapeutic 
target for osteosarcoma [144].

7. Effective regulation drugs of YAP/TAZ

Considering the significant role of YAP/TAZ in bone disease regu-
lation, we summarize the related drugs in Table 2. We also have a review 
that delves into the agonists and inhibitors of YAP/TAZ, while this re-
view focuses on drugs with specific effects on bone regulation. TM- 
25659 can directly activate TAZ to promote bone formation 
[148–150]. Verteporfin not only alleviates osteoarthritis by inhibiting 
YAP [39] but also significantly suppresses osteosarcoma growth in vitro 
[151]. CA3 shares similar effects [152]. Moreover, VGLL4 influences 
bone development [153], and XMU-MP-1 effectively alleviates osteo-
arthritis symptoms [154]. In osteoporosis models, XMU-MP-1 enhances 
TAZ in osteoclasts, reducing bone loss and slowing osteoporosis pro-
gression [155]. Similarly, Xu et al. demonstrated that (R)-PFI-2 activa-
tion of TAZ effectively inhibits osteoclastogenesis, preventing 
osteoporosis [156].

8. Summary and questions

YAP/TAZ are at the heart of biological signal mechanics, encom-
passing mechanosensing, mechanotransduction, and the subsequent 
cellular responses. They are adept at being activated by a plethora of 
extracellular mechanical stimuli through diverse signaling pathways 
and translating these into signals that dictate the behavior of bone cells.

In the realm of mechanosensing, YAP/TAZ exhibit sensitivity to a 
wide array of mechanical stimuli, including but not limited to vibration, 
fluid shear, tensile forces, surface morphology, matrix stiffness, cell 
adhesion, and the geometry of micro- or nano-structures. Mechano-
transduction processes see these mechanical signals relayed to YAP/TAZ 
through various pathways, such as HAVDI, α-SMA, AMPK, PIEZO1, 
SWI/SNF, and integrin-FAK-F-actin-RhoA-ROCK, among others. In the 
phase of mechanoresponse, YAP/TAZ act to convert these upstream 
mechanical cues into downstream biological signals, interacting with 
crucial biomolecules like RUNX2, SOX9, β-catenin, NF-κB, AP1, and 
CCN1/2, to modulate cellular activities.

Proper regulation of YAP/TAZ activity is essential for the mainte-
nance of physiological functions in bone-associated cells. Dysregulation, 
manifesting as either inactivation or hyperactivation, can disrupt this 
balance, potentially leading to bone diseases. The absence or malfunc-
tion of YAP/TAZ is linked to developmental anomalies, osteoporosis, 
exacerbated osteoarthritis, and compromised fracture healing, show-
casing their protective role in bone health.

Given their pivotal role in bone physiology and pathology, YAP/TAZ 
emerge as promising therapeutic targets for bone-related conditions. 
Strategies aimed at modulating YAP/TAZ activity could offer new ave-
nues for treating osteoporosis, osteoarthritis, and fractures. However, 
given the association of YAP/TAZ overexpression with tumorigenesis, 
their therapeutic manipulation requires precision to avoid unwanted 
oncogenic effects. The nuanced roles of YAP and TAZ in bone biology 
underscore the need for targeted approaches in leveraging their poten-
tial for bone disease therapies.

However, the role of YAP/TAZ in bone-related diseases is complex 
and not fully understood, and there are still many questions. In most 
bone cells and diseases, both have similar functions, but different roles 
have also been reported in almost every type of bone cell, especially 
YAP.

Table 2 
Effective regulatory drugs of YAP/TAZ.

Bone disease Target Compound References

Osteoporosis TAZ TM-25659 (148)
Osteosarcoma YAP CA3 (152)
Osteosarcoma YAP-TEAD Verteporfin (151)
Osteoarthritis YAP-TEAD Verteporfin (39)
Developmental deformities YAP-TEAD VGLL4 (153)
Osteoarthritis MST1/2 XMU-MP-1 (154)
Osteoporosis MST1/2 XMU-MP-1 (155)
Osteoporosis SETD7 (R)-PFI-2 (156)
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When YAP/TAZ have the same function, how do their contributions 
compare and is there any compensation between them? When their 
functions are opposite, who takes the dominant position? Further 
comparison of the phenotypes of YAP, TAZ, and YAP/TAZ knockouts is 
still of scientific significance in the field. Due to the more complex 
structure of YAP, does it mean that the unique structural domain of YAP 
is playing a role? Evaluating the phenotype after YAP mutation or spe-
cific domain deletion may be a strategy to solve this problem. Answering 
this question clearly may also bring a possible solution for targeting YAP 
or TAZ alone and avoiding the simultaneous regulation of YAP/TAZ.

As key molecules in mechanobiology signaling, YAP/TAZ have only 
been reported for their phenotypes after knockout. In the mechanical 
environment, does YAP/TAZ participate in the progression of bone 
diseases, such as osteoporosis, osteoarthritis, and fracture healing? 
Whether the opposing functions between YAP and TAZ are related to 
mechanical signals remains to be further studied? In mechanical envi-
ronments, such as tail suspension unloadinng or running loading stim-
ulation models, evaluating the impact of YAP or TAZ on bone-related 
diseases may unveil the role of YAP/TAZ-mediated mechano-
transduction in vivo, further solidifying the pivotal position of YAP/TAZ 
in the regulation of bone mechanics.

Furthermore, in MSCs, YAP/TAZ promotes osteogenic differentia-
tion, but knocking out YAP/TAZ in Prx1-Cre mice shows an increase in 
bone mass, showing opposite results in vivo and in vitro, which deserves 
further research.

TAZ inhibits osteoclasts to maintain bone mass, whereas YAP is re-
ported to be necessary for osteoclast differentiation in vitro, but its 
phenotype in vivo is not yet known, warranting further clarification of 
its role in diseases such as osteoporosis. It may once again prove that 
YAP and TAZ have different functions and regulatory mechanisms in the 
same cell.

Osteoporotic fracture is an extremely complex pathological state, 
which is not simply the sum of osteoporosis and fracture. In this case, the 
role of YAP/TAZ in osteoporotic fracture healing is still unknown. 
Further research on the role of YAP/TAZ in different modes of osteo-
porotic fracture healing is expected to fill this gap.

YAP/TAZ plays an important role in almost all kinds of bone cells, 
even bone tumor cells, suggesting that YAP/TAZ is a potential target for 
the treatment of bone diseases. However, how to accurately target YAP/ 
TAZ in bone cells is a difficult problem. Based on existing research 
findings, activating YAP/TAZ in osteoblasts, osteoclasts, and chon-
drocytes may be a potential and feasible strategy for treating osteopo-
rosis, fractures, and osteoarthritis. However, activating YAP/TAZ also 
has the risk of causing bone tumors. How to accurately control the 
amount of activation has become a key point and difficulty for future 
research. When inhibiting YAP/TAZ activity for the treatment of bone 
tumors, precisely targeting tumor cells and preventing off-target effects 
are also key points that require attention in future research.

Clinically, mechanical stimuli like exercise are crucial for main-
taining homeostasis in the skeletal system and treating diseases. 
Exercise-induced activation of YAP/TAZ holds potential for treating 
osteoporosis, osteoarthritis, fractures, and other ailments. However, in 
practical scenarios, factors such as old age, illnesses, or fractures can 
lead to decreased mobility, making exercise therapy challenging for 
treating these conditions. Fortunately, direct drug activation of YAP/ 
TAZ can circumvent these issues, bypassing mechanosensing and 
mechanotransduction, and directly engaging in mechanoresponse, 
thereby enabling precise regulation of the skeletal system and effective 
disease treatment.
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