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Abstract 
The outbreak of SARS-CoV-2 and deaths caused by it all over the world have imposed great concern on the scientific com-
munity to develop potential drugs to combat Coronavirus disease-19 (COVID-19). In this regard, lichen metabolites may 
offer a vast reservoir for the discovery of antiviral drug candidates. Therefore, to find novel compounds against COVID-19, 
we created a library of 412 lichen compounds and subjected to virtual screening against the SARS-CoV-2 Main protease 
(Mpro). All the ligands were virtually screened, and 27 compounds were found to have high affinity with Mpro. These 
compounds were assessed for drug-likeness analysis where two compounds were found to fit well for redocking studies. 
Molecular docking, drug-likeness, X-Score, and toxicity analysis resulting in two lichen compounds, Calycin and Rhizocarpic 
acid with Mpro-inhibiting activity. These compounds were finally subjected to molecular dynamics simulation to compare 
the dynamics behavior and stability of the Mpro after ligand binding. The binding energy was calculated by MM-PBSA 
method to determine the intermolecular protein–ligand interactions. Our results showed that two compounds; Calycin and 
Rhizocarpic acid had the binding free energy of − 42.42 kJ mol/1 and − 57.85 kJ mol/1 respectively as compared to reference 
X77 (− 91.78 kJ mol/1). We concluded that Calycin and Rhizocarpic acid show considerable structural and pharmacological 
properties and they can be used as hit compounds to develop potential antiviral agents against SARS-CoV-2. These lichen 
compounds may be a suitable candidate for further experimental analysis.

Electronic supplementary material  The online version of this 
article (https​://doi.org/10.1007/s1103​0-020-10118​-x) contains 
supplementary material, which is available to authorized users.
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Introduction

Recently, Novel Coronavirus (SARS-CoV-2) is spreading 
very rapidly all over the world and causing an ongoing out-
break of COVID-19, a serious and often fatal respiratory 
tract infection. COVID-19 has created an emergency in 
India and all around the world. The SARS-CoV-2, previ-
ously named as 2019 novel coronavirus (2019-nCoV), is a 
positive-sense, single-strand RNA coronavirus. According 
to the Worldometer’s report, about 81,285 people in China 
have been infected with coronavirus and 3287 deaths since 
its emergence in the city of Wuhan, Hubei province. After 
China, USA and Italy have been affected most from the coro-
navirus followed by Spain, Germany Iran, and France. The 
outbreak of coronavirus is increasing day by day. By now, 
more than 1,804,128 people have been diagnosed, and more 
than 112,223 deaths have been recorded worldwide from 
COVID-19, according to World Health Organization (WHO) 
figures till 13 April, 2020. The outbreak of corona is also 
affecting India and to date 13 April 2020, total 8447 total 
cases and 273 death reports from COVID-19.

Due to its disseminating rate and fatality, COVID-19 
is declared as a pandemic disease by WHO to coordinate 
scientific and medical efforts to rapidly develop a cure for 
patients. Currently, there is no appropriate vaccines and 

antiviral agents are available that can effectively prevent or 
treat the COVID-19 infection, and mortality is increasing 
day by day. This situation is putting the whole world under 
high pressure to develop novel vaccines or drugs against 
it. On the date, March 17, 2020, the USA reported starting 
vaccine trial against COVID-19 but it will take more than 
one year to come in markets. Therefore, effective treatment 
or control mechanism is needed to prevent Coronavirus [1]. 
Consequently, to develop new drugs against COVID-19, we 
have conducted computational screening of compounds from 
lichen species which may be a natural treasure for many 
types of pharmacologically active compounds against coro-
navirus. Many lichen species have been reported to have 
antiviral, antibacterial, and antifungal activity, etc. [2, 3]. 
Various scientific reports have suggested that lichen metabo-
lites may a valuable treasure for antiviral drug candidates 
[3–5]. Recently, in March 2020, a group of researchers at 
UBC screened 1.3 billion small molecules for potential 
inhibitors against the SARS-CoV-2 Main Protease by deep 
docking method [6]. Hence, we were curious whether lichen 
compounds can also prevent SARS-CoV-2 or not and carried 
out virtual screening to find out potential natural anti-SARS-
CoV-2 agents.

For the control of viral replication, inhibition of replica-
tion of viral genomic material is a good strategy for potential 
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antiviral drug discovery [7]. Given that SARS-CoV-2 is a 
(+) SS RNA virus, its main protease (Mpro) cut two repli-
case polyproteins, which is required to mediate viral repli-
cation and transcription, Mpro can be used as a molecular 
target for drug discovery. By inhibiting the Mpro protein, 
virus replication could be stopped. Therefore, we selected 
viral Mpro enzyme as a drug target to quickly identify novel 
inhibitors of SARS-CoV-2.

