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Abstract

Background: Analytic methods are available to acquire extensive metabolic
information in a cost-effective manner for personalized medicine, yet disease risk and
diagnosis mostly rely upon individual biomarkers based on statistical principles of
false discovery rate and correlation. Due to functional redundancies and multiple
layers of regulation in complex biologic systems, individual biomarkers, while useful,
are inherently limited in disease characterization. Data reduction and discriminant
analysis tools such as principal component analysis (PCA), partial least squares (PLS),
or orthogonal PLS (O-PLS) provide approaches to separate the metabolic
phenotypes, but do not offer a statistical basis for selection of group-wise
metabolites as contributors to metabolic phenotypes.

Methods: We present a dimensionality-reduction based approach termed ‘biplot
correlation range (BCR)’ that uses biplot correlation analysis with direct orthogonal
signal correction and PLS to provide the group-wise selection of metabolic markers
contributing to metabolic phenotypes.

Results: Using a simulated multiple-layer system that often arises in complex
biologic systems, we show the feasibility and superiority of the proposed approach
in comparison of existing approaches based on false discovery rate and correlation.
To demonstrate the proposed method in a real-life dataset, we used LC-MS based
metabolomics to determine spectrum of metabolites present in liver mitochondria
from wild-type (WT) mice and thioredoxin-2 transgenic (TG) mice. We select
discriminatory variables in terms of increased score in the direction of class identity
using BCR. The results show that BCR provides means to identify metabolites
contributing to class separation in a manner that a statistical method by false
discovery rate or statistical total correlation spectroscopy can hardly find in complex
data analysis for predictive health and personalized medicine.
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Introduction
Contemporary analytic methods, such as liquid chromatography-mass spectrometry

(LC-MS) [1, 2], gas chromatography-mass spectrometry (GC-MS) [3, 4], and proton

nuclear magnetic resonance (1H NMR) spectroscopy [5, 6], provide information-rich

data sets that can be of substantial value in biomedical research and, in principle, can

be developed with bioinformatics procedures for routine healthcare [7–9]. Challenges

in clinical use exist at two levels, reliable extraction of metabolic features from spectro-

scopic data and reliable identification of metabolic features associated with health
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characteristics. Substantial progress has been made in data extraction, with several

high-quality routines available. For instance, recent introduction of adaptive processing

by apLCMS [10] provides a systematic approach to reduce noise and extract relative

quantification of > 7000 metabolic features in 50 aliquots of human plasma in 20 min

(2); current improvements in data processing have demonstrated that > 12,000 meta-

bolic features can be extracted [11]. This high volume of information, which is inher-

ently multivariate, presents challenges to reliable use in health prediction and disease

management.

Statistical methods based upon the principles of false discovery rate (FDR) are avail-

able to correct for large numbers of comparisons in multiple hypothesis testing of

metabolomics data [12]. These methods are useful to identify potential biomarkers as-

sociated with disease or disease risk while controlling the expected proportion of incor-

rectly rejected null hypotheses (type-I error). This approach is effective because it

yields single biomarker candidates that can be rigorously tested and directly used in

health research and clinical practice.

Individual biomarkers, however, can be of limited value in practical use. For instance,

biomarkers with a relatively good specificity (e.g., 0.9) and sensitivity (e.g., 0.9) still re-

sult in large numbers of misclassifications, i.e., one diagnosis in ten will be wrong and

one in ten will be missed. While several factors can contribute, a central limitation is

that statistical procedures examining individual variables do not consider how variables

interact and combine. In complex pathobiology, individuals with the same genetic mu-

tation have different disease phenotypes, e.g., some patients with a sickle cell disease

mutation have hemolytic crises while others with the same mutation have painful crises

with bony infarcts, acute chest syndrome or only mild anemia [13]. At the molecular

level, functional redundancies and multiple interacting levels of regulation within net-

work structures result in second-order and higher order interactions that allow the

same pathway to respond differently among individuals. Additionally, metabolic re-

sponses can be conditional because of genetic and epigenetic differences, as well as dif-

ferences in diet, environment or health behaviors. For instance, decreased plasma

cystine in response to zinc supplementation may not only be due to zinc-dependent ef-

fects on cystine uptake and conversion to glutathione by tissues [14, 15], but also upon

intestinal absorption, renal loss, rates of transcription of relevant regulatory systems

and past exposures that alter epigenetic regulation [16, 17]. Such complexity means

that individual biomarkers can rarely, if ever, be universally useful. Consequently, statis-

tical approaches equivalent to FDR, when conducting multiple comparisons, are needed

to identify metabolites important in group-wise (e.g., metabolic pathway and network)

behavior, thereby providing rigorous bases to include metabolic interactions within

complex metabolic datasets for improved disease classification and health prediction.

In this study, we propose a general dimensionality-reduction based approach for po-

tential biomarker selection in spectroscopic data, which we term ‘biplot correlation

range’ (BCR). The approach uses loading vectors from principal component analysis

(PCA), partial least squares (PLS, also called projection to latent structures), and

orthogonal-signal-correction PLS (OPLS), to directly link to correlation analysis for

group separation. The analysis determines a correlation range from scores for a group

label on loading vectors rather than from individual correlations for each variable. The

use of correlation range to describe how variables combine to form observable and
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discriminatory patterns is derived from established data reduction and multivariate

techniques, (i.e., PCA, PLS, and OPLS), and methods to discover new variables describ-

ing otherwise hidden, lower-dimensional structure. Extracted representations are trans-

formed into new data (score vectors) using a relatively small number of newly selected

variables (loading vectors comprised of the original variable contributions). These new

variables have improved power to discriminate samples linked to phenotype, such as

pathological characteristic (Y as response variable). A specific advantage of this ap-

proach is that multiple components, none of which may be significantly associated with

Y when evaluated individually by statistical tests such as FDR, can interact to discrim-

inate Y using BCR.

In development of the proposed approach, we relied upon a commonly used graph-

ical technique of matching score plots and loading plots, called as a biplot method [18].

Cloarec et al. used a two-step approach to facilitate biomarker detection in 1H NMR

spectroscopy by graphically coupling a loading vector from OPLS and the correlation

of each variable with response Y [19]. In the development of BCR, we similarly create a

loading vector for each metabolite contributing to separation. A subsequent selection

of metabolites with defined correlation interval (e.g., 95%) is used to determine metabo-

lites related with defined classes. This allows individual metabolites contributing to sep-

aration to be visualized in respective loading plots, thereby providing a rigorously

defined approach to identify metabolites contributing to group behavior. We explore

whether BCR would determine a correlation range using scores and loadings in PCA,

extending them to PLS and OPLS, and biomarkers for the purpose of discrimination

analysis of mass spectral data from mitochondria isolated from wild-type (WT) mice

and thioredoxin-2 (Trx2) TG mice. This study showed that BCR provides means to se-

lect metabolites contributing to class separation in a manner that can complement

FDR in complex data analysis for predictive health and personalized medicine.

