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Abstract

Correspondence noise is a major factor limiting direction discrimination performance in random-dot kinematograms [1]. In
the current study we investigated the influence of correspondence noise on Dmax, which is the upper limit for the spatial
displacement of the dots for which coherent motion is still perceived. Human direction discrimination performance was
measured, using 2-frame kinematograms having leftward/rightward motion, over a 200-fold range of dot-densities and a
four-fold range of dot displacements. From this data Dmax was estimated for the different dot densities tested. A model
was proposed to evaluate the correspondence noise in the stimulus. This model summed the outputs of a set of elementary
Reichardt-type local detectors that had receptive fields tiling the stimulus and were tuned to the two directions of motion in
the stimulus. A key assumption of the model was that the local detectors would have the radius of their catchment areas
scaled with the displacement that they were tuned to detect; the scaling factor k linking the radius to the displacement was
the only free parameter in the model and a single value of k was used to fit all of the psychophysical data collected. This
minimal, correspondence-noise based model was able to account for 91% of the variability in the human performance
across all of the conditions tested. The results highlight the importance of correspondence noise in constraining the largest
displacement that can be detected.
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Introduction

A random-dot kinematogram (RDK) consists of two, or more,

frames of randomly positioned dots, with a proportion of the dots

not being randomly positioned but being displaced coherently

between any two temporally adjacent frames by an amount

selected from a defined and limited range of distances and

directions (e.g. [2–6]). The proportion of dots that are coherently

displaced is referred to as the coherence level. The primate visual

system is extremely sensitive to motion in RDKs and under

optimal conditions, coherence levels at the threshold for discrim-

inating direction of motion (coherence thresholds) can be lower than

5%. RDKs have been a very useful tool for understanding motion

processing in human vision because they help us to disambiguate

the use of motion cues from position cues [7,8]. They have also

been useful for understanding neural mechanisms underlying the

motion processing system in primates, notably in cortical area

MT/V5, and for investigating the links between physiology and

psychophysics of motion perception (e.g. [9–18]; see also [19–22]).

A variety of measures have been used to evaluate human

performance for detecting motion with RDK stimuli. These

performance measures include:

N coherence threshold – the smallest proportion of dots that must be

moved in a fixed direction for coherent motion to be reliably

perceived (e.g. [1,23]);

N Dmax – the largest displacement of the coherently moved dots

for which motion is reliably perceived (e.g. [2,5,24–26]);

N Dmin – the smallest displacement of the coherently moved dots

for which motion is reliably perceived (e.g. [7,27,28]); and

N Tmax – the largest temporal interval between successive frames

for which motion is reliably perceived (e.g. [25,29]).

Understanding how each of these measures is influenced by

changes in stimulus parameters and the links between these

different measures is important for integrating our understanding

of the mechanisms underlying human motion detection.

In order to successfully identify the direction of motion from

adjacent frames of an RDK, the visual system must solve the

correspondence problem, i.e. it must determine the dot-displacement

between frames that maximises the overlap between dots in

adjacent frames ([1,30–36], see also [37–39]). The correspondence

problem exists because any dot in one frame can be paired with

any dot in the adjacent frame, but only a small proportion of the

potential pairs are signal pairs. The remaining pairings are

spurious pairs, some of which can potentially be confused with the

signal pairs, yielding correspondence noise (see [1]). Barlow and

Tripathy [1] measured coherence thresholds for a wide range of

stimulus parameters and showed that correspondence noise is a

major factor influencing threshold coherence in RDKs. The issue

of correspondence noise in RDK stimuli has also been studied with
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the Dmax paradigm (e.g. [36,40,41]). The purpose of this paper is

to further investigate the role of correspondence noise in motion

perception for RDK stimuli, particularly with regard to its

influence on Dmax.

According to the correspondence noise explanation, Dmax is

the maximum pattern displacement that can be detected before

mispairings of dots across frames causes coherent direction

discrimination to be compromised. The role of correspondence

noise in motion perception in RDKs has been investigated by

manipulating the probability of false-matches by varying dot-

density [5,40,42,43] or by manipulating some spatial- or

spatiotemporal-feature (such as polarity of some of the dots, dot

lifetime in multiple frame stimuli, etc.) of the dots between frames

(e.g. [36,44]). The general finding of these studies is that

manipulations that reduce the probability of dot-mismatch across

frames result in increases in Dmax. Dmax increases linearly with

2D element spacing [40]. It is now accepted that the information

limit/correspondence noise is the critical variable limiting Dmax.

A constraint in previous attempts to model Dmax was that the

coherence level used in the stimuli modelled was fixed at 100%,

i.e. all the stimulus dots were moved coherently in one of two

directions (a few exceptions are – [45,46]). The goal of the current

study is to present an approach that investigates Dmax at a

coherence level of 100% but could be easily generalised to

investigate Dmax at low coherence levels, such as 30%. The

current paper presents psychophysical data and simulation results

for Dmax for RDK stimuli with 100% coherence. Results for

RDK stimuli with 30% coherence are presented in [47].