To achieve this aim, 412 lichen compounds were selected 
for molecular docking using AutoDock Vina, based on a 
literature search, to explore their binding modes with Mpro. 
Furthermore, all screened hits were subjected to a drug-
likeness investigation based on physiochemical properties 
using DruLiTo tool. The screened compounds having drug-
like property and high binding affinity with target protein 
were taken for rescoring using X-Score. Further, all screened 
hits were subjected to extensive toxicity analysis using the 
OSIRIS Property Explorer. Protein–ligand molecular inter-
action of compounds with remarkable inhibitory character-
istics against the selected target protein was viewed with 
PyMOL and LigPlus to gain structural insight into the bind-
ing interaction, including the types of bonding interaction 
and the amino acids involved in such interactions, compared 
to its standard inhibitor. Finally all screened compounds 
were subjected to Molecular Dynamics Simulation (MDS) 
and Molecular mechanic/Poisson–Boltzmann Surface Area 
(MM-PBSA) analysis to understand the stability as well as 
dynamics of the protein–ligand complexes. The schematic 
representation of the methodology is shown in Fig. 1.

Materials and methods

Construction of library

Text mining analysis by using DLAD4U, PubTator, and Car-
rot2 servers showed that several lichen spp. have antiviral 
properties. Hence to screen antiviral compounds against 
coronavirus, a library of 412 Lichen compounds was built 
in-house by collecting information from scientific literature 
[8] and Herbal Net Digital Repository database [http://herba​
lnet.healt​hrepo​sitor​y.org/]. The compounds with known 2D 
structures in PubChem [https​://pubch​em.ncbi.nlm.nih.gov] 
and ChemSpider databases [http://www.chems​pider​.com] 
were considered to create the library [9]. The library of 
lichen compounds is shown in Supplementary Table S1.

Receptors preparation

The COVID-19 main protease (Mpro) was selected as the 
target protein in this study. The X-ray crystal structure of 
COVID-19 Mpro covalently attached with their non-peptide 
inhibitor D3F (PDB ID- 6W63) was retrieved from the Pro-
tein Data Bank [http://www.rcsb.org/pdb/home/home.do]. 
The water molecules and ions were removed from the pro-
tein molecule using PyMOL software. After that, the addi-
tion of hydrogen atoms to the receptor molecule was carried 
out by using AutoDockTools (ADT). Thereafter, nonpolar 
hydrogens were merged,while polar hydrogen were added to 

Fig. 1   Schematic representa-
tion of various steps of the 
methodology

http://herbalnet.healthrepository.org/
http://herbalnet.healthrepository.org/
https://pubchem.ncbi.nlm.nih.gov
http://www.chemspider.com
http://www.rcsb.org/pdb/home/home.do
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the protein. Subsequently, the protein was saved into a dock-
able pdbqt format for molecular docking analysis (Fig. 2a).

Ligand preparation

The 3D structure of the reference molecule, X77 which was 
co-crystallized with Mpro was retrieved from the respec-
tive protein from Protein Data Bank. The 3D structure of 
each ligand (lichen compounds) was obtained from various 
online resources and compound databases, e.g., PubChem, 
ZINC, and CHEM SPIDER in MOL or SDF format. The 
compounds were converted to MOL2 chemical format using 
Open babel. Polar hydrogen charges were assigned and the 
nonpolar hydrogens were merged by using Autodock tools. 
Finally, the compounds were further converted to the dock-
able pdbqt format for molecular docking.

Molecular docking

To achieve the mode of interaction of Lichen compounds 
with the binding pocket of COVID-19 Mpro, molecular 
docking was performed by using AutoDock Vina software 
in PyRx platform (GUI version 0.8). Validation of docking 
protocol is done by performing the docking of the co-crystal-
lized ligand at the active site of the 3D structure of the same 
protein. Therefore, docking was performed with reference 
molecule X77, and the RMSD value between experimental 
and docked reference was calculated to validate the docking 
protocol. RMSD has often been used to measure the quality 
of reproduction of a known binding pose by a computational 
method similar to the crystallized protein–ligand complex. 
Lower the value of RMSD reflects higher the accuracy of 
docking and RMSD values less than 2.0 Angstrom are sig-
nificantly good to consider [10]. Using PyRx software, the 

Fig. 2   X-ray crystal structure of COVID-19 Mpro covalently linked 
to X77 (a), the superimposition of the docked X77 with its X-ray 
crystal structure. Blue and orange color indicates experimental and 
docked X77 respectively (b), and 2D interaction of experimental and 

docked X77 with Mpro (c). The green dotted lines and attached resi-
dues indicate H-bond and H-bonding residues, residues present in the 
half-circle represent the hydrophobic bond-forming residues and red 
circle shows the active site residues
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grid box centered for Mpro was X = − 23.30, Y = 12.84, and 
Z = − 29.66 and the dimensions of the grid box were set as 
66.93 × 37.59 × 31.68 Å. After validation of the docking 
protocol, virtual screening was conducted by rigid dock-
ing into the active site of protein. The binding modes were 
clustered through the root-mean-square deviation (RMSD) 
among the coordinates of the ligand atoms. The compounds 
were then ranked by their binding affinity scores. Thereafter, 
molecular interaction between Mpro and compounds with a 
binding affinity higher than that of the respective reference 
compound was viewed with PyMOL.