Methods
In this section, we introduce the theoretical background of a biplot and its interpret-

ation from a correlation viewpoint with regard to the development of biplot correlation

statistics.

Biplot

A biplot is constructed by using a dimensionality-reduction technique to obtain a

low-dimensional approximation to a transformed version of a data matrix, X in size

n × p, where n and p denote the number of samples (observations) and features (vari-

ables), respectively. The most popular dimensionality-reduction technique is singular

value decomposition (SVD) which brings forth principal component analysis (PCA).

Other techniques such as multidimensional scaling and partial least squares (PLS, also

called projection to latent structures) are also available [20–22]. They, however, share

the same spirit with SVD in a sense that the low-dimensional approximation of X often

unravels hidden structures in X by maintaining inter-sample distances as much and

capturing as much variation of X as possible.

For n centered p × 1 observations x = [x1⋯xp]
T and its corresponding n × 1 response

vector Y, data matrix X consists of xi, i = 1,… , n (all up to n samples): X = [x1⋯xn]
T.
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We find loading vectors aj of size p × 1, j = 1,… , p, and their associated score vectors tj
of size n × 1. Using SVD, we exactly obtain loading vector aj by an eigenvector of the

sample covariance matrix and score vector tj by

t j ¼ Xa j ¼ aTj x1⋯aTj xn
h iT

:

Score vector tj corresponding to loading vector aj represents new coordinates of n

data on the axis of aj. The mth component [aj]m describes the amount of contribution

of the original (before-transformation) mth variable to the construction of new axis aj.

Simply speaking, a larger [aj]m value is associated with more weight for the mth vari-

able in new axis aj. In practical use, before the application of dimensionality reduction,

one could apply unit variance scaling for each column in X to provide all variables an

equal weight. This scaling step, optional, depends on the domain characteristic of the

data. For example, many biologic processes are determined by high abundance compo-

nents, and because of this, variance scaling can sometimes result in loss of useful infor-

mation by decreasing the contribution of more relevant, high-abundance variables and

increasing contribution of non-relevant, low abundance variables.

We order loading vectors, a1, …, ap, according to their associated eigenvalues and p

score vectors, t1, …, tp will follow accordingly. Then we rewrite the data matrix X as X

¼Pp
j¼1t ja

T
j : A biplot is formed by the first two dominant terms from two scatterplots

of ([t1]i, [t2]i) for i = 1, …, n, and ([a1]m, [a2]m), denoted by a!m , for m = 1, …, p that

share a common set of axes. In essence, excluding the constant term, the sample co-

variance matrix approximates to XTX≅a1tT1 t1a
T
1þ⋯þaktTk tka

T
k . Fig. 1 (a) shows an ex-

emplary biplot that has the simplified combination of a principal component score plot

by ‘+’ markers and a principal component loading plot by ‘o’ markers.

Biplot correlation range

We present an interpretation of the direction and magnitude in a biplot in terms of

correlation among variables and relate it to a procedure for biplot based discrimination

analysis. Using the approximation of the sample covariance matrix in the construction

of a biplot, the sample covariance between the qth and rth variables, dcov ðxq; xrÞ , is
given by

dcov xq; xr
� � ¼ XTX

� �
q;r≅ a1tT1 t1a

T
1

� �
q;r þ a2tT2 t2a

T
2

� �
q;r

¼ a1½ �qtT1 t1 a1½ �r þ a2½ �qtT2 t2 a2½ �r ¼ a!q; a
!

r
� �

where 〈∙, ∙〉 represents an inner product with a weight vector ½tT1 t1 tT2 t2�:It implies that

the inner product between a!q and a!r corresponds to a covariance measure between

the two variables. Observe that a!q and a!r are shown as two loading vectors in a

biplot. Then, given loading vector a!q¼ð½a1�q; ½a2�qÞ, it is straightforward that the direc-

tion of a!r should be the same as that of a!q to maximize

a1½ �qtT1 t1 a1½ �r þ a2½ �qtT2 t2 a2½ �r ¼ ‖ a!q‖ ‖ a
!

r‖ cosθ≤‖ a!q‖ ‖ a
!

r‖;

where θ is the angle between the two vectors and the equality holds true for θ = 0. In

specific, the cosine of the angle between a!q and a!r is related to a correlation

measure,
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dcorr xq; xr
� � ¼ dcov xq; xr

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffidcov xq; xq

� � dcov xr; xrð Þ
q ≅

a!q; a
!

r
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a!q; a

!
q

� �
a!r; a

!
r

� �q ¼ cosθ:

Overall, the direction of a! j for the jth variable linking to correlation of variables is

the direction to which the variable contributes in increasing scores on new axes a1 and

a2. Similarly, the magnitude of a! j is associated with the variable’s contribution in

a

b

Fig. 1 a The combination of a principal component score plot and a principal component loading plot,
called a biplot, is used to illustrate the concept of biplot correlation range. Based on the “+” score plot
values and the associated ellipse (broken line), a 95% confidence interval is calculated for projection onto the
corresponding loading plot (small circles). Filled red circles contribute to scores within the 95% correlation
range, while the thick-lined ellipse represents the top 5% of features contributing to the “+” class. b The flow of
the decomposition of input data X
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magnitude of the score increasing, linking to covariance of variables. For the sake of

convenience, a! j is used as the contributing direction of the jth variable.

When dimensionality-reduction techniques such as PLS and OPLS other than SVD

approximate data matrix X in a similar fashion, the BCR approach is applied similarly

using their loading vectors. Among numerous dimensionality-reduction techniques im-

plemented and tested, we choose the combination of direct signal correction and PLS

to obtain components able to separate response vector Y with interpretability [23]. The

flow of the decomposition is shown in Fig. 1 (b). We extract a signal score vector, t(or-

tho), orthogonal to response vector Y with maximum variance in data matrix X. In spe-

cific, for Ŷ , the projection of Y on the column space of X, we numerically obtain the

eigenvector with the largest eigenvalue, set to be t(ortho), in a subspace of X orthogonal

to Ŷ , ðI−ŶðŶT
ŶÞ−1ŶTÞX; and then compute its loading vector aðorthoÞ¼XTtðorthoÞ

ðtTðorthoÞtðorthoÞÞ
−1 . We consider tðorthoÞaTðorthoÞ as a residual in X in the task of explaining

Y. Then we perform PLS with input data as X−tðorthoÞaTðorthoÞ, corrected by the Y-orthog-

onal signal in X, and output data Y, obtaining its first score vector, t(pred), and loading

vector, a(pred). We note that the use of direct signal correction in X by the first orthog-

onal component beforehand helps the first component of PLS to effectively capture

Y-separating patterns in X and produces interpretability when using the two compo-

nents. Finally, we approximate data matrix X into one orthogonal component and an-

other predictive component as follows:

X≅t predð ÞaTpredð Þþt orthoð ÞaTorthoð Þ:

Score and loading vectors in the above decomposition retain the same interpretation

as in PCA. We notice that the decomposition without an orthogonal component is

equivalent to PLS and that numerous orthogonal and PLS components are possible in

addition to various feature scaling methods. Typically, some kind of cross validation in

combination with the domain characteristic of features is used to optimize the separ-

ability of the whole procedure.

Then, using the properties of loading vectors as discussed above, variables contribut-

ing significantly to a certain group label can be identified as in Fig. 1. First, we con-

struct a biplot as described before and collect the scores of samples belonging to a

certain group label. Often score vectors are scaled appropriately so that they may be

placed outside loading vectors for the sake of clarity. By default, we multiplied the

scores by 0.001. As the next step shows, since we consider loading vectors among

themselves using their directions and magnitudes, such scaling does not matter. Then

we use a 95% confidence interval fitting the scores belonging to a certain group with a

multivariate normal distribution, forming a correlation range based on the angle inter-

pretation in biplots. In Fig. 1, it is illustrated by the ‘+’ markers representing scores of

samples belonging to a group and the ellipsoid with a broken line representing a 95%

confidence interval for those scores. Next, variable j corresponding to direction a! j that

contributes to increasing scores within the 95% confidence interval range (edge bor-

dered by diagonal green lines in Fig. 1), are collected. The filled red circles in Fig. 1 il-

lustrate collected variables. The two (green) diagonal solid lines that border on the 95%

confidence interval represent a biplot correlation range (BCR). We notice that the
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correlation range is invariant to the scaling of score vectors in consideration of the di-

agonal lines from the zero. Finally, the top 5% (τ) of variables in magnitude of contrib-

uting direction a! j are selected. Note that the stringency can be increased by use of top

1% or 0.5% of such variables. These features, illustrated as filled circles in the solid el-

lipsoid, greatly contribute to the group label in a covariance (magnitude) sense. We

perform the above procedures with scores of each group label, generating selected fea-

tures per group label, as in Figs. 3(a) and 5(a), and finally obtaining the union of them.

Since the selected features are treated equally as long as they are within the top 5% cri-

terion, post-analysis such as ordering them by correlation, covariance, p-values, or vari-

able importance projection (VIP) values will be possible [24]. By default, we filter out

variables of which individual regression performance measures with response Y are

weak. Practically, we test if the p-value of a logistic regression model with response Y

and the raw values of each individual variable xi is greater than 0.10, without control-

ling familywise error rate or false discovery rate, to deem features of weak separability.

Depending on the nature of variables and the problem domain, one could adopt other

performance measures and tests such as Pearson correlation, Spearman’s rank correl-

ation, p values of linear regression, and classification accuracy of logistic regression.

This step eliminates unnecessary noisy features that act as contributing features in a

collective sense from the previous step. We repeat the above steps for each group label,

and the outcomes of these steps are lists of greatly contributing features for each group

label.

This BCR approach is based on the graphical use of a biplot in that scores and load-

ings are used collectively. BCR, however, enables discrimination analysis and a feature

selection procedure using the interpretation of loading vectors while the biplot ap-

proach provides only a graphical presentation of scores and loadings. We note that

BCR relies upon the approximation of data matrix X≅t1aT1þt2aT2 using orthogonal and

predictive components and the statistical properties of loading vector a! j and score

vector t! j and it provides a structured approach to select features collectively

significant.

Results
To test the BCR approach, we performed a simulation study and compared it with

some existing methods. Then, we applied it to a real-life example.

Simulation and comparisons

We first generated a data matrix X (200 × 1000) and a response vector Y (200 × 1),

comprising 200 samples and 1000 variables. Each element of Y was a Bernoulli random

variable with a success probability of 0.4, so 16 elements of Y were set to 1 on average,

while the remaining 24 elements were set to 0. To generate 1000 variables, we used a

three-layer network structure shown in Fig. 2.

In the first layer, the first 30 variables were generated to have high separation in Y:

for p = 1, …, 4,

xp�U 0; 1ð Þ þ 0:8−2Y;

for p = 5, …, 8,
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xp�U 0; 1ð Þ−1:2−2Y;

where U(a, b) is a random variable from a uniform distribution of range a and b. It

means variables from x1 to x4 individually had a high positive correlation with Y label

0, whereas variables x5 to x8 highly correlated with Y label 1. In specific, the correlation

between each of variables from x1 to x4 and Y was 0.9576 ± 0.0075 (average ± standard

deviation) throughout the simulation, and that between each of variables x5 to x8 and Y

was 0.9577 ± 0.0075. Figure 2(b) shows plots of realizations of x1 and x5 and the afore-

mentioned pattern that clearly and individually separate Y. The first eight variables in

the first layer represent strong individual variables that should be used to identify

pathological conditions. For p = 9, 12, …, 18,

xp xpþ1
� �T�N 0þ Y 0 0:5½ �T ;A

	 

;

and for p = 19, 22, 25, 28,

xp xpþ1 xpþ2
� �T�N 0þ Y 1 2 3½ �T ;B

	 

;

where A¼ 1 0:4
0:4 0:4

� �
; B ¼

12 10 8
10 12 10
8 10 12

2
4

3
5;and N(μ, ∑) represents a multivariate nor-

mal distribution with mean μ and covariance ∑. Figure 2(c) shows plots of realizations

a

b

c

d

Fig. 2 a A data model was created for 200 samples, each with 1000 measured variables. The model has
three layers of interaction of variables x that contribute to the response Y. Layer 1 contains 30 variables,
including eight strong variables (x1 to x8) and other group-wise variables (x9 to x30). Each of the variables in
Layer 1 is determined by three variables in Layer 2, and each in Layer 2 by three variables in Layer 3. The
remaining 610 variables are randomly assigned. b Two strong variables, x1 and x5, individually separate the
two labels of response Y. c Two strong variables, x9 and x10, jointly separate the two labels of response Y.
(d) Three variables x9, x10, and x11 in Layer 1, jointly separate the two labels of response Y
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of x9 and x10 that collectively separate Y. Figure 2(d) also illustrates that realizations of

x28, x29 and x30, generated as above, clearly and jointly discriminate Y. The variables xi,

i = 9, …, 30, in the first layer represent strong group-wise variables that clearly discrim-

inate pathological conditions. The next 90 variables from x31 to x120 in the second layer

and the next 270 variables from x121 to x390 in the third layer were generated so that

the variables contribute to the overall response Y in a composite and aggregate manner.