Drug‑likeness analysis

The pharmacological significance of any compound is based 
on its drug-likeness which is calculated based on certain 
physicochemical properties. Therefore, all ligands were eval-
uated for its drug-like nature by DruLiTo software. Lipin-
ski’s rule of five (RO5) which is considered as an empirical 
thumb rule was used to filter the compounds based on their 
drug-likeness property [11]. In addition to Lipinski RO5, 
PAINS filter was also used in drug-likeness analysis to filter 
the false positive from the screened hits by using PAINS 
remover [12].

Toxicity risk prediction

The compounds having drug-like property and good bind-
ing affinity with Mpro receptor were taken for the extensive 
toxicity analysis using the OSIRIS Property Explorer [13].

Rescoring of docking results

The best molecules from molecular docking, drug-likeness, 
and toxicity analysis were re-docked using the X-SCORE 
program [14]. X-Score is a scoring function to calculate the 
binding affinity of the ligand molecules toward their target 
protein. The same binding pocket was selected for docking 
studies that were used in virtual screening. Two different 
kinds of files required in X-Score is a receptor structure file 
(in PDB format) and a ligand structure file (in MOL2 for-
mat). Both the structure files were used as an input file to 
carry out X-score analysis. After that binding energy of the 
protein–ligand complex was calculated by using the X-score 
command. All default parameters of X-Score were used. 
The X-Score program uses three scoring functions, viz. HP 
Score, HM Score, and HS Score. The final X-Score = (HP 
Score + HM Score + HS Score).

Visualization

PyMOL was used to visualize the docked pose of screened 
compounds at the active site of the receptor. The 2D 

interactions of the protein–ligand complexes were performed 
by LigPlot + v.1.4.5 program to identify the interactions of 
an amino acid between protein and ligand. LigPlot depicted 
hydrophobic bonds, hydrogen bonds, and their bond lengths 
in each docked pose.

Molecular dynamic simulation

For predicting the stability of Mpro and Mpro-ligand com-
plex, molecular dynamics simulations (MDS) were per-
formed in a GROMACS 5.0 [15] package as per the protocol 
described by publication [9, 16]. The MD simulations were 
executed on a work station with configuration Ubuntu 16.04 
LTS 64-bit, 4 GB RAM, Intel®CoreTM i5-6400 CPU. Three 
systems (two Mpro-screened ligand complex and a Mpro-
reference ligand complex) were created and subjected for 
10 ns MD simulation studies. The topology file for ligand 
and protein was generated by using CGenFF server and 
‘pdb2gmx’ script, respectively, by using CHARMM 36 force 
field [17]. After that ligand topologies were rejoined to the 
processed protein structure for building the complex system. 
After that, a water solvated system was built by using the 
TIP3P water model with dodecahedral periodic boundary 
conditions. The solutes are centered in the simulation box 
with a minimum distance to the box edge of 10 Å (1.0 nm). 
After defining the box, all the systems were solvated using 
the TIP3P water model in a dodecahedral box and neutral-
ized by adding Na + counter-ions by using the ‘gmx genion’ 
script. Energy minimization of the complexes was done at 
10 kJ/mol with steepest descent Algorithm by using Verlet 
cut off-scheme taking Particle Mesh Edward (PME) Cou-
lombic interactions with a maximum of 50,000 steps. The 
equilibration of the system was obtained in two steps. In 
the first step, NVT equilibration was done in 300 K and 
5000 ps of steps, while in the second step, NPT equilibration 
taking Parrinello-Rahman (pressure coupling), 1 bar refer-
ence pressure, and 5000 ps of steps. At last, the production 
MD of the protein and protein–ligand complexes was run 
for 10 ns with a time step interval of 2 fs. After successful 
completion of MDS, the MD trajectories were then used to 
calculate root-mean-square deviation (RMSD), root-mean-
square fluctuation (RMSF), and radius of gyration (Rg) by 
using g_rms, g_rmsf, g_gyrate tools of GROMACS 5.0.7.