For instance, x1 in the first layer is clearly separable by the combination of x31, x32 and

x33, in the second layer. In specific, the generation of the three variables is based on the

value of x1 so that the sum of the three will be close to x1 as follows: given x1, we inde-

pendently generate u1, u2 and u3 from U(0,1) and ϵ from, Nð0; x110Þ. Then, we set

x31¼ u1
u1 þ u2 þ u3

x1þϵð Þ;

x32¼ u2
u1 þ u2 þ u3

x1þϵð Þ;

x33¼ u3
u1 þ u2 þ u3

x1þϵð Þ;

which brings x31 + x32 + x33 = x1 + ϵ. The correlation between the sum of the three and

x1 was 0.9730 ± 0.0085 throughout the simulation, and the generation method was

similarly applied to the according matches in Fig. 2 (a). The remaining 610 variables

from x391 to x1000, comprising a noise layer, were randomly and independently gener-

ated from N(0, 1) to avoid a strong correlation with Y in order to simulate inherent

noise. To better simulate the effect of randomness in noise, the p-value of a linear-

regression fitting of Y with each xi from the 610 variables was controlled so that p-

value ≥δi, where δi was set to 0, 0.03, 0.05, or 0.10. The condition, δi=0, represents that

the variables are completely random noise and some of them can be significant, and

the condition, δi=0.10, represents the generated variables are deemed insignificant by

significance level 0.10. The simulated three-layer structure is an example of multiple

layers of metabolic interactions and regulation in complex biological systems. For in-

stance, a biological system for nutritional metabolomics reflects such a layered struc-

ture with linked transports [25]. To further simulate biological systems with fewer

biomarkers, we also used the two-layer structure of layers 1 and 2 only, in which the

remaining 880 variables were simulated noise, and the one-layer structure of only layer

1, in which the remaining 930 variables were simulated noise. To compare them with

random-noise systems as a baseline performance, we also used a structure, denoted by

noise layer structure, in which the total 1000 variables are simulated noise. The vari-

ables as simulated noise were generated as described above by varying δi.

For comparison, we examined the ability of statistical total correlation spectroscopy

coupled with OPLS (STOCSYO) [19] and false discovery rate (FDR) methods to detect

the known variables from layers 1, 2, and 3. Statistical total correlation spectroscopy is

an analysis method for aiding the identification of potential biomarkers in metabolo-

mics studies by displaying the correlation among the intensities of the various peaks

among the whole sample, and its combination with OPLS discriminant analysis, in par-

ticular, offers a powerful framework for selecting important variables [26, 27]. We used

two versions of FDR using p-values from t-tests with two unpaired sets of xi values

when Y=0 and those when Y=1; one is a classic one (FDR1) by Benjamini and
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Hochberg [12] and the other one (FDR2), by Benjamini and Yekutieli, considers mul-

tiple testing under dependency [28]. We also mention that another version of FDR

using p-values from logistic regression was tested but that no variables are found

throughout the experiments. Thus, we dropped logistic regression based FDR in the

following results. We chose STOCSYO as a representative method using correlation

measures and FDR as using p-values. The BCR approach used the first orthogonal and

the first predictive components from OPLS. The selection of important variables in

a

b

Fig. 3 This figure illustrates feature selection using BCS for a simulated data set from the model in Fig. 2. a A
biplot for the first orthogonal and predictive components is shown, clearing separating the two labels of
response Y with a 95% correlation range for each label. b The corresponding loading plot, a zoomed-in version
of the dotted-line rectangle in (a), is shown; the top 5% significantly contributing variables found from Layer 1,
2, and 3 are shown as red squares, blue diamonds, and black triangles, respectively. The eight strong variables
(x1 to x8) in the plot are clearly distinguishable and positioned accordingly to the labels. For example, the
position of x1 is aligned in the direction of label 0, consistent with the behavior of x1 in Fig. 2(b)
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STOCSYO was set as the cut-off value of a correlation coefficient corresponding

to significance levels varying from 1 to 20% [19, 26, 29]. The top percentile (τ) in

BCR and the q-value for FDR also varied from 1 to 20%. We note that the

adopted levels for the methods are not strictly comparable metrics by themselves,

yet we compare them in that they are used in practice to adjust the number of se-

lected variables.

Figure 3 (a) and (b) show the scores and loadings, respectively, for the BCR method

using a multiple-layer data set: in the loading plot, red squares, blue diamonds, and

black triangles represent variables that are deemed to be greatly contributing from

layers 1, 2, and 3, respectively. We note that the first eight variables (x1 to x8) were cor-

rectly found, and several additional variables from layers 2 and 3 were also detected.

We notice that the loadings of the eight strong variables (x1 to x8) are greatly larger

than those of others, for examples, layer 2 variables (x9 to x30) in the predictive compo-

nent axis corresponding to loading vector a(pred) as shown in Fig. 3 (b). It is under-

standable in view of that the loading vector in PLS is obtained as slope coefficients to

predict X corrected by the Y-orthogonal signal, X−tðorthoÞaTðorthoÞ , by the score vector.

We notice that the PLS score vector is calculated on the direction which maximizes

the covariance between X and Y. It is worth mentioning that the first eight variables

were positioned accordingly to the labels. The position of x1, for example, was aligned

to the direction of label 0, in accordance with the behavior of x1 in Fig. 2 (b). This im-

plies that an increase in x1 results in an increase in label 0.

We repeated this test 1000 times for each of the three kinds of layer structures. In

each repetition for each method, we counted the numbers of distinguishing variables

that were correctly found within the three layers. None of the noisy variables was se-

lected by any of the methods for the three layers structures when δi=0.10 while some

noisy variables were selected for the other δi conditions. The averaged numbers found

by the various methods in the three-layer, two-layer, one-layer, and noise-layer structure

are presented in Tables 1, 2, 3, and 4, respectively. For the three-layer structure as

shown in Table 1, the BCR method consistently found more variables in all the layers

than STOCSYO and FDR. In layer 1, BCR outperformed STOCSYO and FDR for all

levels and all noise conditions except level 0.01 with regard to the number of variables

found. We also notice that the tested methods managed to find significant variables in

layer 1, which is reasonable in that the methods are able to identify strong single vari-

ables. In layers 2 and 3, we observe the BCR method found more variables than the

other methods. This result is understandable because BCR looks for a combination of

variables rather than a single variable to separate labels, while STOCSYO emphasizes

individual correlation-wise weights and FDR focuses on the effect of an outstanding

single variable. In the noise layers, the BCR and STOC methods found more noise vari-

ables than the other methods for δi = 0, and the BCR only found noise variables for δi
= 0.05. No noise variables were found for all the methods when δi = 0.10. This result

implies that the BCR method tends to identify noise variables, possibly leading to false

positives, when the randomness in noise increases. To validate the identified noise vari-

ables are false positives in discrimination analysis, we performed logistic regression for

Y using the detected noise variables only. The p-values and classification accuracy are

shown in Table 5 for the three-layer structure. Clearly, the logistic regression models

are quite much significant with the p-values close to zero, and the classification

Park et al. BioData Mining            (2019) 12:4 Page 11 of 24



Ta
b
le

1
A
ve
ra
ge

nu
m
be

rs
of

va
ria
bl
es

fo
un

d
in

th
e
si
m
ul
at
io
n
st
ud

y
fo
r
th
e
th
re
e-
la
ye
r
st
ru
ct
ur
e

δ i
Le
ve
l

N
um

be
r
of

va
ria
bl
es

fo
un

d
fo
r
th
e
th
re
e-
la
ye
r
st
ru
ct
ur
e

La
ye
r
1

La
ye
r
2

La
ye
r
3

N
oi
se

La
ye
r

BC
S

FD
R1

FD
R2

ST
O
C

BC
S

FD
R1

FD
R2

ST
O
C

BC
S

FD
R1

FD
R2

ST
O
C

BC
S

FD
R1

FD
R2

ST
O
C

0
0.
01

16
.4

23
.4

21
.1

10
.0

0.
2

0.
0

0.
0

0.
0

0.
2

0.
0

0.
0

0.
0

1.
8

0.
1

0.
0

0.
0

0.
03

24
.2

23
.9

22
.0

24
.1

2.
8

0.
0

0.
0

0.
5

5.
1

0.
0

0.
0

0.
6

18
.2

0.
6

0.
0

4.
8

0.
05

24
.5

23
.8

22
.0

24
.2

5.
0

0.
1

0.
0

1.
8

10
.7

0.
0

0.
0

3.
1

31
.1

0.
8

0.
0

16
.4

0.
07

24
.8

24
.1

22
.2

24
.5

5.
6

0.
1

0.
0

2.
3

12
.7

0.
0

0.
0

4.
1

39
.8

1.
1

0.
0

23
.4

0.
10

25
.0

24
.3

22
.2

24
.6

7.
2

0.
2

0.
0

3.
3

14
.4

0.
1

0.
0

5.
0

46
.8

1.
7

0.
0

28
.3

0.
15

25
.2

24
.6

22
.7

24
.6

7.
0

0.
2

0.
0

3.
0

14
.8

0.
1

0.
0

5.
3

47
.5

2.
7

0.
1

30
.1

0.
20

25
.0

24
.5

22
.7

24
.5

6.
6

0.
2

0.
0

3.
0

13
.9

0.
2

0.
0

4.
6

47
.7

4.
3

0.
1

29
.9

0.
03

0.
01

10
.0

23
.5

21
.1

16
.9

0.
4

0.
0

0.
0

0.
0

0.
9

0.
0

0.
0

0.
0

0.
4

0.
0

0.
0

0.
0

0.
03

24
.6

24
.0

21
.8

24
.5

3.
5

0.
0

0.
0

1.
4

7.
3

0.
0

0.
0

1.
9

10
.5

0.
0

0.
0

1.
0

0.
05

24
.8

23
.9

22
.2

24
.4

5.
5

0.
1

0.
0

2.
5

11
.6

0.
0

0.
0

3.
8

21
.4

0.
0

0.
0

6.
1

0.
07

24
.8

24
.1

22
.4

24
.6

6.
0

0.
0

0.
0

2.
6

12
.4

0.
0

0.
0

4.
2

30
.0

0.
0

0.
0

10
.1

0.
10

25
.1

24
.4

22
.6

24
.7

7.
0

0.
1

0.
0

3.
0

14
.0

0.
1

0.
0

4.
5

31
.3

0.
0

0.
0

11
.5

0.
15

25
.1

24
.5

22
.7

24
.7

6.
6

0.
1

0.
0

2.
8

14
.5

0.
1

0.
0

4.
7

34
.5

0.
0

0.
0

12
.7

0.
20

25
.1

24
.4

22
.8

24
.7

7.
1

0.
1

0.
0

3.
3

14
.2

0.
1

0.
0

4.
8

32
.9

0.
0

0.
0

11
.8

0.
05

0.
01

10
.0

23
.3

21
.0

16
.6

0.
4

0.
0

0.
0

0.
0

0.
8

0.
0

0.
0

0.
0

0.
2

0.
0

0.
0

0.
0

0.
03

24
.5

23
.8

21
.8

24
.3

4.
3

0.
0

0.
0

1.
5

8.
2

0.
0

0.
0

2.
2

6.
0

0.
0

0.
0

0.
0

0.
05

24
.9

24
.2

22
.2

24
.6

6.
2

0.
0

0.
0

2.
7

12
.2

0.
0

0.
0

4.
3

13
.8

0.
0

0.
0

0.
0

0.
07

25
.0

24
.2

22
.4

24
.5

6.
4

0.
0

0.
0

2.
9

13
.5

0.
0

0.
0

4.
6

19
.6

0.
0

0.
0

0.
0

0.
10

25
.0

24
.2

22
.4

24
.3

6.
7

0.
1

0.
0

2.
9

13
.7

0.
0

0.
0

4.
9

22
.6

0.
0

0.
0

0.
0

0.
15

25
.1

24
.5

22
.7

24
.8

7.
1

0.
2

0.
0

3.
4

14
.6

0.
1

0.
0

4.
9

24
.2

0.
0

0.
0

0.
0

0.
20

25
.2

24
.5

22
.8

24
.7

6.
6

0.
2

0.
0

3.
0

13
.9

0.
1

0.
0

4.
6

23
.6

0.
0

0.
0

0.
0

0.
1

0.
01

16
.8

23
.4

21
.2

10
.0

0.
5

0.
0

0.
0

0.
0

1.
1

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

Park et al. BioData Mining            (2019) 12:4 Page 12 of 24



Ta
b
le

1
A
ve
ra
ge

nu
m
be

rs
of

va
ria
bl
es

fo
un

d
in

th
e
si
m
ul
at
io
n
st
ud

y
fo
r
th
e
th
re
e-
la
ye
r
st
ru
ct
ur
e
(C
on

tin
ue
d)

δ i
Le
ve
l

N
um

be
r
of

va
ria
bl
es

fo
un

d
fo
r
th
e
th
re
e-
la
ye
r
st
ru
ct
ur
e

La
ye
r
1

La
ye
r
2

La
ye
r
3

N
oi
se

La
ye
r

BC
S

FD
R1

FD
R2

ST
O
C

BC
S

FD
R1

FD
R2

ST
O
C

BC
S

FD
R1

FD
R2

ST
O
C

BC
S

FD
R1

FD
R2

ST
O
C

0.
03

24
.5

23
.9

21
.8

24
.4

4.
8

0.
0

0.
0

1.
7

9.
3

0.
0

0.
0

2.
1

0.
0

0.
0

0.
0

0.
0

0.
05

24
.8

24
.0

22
.0

24
.4

6.
3

0.
1

0.
0

2.
8

13
.1

0.
0

0.
0

4.
4

0.
0

0.
0

0.
0

0.
0

0.
07

25
.0

24
.1

22
.4

24
.5

6.
2

0.
1

0.
0

3.
0

13
.0

0.
0

0.
0

4.
5

0.
0

0.
0

0.
0

0.
0

0.
10

25
.0

24
.3

22
.3

24
.4

6.
7

0.
1

0.
0

3.
0

14
.7

0.
0

0.
0

5.
0

0.
0

0.
0

0.
0

0.
0

0.
15

25
.1

24
.3

22
.6

24
.6

6.
8

0.
2

0.
0

3.
2

13
.5

0.
1

0.
0

4.
3

0.
0

0.
0

0.
0

0.
0

0.
20

25
.1

24
.5

22
.9

24
.7

6.
5

0.
1

0.
0

2.
8

15
.1

0.
1

0.
0

5.
0

0.
0

0.
0

0.
0

0.
0

Park et al. BioData Mining            (2019) 12:4 Page 13 of 24



performance increases as the number of the detected noise variable increases. It indi-

cates that the detected noise variables are discriminative in the classification task. The

p-values and classification accuracy for the two-layer, the one-layer, and the noise-layer

structures in Additional files 1, 2 and 3: Tables S3–S5, respectively, show the similar re-

sult as in Table 5 for the detected noise variables.