Binding free energy calculation using MM‑PBSA

The free energy calculation provides a quantitative estima-
tion of interactions between protein and ligand that help 
to understand the stability of that protein–ligand complex 
[18]. The binding free energy including the free solvation 
energy (polar and nonpolar solvation energies) and potential 
energy (electrostatic and Vander Waals interactions) of each 
protein–ligand complexes was calculated by the Molecular 
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Mechanics Poisson–Boltzmann Surface Area (MM-PBSA) 
method. The MD trajectories were processed before doing 
MM-PBSA calculations for last 1 ns. The MM-PBSA bind-
ing free energy calculation was done with ‘g_mmpbsa’ [18] 
script. The binding energy is calculated by using the follow-
ing equation:

where ΔG binding = the total binding energy of the com-
plex, G receptor = the binding energy of free receptor, G 
ligand = the binding energy of unbounded ligand.

Result and discussion

The molecular docking, virtual screening (VS), the assess-
ment of physicochemical properties, and bioavailability of 
lead compounds play a crucial role in searching of novel 
and potential lead molecules to the protein targets associ-
ated with human diseases [19, 20]. However, the feasibility 
of large-scale virtual screening mainly depends on deciding 
the accurate target, selection of suitable chemical compound 
datasets, and the critical assessment of pharmacokinetic pro-
files of lead molecules [21]. We employed virtual screening 
of compounds from lichen compounds library for the viral 
target Mpro involve in COVID-19. Molecular docking, drug-
likeness and toxicity prediction, X-score, MDS, and MM-
PBSA analysis of lead molecules showed two promising hits 
that can be evaluated as antiviral molecules to control the 
global health crisis of COVID-19 (Fig. 1).

Virtual screening

Before conducting the virtual screening, molecular docking 
protocol was validated by docking the reference ligand X77 
into a binding pocket obtained from the crystal structure of 
target protein Mpro. The docked ligand was superimposed 
to compare with an experimental ligand. Usually, RMSD 
value is used to validate the docking protocol. The RMSD 
value between the experimental and docked X77 was 0.84 
Angstrom, which is perfectly acceptable. The result revealed 
that the docked reference molecules, X77 (orange) was 
completely superimposed with that of co-crystallized X77 
(blue) (Fig. 2b) and both experimental as well as docked 
X77 showed interaction with the same amino acid residues 
by hydrogen and hydrophobic bonds as found in the crystal 
structure of Mpro (Fig. 2c). Our docking protocol produced 
a similar docking pose of X77 which was in the crystal 
structure of Mpro. Thus, this protocol was considered good 
enough for reproducing the docking results similar to X-ray 
crystal structure and therefore can be applied for further 
docking experiments.

ΔG binding = G complex − (G receptor + G ligand)

The virtual screening of all lichen compounds (n = 412) 
was performed by molecular docking in the active site of a 
target protein using AutoDock Vina. From molecular dock-
ing, a total of 27 compounds were screened which showed 
binding energy ranging from -13.8 to -8.3 kcal mol−1 against 
Mpro (Table 1). The binding energy of the reference mol-
ecule, X77 was − 8.2 kcal mol−1. All screened hits showed 
lower and significantly better binding energy against the 
target protein in comparison to the reference molecule. The 
molecular docking result suggests that screened compounds 
may have the same mechanism of action as the reference 
molecule. Then, all these 27 compounds and X77 were fur-
ther used for drug-likeness prediction.

Drug‑likeness analysis

It has been reported that drug molecules showing good 
binding affinity with the target protein may fail in a clinical 
trial at advanced stages of drug discovery due to lack of 
drug-likeness property [22]. Hence we analyzed the drug-
likeness of screened compounds using DruLiTo software. 
DruLiTo can calculate more than 23 physicochemical prop-
erties which are important for evaluating the drug-likeness 
of a molecule. Here, the drug-likeness was measured under 
the empirical thumb rule of drug-likeness i.e. Lipinski 
rule of 5. According to Lipinski’s RO5, that most “drug-
like” molecules have Log P ≤  5, molecular weight ≤500, 
number of hydrogen bond acceptors ≤10, and number of 
hydrogen bond donors ≤5. Among the 27 compounds, six 
compounds, viz. calycin, acetylportentol, russulfoen, thel-
ephoric acid, roccellin, and rhizocarpic acid, showed better 
pharmacokinetics and successfully passed in RO5 evalua-
tion. Pan assay interference compounds (PAINS) are chemi-
cal compounds that likely to interfere in screening tech-
nologies via several means but particularly through protein 
reactivity because they tend to react nonspecifically with 
numerous biological targets rather than specifically affecting 
one desired target. PAINS remover was used to remove the 
PAINS from screened hits and for their exclusion in bio-
assays [12]. Out of six compounds that follow RO5, two 
compounds, Thelephoric acid and Roccellin were filtered 
out and the remaining four compounds successfully passed 
the PAINS filter. The compounds which show better phar-
macokinetics and satisfy the fundamental RO5 and PAINS 
filter are accepted as drug-like molecules. As per the RO5 
and PAINS filter, the drug-likeness result of hit compounds 
is shown in Table 2.