The averaged numbers found by the various methods in the two-layer structure are

presented in Table 5; For all levels, BCR still found more variables in layer 1 than

STOCSYO and FDR. The BCR method also found more variables in layer 2 than

STOCSYO and FDR. We also observe STOCSYO also detected more variables in layer

2 than FDR. The averaged numbers found by the various methods in the one-layer

structure are presented in Table 1; BCR outperformed STOCSYO and FDR for all levels

with regard to the number of variables found. The average number of variables in each

layer filtered out by the BCS method in the layer structures along with the averaged

Table 2 Average numbers of variables found in the simulation study for the two-layer structure

δi Level Number of variables found for the two-layer structure

Layer 1 Layer 2 Noise Layer

BCS FDR1 FDR2 STOC BCS FDR1 FDR2 STOC BCS FDR1 FDR2 STOC

0 0.01 16.9 23.2 21.0 10.0 0.2 0.0 0.0 0.0 2.9 0.2 0.0 0.0

0.03 24.8 23.9 21.8 24.1 2.4 0.0 0.0 0.3 32.0 0.7 0.0 5.6

0.05 25.0 24.0 22.1 24.7 5.3 0.0 0.0 1.8 61.7 1.1 0.0 22.9

0.07 25.1 24.1 22.3 24.8 5.8 0.1 0.0 2.3 77.8 1.8 0.0 35.2

0.10 25.2 24.2 22.4 25.0 7.1 0.2 0.0 2.8 87.2 2.4 0.1 44.0

0.15 25.1 24.3 22.6 25.1 6.9 0.1 0.0 3.0 86.2 3.8 0.1 44.3

0.20 25.3 24.6 22.8 25.2 7.0 0.3 0.0 2.9 85.8 6.2 0.1 44.2

0.03 0.01 17.6 23.4 21.3 10.0 0.7 0.0 0.0 0.0 1.6 0.0 0.0 0.0

0.03 24.9 23.9 21.9 24.6 4.1 0.0 0.0 1.8 28.0 0.0 0.0 3.0

0.05 25.1 24.1 22.2 24.9 6.2 0.0 0.0 2.9 49.6 0.0 0.0 12.0

0.07 25.3 24.3 22.4 25.1 6.7 0.1 0.0 2.8 59.0 0.0 0.0 16.0

0.10 25.3 24.2 22.5 25.0 7.1 0.1 0.0 3.2 62.2 0.0 0.0 17.7

0.15 25.4 24.5 22.8 25.2 7.1 0.1 0.0 3.0 61.6 0.0 0.0 18.0

0.20 25.4 24.5 22.9 25.1 6.7 0.2 0.0 2.7 62.5 0.0 0.0 18.6

0.05 0.01 17.5 23.1 21.1 10.0 1.1 0.0 0.0 0.0 1.2 0.0 0.0 0.0

0.03 25.1 23.9 21.9 24.8 5.3 0.1 0.0 2.2 22.2 0.0 0.0 0.0

0.05 25.1 24.1 22.3 24.9 6.6 0.1 0.0 3.0 36.9 0.0 0.0 0.0

0.07 25.2 24.1 22.2 25.0 7.1 0.1 0.0 3.1 42.9 0.0 0.0 0.0

0.10 25.2 24.3 22.5 25.1 7.2 0.0 0.0 2.9 44.8 0.0 0.0 0.0

0.15 25.2 24.3 22.6 25.1 7.2 0.1 0.0 2.9 46.3 0.0 0.0 0.0

0.20 25.2 24.4 22.9 25.1 6.8 0.2 0.0 2.9 44.6 0.0 0.0 0.0

0.1 0.01 17.8 23.3 21.1 10.0 1.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.03 25.2 23.8 22.1 24.8 6.5 0.0 0.0 2.7 0.0 0.0 0.0 0.0

0.05 25.2 23.9 22.0 25.1 7.0 0.0 0.0 3.1 0.0 0.0 0.0 0.0

0.07 25.2 24.1 22.2 25.0 7.0 0.1 0.0 2.8 0.0 0.0 0.0 0.0

0.10 25.2 24.2 22.7 25.1 6.6 0.1 0.0 2.8 0.0 0.0 0.0 0.0

0.15 21.0 13.0 8.60 20.1 6.75 .087 .005 3.22 14.1 .043 .000 5.41

0.20 21.0 13.5 8.72 20.0 6.52 .115 .003 2.98 14.4 .068 .000 5.27
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p-values are presented in Additional files 4 and 5: Tables S6 and S7 according to the

noise condition and tested level. Clearly, the number of the filtered variables increases

as the noise conditions and levels increase. For example, the number of the filtered var-

iables for levels ≤0.05 is quite much less than those for levels >0.05.It also increases as

the structure moves from the three layers to the noise layers, which means increasing

randomness. Consistently, most of the filtered variables appeared in the last noise layer,

which practically demonstrates the use of the filtering step. For example, in the

two-layer structure with noise condition 0 and level 0.10, the average number of the fil-

tered variables in the noise layer is 64.69 while that in layer 1 is 0.52 and that in layer 2

is 10.18. Though small in number, the filtered variables in layer 1 partly explains the

BCR never finds all 30 variables in layer 1.