Toxicity risk prediction

The US Food and drug administration toxicity risk pre-
dictor tool OSIRIS server used to predict the toxicity 
of screened compounds [23]. OSIRIS predicted various 
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toxicity risk properties such as tumorigenicity, mutagenic-
ity, irritation, and reproductive development toxicity. The 
results of toxicity prediction for all four hit compounds 
are summarized in Table 3. The drug-score show ranges 
between 0 and 1, where the value 1 indicates the good 
possibility of a compound to be drug molecule, whereas, 
the score value 0 indicates that compounds having no 

possibilities of drug candidates. The toxicity test shows 
that the reference molecule, X77 and two compounds, 
Calycin and Rhizocarpic acid have no risk of toxicity 
and remaining two compounds were toxic. Acetylporten-
tol showed a high risk of Irritant effect while Russulfoen 
showed a high risk of tumorigenicity, mutagenicity, irrita-
tion, and reproductive toxicity.

Table 1   Summary of molecular 
docking between Mro and 
screened hits

S. no. Name of common hit compound Compound ID Binding energy 
(kcal mol−1)

1 Reference (X77) 145998279 − 8.2
2 Calycin 54694371 − 8.4
3 Acetylportentol 101282317 − 9.8
4 Russulfoen 102484696 − 8.5
5 Thelephoric a 10360630 − 8.3
6 Retigeranic a A 12314899 − 8.4
7 Taraxerone 92785 − 8.3
8 Taraxerol 92097 − 8.3
9 1-0-p-D-Galactopyranosyl-D-ribitol 100963679 − 9.9
10 Zeorinone 21582895 − 8.4
11 Erythrommone 102534 − 13.8
12 Roccellin 23670762 − 8.3
13 Rhizocarpic a 54733074 − 8.7
14 Fumarprotocetraric a 5317419 − 8.3
15 Confumarprotocetraric a 101657448 − 8.3
16 Consuccinprotocetraric a 101657449 − 8.3
17 15a-Acetoxyhopan-22-01 14259795 − 8.3
18 Crustinic a 102318064 − 8.3
19 12a-Acetoxyfern-9(11)-en-3 ~ -ol 52987653 − 8.5
20 Lobodirin 101048642 − 8.4
21 Aphthosin 15595748 − 9.1
22 2,2′,7,7′-Tetrachlorohypericin CT1106774336 − 8.3
23 Skyrin 73071 − 8.9
24 Graciliformin 101384386 − 12.8
25 Rugulosin 62769 − 13.2
26 Oxyskyrin 9872365 − 9.6
27 Skyrinol 101419742 − 9.2
28 Flavoobscurin A 15559255 − 8.5

Table 2   The parameters showing different types of physiochemical properties of screened hits

S. no. Name of Compound Mw LogP HBA HBD Solubility (LogS) Lipinski rule 
violation

PAINS filter Drug-likeness alert

1 Reference (X77) 458.26 3.397 7 1 − 4.74 0 Passed filter Accepted
2 Calycin 306.05 2.561 5 1 − 3.19 0 Passed filter Accepted
3 Acetylportentol 352.19 2.072 6 0 − 3.22 0 Passed filter Accepted
4 Russulfoen 266.15 0.733 4 2 − 2.36 0 Passed filter Accepted
5 Thelephoric acid 352.02 1.235 8 4 − 3.73 0 Filtered out Accepted
6 Roccellin 378.07 1.714 6 2 − 4.1 0 Filtered out Accepted
7 Rhizocarpic acid 469.15 4.483 7 2 − 4.22 0 Passed filter Accepted
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Rescoring of docking results

X-Score is normally used to validate the binding energies 
of the protein–ligand complex obtained from docking. 
Thus, we used X-Score to re-score the binding energies 
of screened hits. The X-Score associated binding energy 
of the reference compound and screened hits against the 
target protein is compiled in Table 4. The X-Score results 
validated the molecular docking results as Rhizocarpic 
acid shows a better X-Score with Mpro than Calycin. Both 
the screened hits show the comparable value of X-Score 
as the reference molecule, X77.

Thus, considering the molecular docking, drug-like-
ness, and toxicity prediction results, we found Calycin 
and Rhizocarpic acid may be exploited as promising drug 
candidates for the development Glnt of antiviral drug 
molecules against COVID-19.

Visualization

PyMOL was used to visualize the 3D interactions of the 
protein–ligand complex. The docked poses of screened 
two compounds with Mpro is shown in Fig. 3a, b. Caly-
cin forms one hydrogen bonds having distance 2.8 Å with 
Glu166 (Fig. 3a), while another compound Rhizocarpic acid 
form five hydrogen bonds with Mpro, 3 H-bond with Glu166 
having distance 2.0 Å, 2.4 Å, and 2.8 Å, and one H-bond 
each with Gln189 and Glb192 with 2.3 Å and 2.5 Å bond 
distance respectively (Fig. 3b). The reference molecule, X77 
also found to interact with Glu166 of Mpro through hydro-
gen bond (Fig. 2c). According to protein–ligand interac-
tion, Calycin and Rhizocarpic acid bind with the active site 
residues Threonine and Glutamine (Glu166 and Gln189) of 
Mpro protein, and therefore, these two hit compounds may 
inhibit the Mpro of SARS-CoV-2.

Further, to get insights into the binding mechanism of 
the screened compounds in the active sites of the Mpro, 
we performed 2D interactions analysis of the docked com-
plexes by LigPlot + v.1.4.5 software as shown in Fig. 3c and 

Table 3   Toxicity profile of the 
screened hits by OSIRIS

S. no. Name of compound Mutagenic Tumorigenic Irritant Reproductive effect Drug score

1 Reference (X77) No risk No risk No risk No risk 0.31
2 Calycin No risk No risk No risk No risk 0.86
3 Acetylportentol No risk No risk Irritant No risk 0.33
4 Russulfoen High risk High risk High risk High risk 0.06
5 Rhizocarpic acid No risk No risk No risk No risk 0.31

Table 4   Summary of molecular docking and X-score between Mro and screened hits

S. no. Name of common 
hit compound

Structure Binding AFfinity with Mpro

AutoDock Vina
(kcal mol−1)

X-score

HPSCORE 
(-log(Kd))

HMSCORE 
(-log(Kd))

HSSCORE 
(-log(Kd))

AVER-
AGE_
SCORE
(-log(Kd))

BINDING_
ENERGY​
(kcal mol−1)

1 Reference (X77) − 8.3 6.7 7.55 7.02 7.09 − 9.67

2 Calycin − 8.4 6.13 6.34 6.17 6.21 − 8.47

3 Rhizocarpic acid − 8.7 6.76 6.37 6.91 6.68 − 9.11
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d. The reference molecule, X77, show interaction with sev-
eral residues via significant interactions, including hydro-
gen and hydrophobic interactions. It forms three hydrogen 
bonds with Gly143, His163, and Glu166 of 3.24 Å, 3.09 Å, 
and 2.75 Å, respectively, and 12 hydrophobic bonds with 
Thr25, His41, Phe140, Leu141, Asn142, Ser144, Cys145, 
His164, Met165, Asp187, Arg188, Gln189 and yields the 
binding energy − 8.3 kcal mol−1 by AutoDock Vina and 
− 9.67 by X-Score (Fig. 2c). Calycin formed a hydrogen 
bond with active site residues Glu166 of 3.16Å. In addition, 
Mpro-Calycin complex make hydrophobic interaction with 
His41, Met49, Phe140, Leu141, Asn142, Ser144, Cys145, 
His163, Met165, Asp187, Arg188, Gln189 and gives the 

binding energy − 8.4 kcal mol−1 by AutoDock Vina and 
8.47 by X-Score (Fig. 3c). Rhizocarpic acid shows a low-
energy complex with Mpro as indicated by Autodock Vina 
and X-Score, i.e., − 8.7 kcal·mol−1 and − 9.11 kcal·mol−1, 
respectively. It also formed interaction with active site resi-
dues. It formed three hydrogen bonds with Glu166, Gln189, 
Gln192 of 3.32 Å, 2.98 Å, 3.27 Å and also yielded hydro-
phobic interactions with His41, Met49, Phe140, Leu141, 
Asn142, Ser144, Cys145, His163, His164, Met165, Pro168, 
Asp187, Arg188, Thr190 of Mpro (Fig. 3d).

From the analysis of molecular interaction between pro-
tein–ligand complexes, we observed that most of the hit 
compounds show common interaction and are involved in 

Fig. 3   Docked poses of the top hit compounds (Orange stick), a caly-
cin and b rhizocarpic acid with Mpro. Mpro is in blue color cartoon 
representation. Active site residues are in black colored lines. Hydro-
gen bonds that are formed in between protein and compound are 
shown by Green lines and bond length as red dotted lines. 2D Interac-
tions of X77 and screened compounds Calycin (c) and Rhizocarpic 

acid (d) with the active site of Mpro. The ligand structure is repre-
sented as thick purple stick in the center and the binding site residues 
involved in the hydrophobic interaction are depicted with the red half-
circle, hydrogen bond showed by the green dotted line and the red cir-
cle shows the active site residues
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H-bond interaction and hydrophobic interaction with the 
same residue as shown in Table 5 which suggested the cru-
cial role of hydrogen and hydrophobic interactions to hold 
the ligand at the active site of the target protein.