Additionally, Fig. 4 and figures in Additional file 6: Figure S1 show the number of the

selected variables by the four tested methods during the 1000 iterations in noise

Table 3 Average numbers of variables found in the simulation study for the one-layer structure

δi Level Number of variables found for the one-layer structure

Layer 1 Noise Layer

BCS FDR1 FDR2 STOC BCS FDR1 FDR2 STOC

0 0.01 17.1 23.3 21.4 10.0 2.9 0.2 0.0 0.0

0.03 24.7 23.8 22.1 24.0 35.0 0.8 0.0 6.0

0.05 25.2 24.1 22.5 24.6 68.9 1.2 0.0 24.8

0.07 25.3 24.1 22.5 24.9 87.6 2.2 0.0 39.0

0.10 25.4 24.4 22.6 25.1 96.2 2.7 0.1 45.9

0.15 25.4 24.5 23.0 25.1 96.2 4.1 0.1 47.6

0.20 25.4 24.7 23.0 25.2 96.6 6.9 0.1 48.4

0.03 0.01 17.6 23.3 21.3 10.0 2.4 0.0 0.0 0.0

0.03 25.0 23.9 21.9 24.7 32.4 0.0 0.0 4.3

0.05 25.3 24.1 22.0 25.1 56.3 0.0 0.0 14.1

0.07 25.3 24.0 22.3 24.9 65.9 0.0 0.0 18.7

0.10 25.3 24.3 22.5 25.1 67.8 0.0 0.0 20.0

0.15 25.3 24.4 22.8 25.1 69.0 0.0 0.0 19.6

0.20 25.5 24.6 23.1 25.2 71.2 0.0 0.0 20.4

0.05 0.01 17.7 23.1 21.1 10.0 2.2 0.0 0.0 0.0

0.03 25.2 23.9 21.9 24.9 27.5 0.0 0.0 0.0

0.05 25.3 24.0 22.0 25.0 43.1 0.0 0.0 0.0

0.07 25.3 24.2 22.3 25.1 50.2 0.0 0.0 0.0

0.10 25.4 24.4 22.7 25.1 50.6 0.0 0.0 0.0

0.15 25.4 24.5 22.7 25.1 50.2 0.0 0.0 0.0

0.20 25.4 24.5 22.9 25.1 51.3 0.0 0.0 0.0

0.1 0.01 17.8 23.2 21.0 10.0 0.0 0.0 0.0 0.0

0.03 25.3 23.8 21.7 25.0 0.0 0.0 0.0 0.0

0.05 25.2 24.0 22.1 25.1 0.0 0.0 0.0 0.0

0.07 25.3 24.1 22.3 25.2 0.0 0.0 0.0 0.0

0.10 25.3 24.3 22.5 25.2 0.0 0.0 0.0 0.0

0.15 25.3 24.3 22.6 25.2 0.0 0.0 0.0 0.0

0.20 25.3 24.5 22.8 25.1 0.0 0.0 0.0 0.0
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conditions δi = 0 or 0.05, levels 0.05 or 0.10, and three layer structures (one layer, two

layers, and three layers). While the four methods repeatedly captured the eight strong

variables, x1 to x8, in layer 1, as shown in Figs. 4 (a) and (b), the BCS method found

variables, x9 to x30, in layer 1, as well as variables in layers 2 and 3, more frequently

than the others. The tendency, however, weakens as the layer structure moves from the

three-layer one to the one-layer one. Overall the FDR methods are strict in capturing

variables, STOCSYO remains in between FDR and BCS, and BCS finds variables not

only individually strong but also collectively separating.

Application to real-life biological data

To apply the proposed method, we examined a high-resolution metabolomics data set

from a recent study of mitochondrial metabolomics of thioredoxin-2-overexpressing

Table 4 Average numbers of variables found in the simulation study for the noise-layer structure

δi Level Number of variables found for the noise-layer structure

Noise Layer

BCS FDR1 FDR2 STOC

0 0.01 19.5 0.0 0.0 9.6

0.03 51.2 0.0 0.0 24.4

0.05 70.7 0.1 0.0 33.5

0.07 82.5 0.1 0.0 38.9

0.10 92.8 0.2 0.0 45.0

0.15 96.2 0.3 0.0 47.5

0.20 99.3 0.4 0.0 50.0

0.03 0.01 15.4 0.0 0.0 4.5

0.03 36.8 0.0 0.0 9.4

0.05 49.0 0.0 0.0 12.6

0.07 56.7 0.0 0.0 14.9

0.10 64.7 0.0 0.0 17.5

0.15 69.5 0.0 0.0 18.9

0.20 71.0 0.0 0.0 20.0

0.05 0.01 12.1 0.0 0.0 0.0

0.03 26.1 0.0 0.0 0.0

0.05 36.0 0.0 0.0 0.0

0.07 42.0 0.0 0.0 0.0

0.10 46.8 0.0 0.0 0.0

0.15 51.1 0.0 0.0 0.0

0.20 52.8 0.0 0.0 0.0

0.1 0.01 0.0 0.0 0.0 0.0

0.03 0.0 0.0 0.0 0.0

0.05 0.0 0.0 0.0 0.0

0.07 0.0 0.0 0.0 0.0

0.10 0.0 0.0 0.0 0.0

0.15 0.0 0.0 0.0 0.0

0.20 0.0 0.0 0.0 0.0
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transgenic (TG) mice and wild-type (WT) littermate controls [30]. Thioredoxin (Trx2)

is a small protein that regulates reduction-oxidation balance. The chosen dataset com-

prised anion exchange-high-resolution mass spectrometry data of mitochondria from

18 WT and 19 TG mice. Metabolic data were extracted from mass spectral analyses

using apLCMS [10] and comprised high-resolution m/z features defined by m/z, reten-

tion time, and intensity. Each sample was analyzed in duplicate, and data for dupli-

cates were averaged. Features with ≥30% missing values were excluded, resulting in

677 features for each sample. The included missing values were replaced by zero

since no noticeable peaks at the m/z features were found as in [31]. Comparison

of WT and TG data using FDR at q = 0.05 or q = 0.2 resulted in no features being

detected as different. Similarly, STOCSYO detected no significant features. Applica-

tion of BCR to identify features contributing to the separation of WT and TG

mitochondria by the first orthogonal and the first predictive components from

OPLS resulted in the identification of 64 features, as shown in Fig. 5 (See also

Additional file 7: Table S1).

As post-analysis we annotated the selected metabolites using the Metlin mass spec-

trometry database [32]. To determine the associated pathobiology, we applied KEGG

(The Kyoto Encyclopedia of Genes and Genomes)-database pathway analysis [33]. Of

the 64 features identified by BCR, the 45 had a variable importance projection score ≥ 1

[24]. These 45 discriminatory features were annotated in the Metlin database using

Table 5 P-values and classification rates of logistic regression models by detected noise variables
in the noise layers for the three-layer structure

δi Level p-value classification rate

BCS FDR1 FDR2 STOC BCS FDR1 FDR2 STOC

0 0.01 0.0001 0.0001 – – 0.6568 0.6600 – –

0.03 0.0002 0.0002 0.0002 0.0002 0.6578 0.6547 0.6526 0.6563

0.05 0.0004 0.0004 0.0004 0.0004 0.6539 0.6508 0.6481 0.6532

0.07 0.0005 0.0005 – 0.0005 0.6578 0.6537 – 0.6560

0.10 0.0005 0.0005 0.0005 0.0005 0.6710 0.6669 0.6663 0.6691

0.15 0.0004 0.0004 0.0004 0.0004 0.6769 0.6743 0.6739 0.6767

0.20 0.0001 0.0001 0.0002 0.0001 0.6998 0.6979 0.6958 0.6996

0.03 0.01 0.0097 – – – 0.6200 – – –

0.03 0.0006 – – 0.0113 0.6450 – – 0.6150

0.05 0.0000 – – 0.0015 0.7200 – – 0.6300

0.07 0.0000 – – 0.0000 0.8200 – – 0.7000

0.10 0.0000 – – 0.0000 0.8250 – – 0.7100

0.15 0.0000 – – 0.0000 0.7900 – – 0.6650

0.20 0.0000 – – 0.0000 0.8150 – – 0.7700

0.05 0.01 0.0535 – – – 0.6000 – – –

0.03 0.0003 – – – 0.6750 – – –

0.05 0.0001 – – – 0.7150 – – –

0.07 0.0000 – – – 0.6900 – – –

0.10 0.0030 – – – 0.6600 – – –

0.15 0.0000 – – – 0.7550 – – –

0.20 0.0000 – – – 0.7950 – – –
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only [M +H] + and [M +Na] + adducts (See Additional file 8: Table S2). Twelve of the

45 features were mapped using KEGG Mus musculus pathway analysis as shown in Fig.6.