Molecular dynamic simulation (MDS)

The MDS was performed for predicting the stability of the 
screened seven hits. Three systems (Mpro-X77 (reference), 
Mpro-Calycin, and Mpro-Rhizocarpic acid) were subjected 
to 10 ns MDS. The structural changes and dynamic behavior 
in complexes were analyzed by the various computational 
analyses like RMSD, RMSF, RG calculation, and values are 
shown in Table 6.

Root‑mean‑square deviation RMSD

To determine the conformational and structural stability of 
Mpro and Mpro-ligand complexes, the differences between 
the backbone atoms of native protein from initial confor-
mation to its final position was monitored through RMSD 
analysis. The deviations that occurred during the simulation 
describe the stability of conformation. Smaller deviations in 
protein reflect its more stable nature. RMSD score for the 
C-alpha backbone was calculated for 10 ns simulation. Fig-
ure 4a shows the plot of RMSD (nm) vs. time (ns) for native 
protein Mpro, reference complex Mpro-X77, Mpro-Calycin, 
and Mpro-Rhizocarpic acid complexes. From this figure, we 
can see that all the complexes are stable and produced sta-
ble trajectories for further analysis. The average value of 
RMSD for protein and all the complexes is shown in Table 6. 
The average RMSD values for protein were 0.14 ± 0.02 nm 
while for complexes; Mpro-X77, Mpro-Calycin, and Mpro-
Rhizocarpic acid were found to be 0.13 nm, 0.15 nm, and 
0.17 nm, respectively, with standard deviation 0.02. Both the 
studied complexes showed a similar RMSD value as refer-
ence complex Mpro-X77 which confirmed the stability of 
both the complexes.

Root‑mean‑square fluctuation (RMSF)

The RMSF was calculated for predicting the motions of the 
Mpro and Mpro-ligand complexes. The RMSF value can 
describe changes in the conformation of the protein due to 
binding with ligand during MDS. The rigid structures of 
protein like helix and sheets show low RMSF value, while 
loose structures containing region like sheets and turns show 
higher RMSF value. The RMSF plot of Mpro and all Mpro-
ligand complexes is shown in Fig. 4b. RMSF plot shows that 
the secondary conformations of Mpro remain stable during 
the simulation of 10 ns. The average RMSF values for Mpro 
protein, Mpro-X77, Mpro-Calycin, and Mpro-Rhizocarpic 
acid complexes were recorded as 0.07, 0.08, 0.08, and Ta
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0.09 nm, respectively, (Table 6). Both the complexes showed 
similar average RsMSF value as compared to the Mpro and 
Mpro-X77 reference complex and represented these are very 
stable complex and does not cause much fluctuation after 
binding. The RMSF results represented that both predicted 
complexes were stable, and hence, these predicted com-
pounds have the potential to inhibit the catalytic activity 
of Mpro.

Radius of gyration (RG)

The radius of gyration (Rg) shows the level of compactness 
in the structure of the protein due to presence or absence of 
ligands. The time evolution plot of Rg for Mpro protein and 
all Mpro-ligand complexes is shown in Fig. 4c. The average 

Rg value for Mpro protein, Mpro-X77, Mpro-Calycin, and 
Mpro-Rhizocarpic acid were found to be 1.84 nm, 1.88 nm, 
1.75 nm, and 1.84 nm respectively (Table 6). The Mpro-
Calycin complex showed much less Rg value as compared 
to the Mpro protein and other complexes, suggesting that it 
forms a more compact and stable complex as compared to 
other systems, though another hit showed relatively good 
Rg value similar to reference complex. From Table 6, it is 
visible that both the systems exhibited relatively similar 
and consistent Rg values of the reference which indicates 
that these are perfectively superimposed with each other, 
and they exhibit similar compactness and stability as refer-
ence. This showed that all complexes achieved relatively 
stable folded conformation during the 10 ns trajectory of 
MD simulation at the constant temperature of 300 K and the 

Table 6   The average value of 
RMSD, RMSF, and RG of the 
top predicted hit Protein–ligand 
Complexes

S. no. Name of Protein–ligand Complex RMSD RMSF RG

1 Mpro 0.14 ± 0.02 0.07 ± 0.03 1.84 ± 0.10
2 Mpro-X77 (Reference) 0.13 ± 0.02 0.08 ± 0.03 1.88 ± 0.15
3 Mpro-Calycin 0.15 ± 0.02 0.08 ± 0.03 1.75 ± 0.14
4 Mpro-Rhizocarpic acid 0.17 ± 0.02 0.09 ± 0.04 1.84 ± 0.14

Fig. 4   MD simulation studies. a RMSD, b RMSF, and c Radius of gyration as a function of time. In all systems, the color code indicate- Mpro 
protein (black), Mpro-X77 (red), Mpro-Calycin (green), and Mpro-Rhizocarpic acid (blue)
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constant pressure of 1 atm. Overall, it can be concluded that 
the complexation of protein with hit compounds increases 
the compactness/rigidity of the Mpro structure, leading to 
increased overall stability.

Binding free energy calculation using MM‑PBSA

The free energy analysis using MM-PBSA is applied to vali-
date the docking energy of the protein–ligand complex. It 
was carried out using a python script MmPbSaStat.py pro-
vided in the g_mmpbsa package. The calculations of binding 
free energies were performed using the 1 ns of MD trajec-
tories. The results of MM-PBSA are represented in Table 7. 
The Mpro-X77, Mpro-Calycin, and Mpro-Rhizocarpic acid 
complexes showed, − 91.78 kJ mol/1, − 42.42 kJ mol/1, 
and − 57.85 kJ mol/1 binding free energies, respectively. 
The binding free energy analysis showed that both Mpro-
ligand complex(s) were stable. It confirms that both selected 
small molecules (Calycin and Rhizocarpic acid) can bind 
efficiently at the binding site of Mpro protein and could be 
used as lead compounds.

To identify the key residues involved in ligand bind-
ing toward protein, per residue interaction energy profile 
was created using the MM‐PBSA approach (Fig. 5) for the 
last 1 ns of MD trajectories. For a clear depiction of the 
results, only the active site residues are shown in Fig. 5. 
From the plot, it was revealed that Thr25, Leu27, Met49, 
Phe140, Leu141, Ser144, Cys145, His163, Met165, and 
Asp187 were the actively participating amino acid residues 
in both the predicted hits. The per residue interaction profile 
showed that most of the residues showed a negative bind-
ing affinity, while few residues showed a positive binding 
affinity. The residues that showed a negative binding affinity 
played an important role in stabilizing the protein‐ligand 
complex. Active site residues Thr25, Met49, Cys145, and 
Met165 showed higher binding affinity as compared to other 
residues. The results revealed that Thr25, Met49, Cys145, 
and Met165 play an important role in protein–ligand 
stabilization.

Conclusion

COVID-19 becomes a global concern, due to widespread 
outbreaks and lack of treatment. Therefore, it is necessary 
to find and evaluate treatment methods more quickly. In this 
case, computational methods are very effective and helpful. 
In this study, we employed various computational methods 
like virtual screening, drug-likeness analysis, toxicity pre-
diction, MDS and MM-PBSA analysis for the identifica-
tion of novel hit molecules as potential inhibitors for Mpro, 
the protein belongs to COVID-19. Here, we used a broad 
library of lichen compounds for screening purposes. Based 
on molecular docking, and binding affinity a total 27 hit 
molecules were selected as lead compounds against Mpro. 
Using the extensive pharmacokinetic drug-likeness analy-
sis we obtained four compounds which followed Lipinski’s 
RO5 and PAINS filter. The X-Score, and toxicity analysis 
predicted two non-toxic compounds as they did not show any 
mutagenicity, tumorigenicity, and other effects and gave bet-
ter binding affinity toward Mpro. Finally from the MDS and 
binding free energy results, we concluded that Calycin and 
Rhizocarpic acid are the best stable compounds that showed 
excellent binding affinities with Mpro. These observations 
suggested that these lichen compounds may be explored as 

Table 7   Table showing the Van der Waal, electrostatic, polar salvation, SASA, and binding energy for the predicted hit protein–ligand complexes

S. no. Name of protein–ligand 
complex

Van der Waal energy Electrostatic energy Polar solvation energy SASA energy Total Energy (kJ mol−1)

1 Mpro-X77 (Reference) − 203.08 ± 9.43 − 26.16 ± 10.16 159.96 ± 13.96 − 22.51 ± 0.85 − 91.78 ± 11.09
2 Mpro-Calycin − 116.44 ± 8.91 − 8.69 ± 4.52 96.90 ± 9.51 − 14.19 ± 0.79 − 42.42 ± 9.21
3 Mpro-Rhizocarpic acid − 107.56 ± 8.48 − 13.46 ± 5.83 76.97 ± 9.64 − 13.80 ± 1.10 − 57.85 ± 8.89

Fig. 5   The contributions of individual amino acid residues of Mpro to 
the total binding energies of Mpro-ligand complexes. In all systems, 
the color code indicates- Mpro-X77 (Black), Mpro-Calycin (Red), 
and Mpro-Rhizocarpic acid (Green). Negative values indicate a stabi-
lization effect on Mpro-ligand interactions
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a novel lead molecule for the rapid development of suitable 
drug candidates against COVID-19.
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