More than two-thirds of the features did not match metabolites in the KEGG data-

base, being considered as false positives in practice from the KEGG-database viewpoint.

Phosphatidylcholine(18:3) at 518.32 m/z and phosphatidylcholine(18:2) at 520.34 m/z as

well as choline phosphate at 184.07 m/z were increased in TG mitochondria compared

to WT mitochondria as shown in Figs. 6 (a) and (d).

Phosphatidylcholine (PC) is one of the most abundant phospholipids as it forms part of

the membrane bilayer. Hung et al. investigated the possible role of phosphatidylcholine

supplementation as a way of slowing aging-related processes in senescence-accelerated

Fig. 4 This figure illustrates selected variables by the four tested methods in the following conditions: a in
layer 1 of the two-layer structure when noise condition δi = 0 and level = 0.05; b in layer 2 of the three-
layer structure when noise condition δi = 0 and level = 0.10
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mice [34]. In addition, Al-Orf found that excess and persistent intake of oxidized

phosphatidylcholine caused significant damage to organs in male Wistar albino rats

[35]. Thioredoxin overexpression in mice has been shown to attenuate oxidative

stress [36].

a

b

Fig. 5 BCS analysis using orthogonal signal correction of high-resolution metabolomic data from liver
mitochondria from thioredoxin-2 transgenic (TG) mice and wild-type (WT) littermate controls. a A two-dimensional
score plot of orthogonal signal correction shows the first predictive component as a function of the first
orthogonal component. b Corresponding loading plot, a zoomed-in version of the dotted-line rectangle of (a),
with the top 5% of features to the separation of TG and WT metabolic profiles within the 95% correlation range
contributing. A list of the 64 discriminatory m/z features identified is provided in Additional file 7: Table S1
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The discovery of discriminating metabolites related to sphingosine was unantici-

pated but reasonable in terms of what is known about ceramide metabolism. Cer-

amide is an endogenous mediator of apoptotic cell death. For example, when the

intracellular concentration of ceramide is elevated under oxidative stress, cellular

proliferation is inhibited, and cellular apoptosis is induced [37]. Ceramide is syn-

thesized at the endoplasmic reticulum from palmitoyl-CoA and serine, resulting in

3-ketosphinganine. The enzyme 3-ketosphinganine reductase generates sphinganine

from 3-ketosphinganine. Sphinganine is acylated to dihydroceramide by sphinganine

N-acyl-transferase. Finally, dihydroceramide is converted to ceramide by the activity

of the dihydroceramide desaturase [38–40]. In this study, we observed a reduced

amount of 3-ketosphinganine (300.28 m/z) in Trx2-overexpressing TG mice, sug-

gesting that Trx2 decreases levels of 3-ketosphinganine, thereby conferring protec-

tion against apoptosis (Fig. 7 (b)). Thus, the discrimination of WT and TG

mitochondria by 3-ketospingosine is consistent with available data on mitochon-

dria, ceramide metabolism, and Trx2 protection against apoptosis signaling.

The discrimination of WT and TG mitochondria by guanosine monophosphate

(GMP) at 364.06 m/z is also reasonable because GMP increases antioxidant function

and attenuates oxidant cell death [41, 42]. Consistent with the anti-apoptotic effect of

GMP, we observed increased GMP in Trx2 TG mice compared to that in WT mice,

providing important evidence of overexpression of Trx2 (Fig. 7 (c)). The discrimination

of WT and TG mitochondria by GMP is consistent with available data on mitochon-

dria, the anti-apoptotic effect of GMP on oxidative stress, and Trx2 protection against

apoptosis signaling.

Fig. 6 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of the 45 discriminatory
features identified using the BCS approach. Forty-five discriminatory features are mapped onto 12 Mus
musculus (mouse) KEGG metabolites (black dots). Those are involved in phosphotidylcholine, sphingosine,
cysteine, methionine, and purine metabolism. The distributions suggest that multiple factors associated
with Trx overexpression can be conceptualized using the group-wise feature selection provided by the
BCS approach
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Several methods currently exist to identify metabolites that are significantly different

according to sample classification based upon the principles of FDR. Comparable

methods to test for group behavior of metabolites in sample classification, however, do

not exist. Data reduction methods are available to reduce a large number of variables

into a smaller set of variables; this allows separation of classes according to the group

behavior of metabolites. Previous graphical methods have resulted in identification of

individual metabolites that contribute to group behavior; however, no criteria for inclu-

sion or exclusion of metabolites were provided. Our newly developed method, BCR,

uses statistical criteria for selection of metabolites contributing to group behavior.

Evaluation of its performance with both simulated data and real data demonstrated its

utility. The BCR method employs statistical principles to select variables that contribute

group-wise to class discrimination. The method allows reproducible selection of metab-

olites that contribute to class separation, thereby facilitating practical developments in

metabolomics research. Application of BCR could, in principle, provide a simple means

to detect group-wise behavior of metabolites connected to different pathways and

metabolic networks.

Conclusions
We developed a dimensionality-reduction based approach termed a biplot correlation

range that improves reliability of selection of metabolites contributing to group behav-

ior for use in metabolic profiling applications for personalized medicine. Original vari-

able interactions were used to assign scores according to group identity, and statistical

principles were used to select variables in terms of increased score in the direction of a

a

b

c

d

Fig. 7 The relative concentrations of mitochondrial metabolites in WT and TG (a) phosphocholine, (b) 3-
ketosphinganin, (c) guanosine monophosphate, (d) Phosphotidyl choline C(18:2)
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group identity within a correlation range. Testing by simulation and application to real

data showed that this method improved selection of variables collectively responsible

for group behavior. By providing a statistical basis differently from FDR and OPLS--

coupled STOCSY approaches, the proposed method can reveal important metabo-

lites that contribute to group behavior for analysis of complex metabolic data sets.

As a future research direction, more rigorous add-on analysis of selected important

metabolites such as the calculation of p-values by cross validation, sensitivity ana-

lysis of selection of components, and systemic post-analysis are in need of

investigation.
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