Barlow and Tripathy [1] investigated the influence of corre-

spondence noise on coherence threshold. In that study psycho-

physical performance was reported for the displacement-size that

yielded optimal performance and the influence of correspondence

noise for other displacement-sizes was not systematically investi-

gated. The current study presents psychophysical data for

identifying the direction of RDK-motion for a wide range of dot

densities and displacement-sizes and presents a minimalistic

Reichardt-type correlator model for Dmax which readily gener-

alises to coherence levels of less than 100%. Simulations using this

model are presented for RDK stimuli with 100% of the dots being

coherently displaced. Our model, which effectively uses just one

free parameter, is able to simulate psychophysical performance for

detecting motion in RDKs over a wide range of stimulus

parameters.

Methods

A. Psychophysics
Equipment. RDK stimuli were generated on an Apple G3

Macintosh computer (Apple Computer International, Cork,

Ireland) and displayed on a Formac, Pronitron CRT monitor

21/650 with a refresh rate of 70 Hz. Screen resolution was 1600

(H) 6 1200 (V), with each pixel subtending 1 6 1 arcmin in the

horizontal and vertical directions at a viewing distance of 82 cm.

Chin and forehead rests were used to constrain head movements

and to ensure a constant viewing distance. Motion in the RDKs

was either leftward or rightward; observers used the left- and right-

arrow keys to report the direction of perceived motion. Computer

programs, written in C language running within the Vision Shell

software environment [48], displayed the stimuli and collated the

responses. The experiment was conducted in a very dimly-lit

room, illuminated by an angle-poise lamp pointing away from the

observer and facing a black screen. The dim lighting minimised

screen reflections while providing sufficient ambient light to

prevent fluctuations in accommodation.

Stimulus. Throughout the study only 2-field RDKs were

used; having a larger number of fields would have introduced

correspondence between temporally non-adjacent as well as

adjacent fields, and the efficiency for detecting motion would

have fallen [1]. Each field of dots was presented for 157 ms (11

video frames). No frames separated the two fields (interstimulus

interval (ISI) was 0 ms), as performance for identifying motion

direction has been shown to be best at this ISI, regardless of dot-

density, when the dot-displacement is smaller than 50 arcmin

([42], see also [36]). Each dot in the two fields was a square of 464

arcmin, with a luminance of 76.8 cd/m2 against a background

luminance of 0.1 cd/m2. The frame of the monitor was visible in

the ambient illumination and acted as a peripheral fixation target.

In each trial, the motion contained in the RDKs was in the

horizontal direction, randomly selected to be right or left with

equal probability. Following presentation of the two fields the

screen returned to the background luminance until the observer

responded. After the observer’s response, feedback was presented

in the form of a high/low audio tone for a correct/incorrect

response, followed by a delay of 1500 ms before the next trial was

started. The long inter-trial delay minimised, as far as possible, the

chances that motion in one trial interfered with that in the next

and minimised accumulation of motion adaptation from repeated

trials. In addition, the random interleaving of the two directions of

motion would have reduced the accumulation of motion

adaptation and after-effects [49]. However, motion after-effects

are not certain to have been eliminated entirely because these have

been shown to occur even for adaptation durations as brief as

25 ms [50].

Each field of dots was presented over a stimulus area of 1600

(W) 6 600 (H) pixels, centred on the screen. In the first field, the

dots assigned for coherent displacement were confined to the

central 900 pixels, horizontally. Therefore, the effective stimulus

area (ESA) was 9006600 pixels (i.e., 9006600 arcmin when the

viewing distance was 82 cm). In the experiments described in the

current paper coherence level was 100%, i.e., all the first field dots

lying within the ESA were coherently displaced a fixed distance

right/left into the second field. The stimulus area outside the ESA

in the two fields [the two flanking regions to the right and left of

the ESA, each (3506displacement size) pixels wide] had randomly

positioned noise dots of the same dot-density as within the ESA.

In the absence of the noise dots flanking the ESA the movement

of the two vertical edges of the ESA would indicate the direction of

motion of the dots. The function of the noise dots was to mask the

movement of the ESA-edges. The traditional approach to prevent

the movement of the stimulus edge is to ‘‘wrap-around’’ the dots

moving out of a fixed stimulus area (e.g. [5]). However, this wrap-

around procedure has a few limitations; the wrapped-around dots

reduce the number of signal dots available and produce motion

signals in the direction opposite to the coherent motion in the

stimulus. The procedure of using flanking noise dots on either side

of the ESA ensured that the number of signal dot-pairs within the

ESA could be exactly controlled, regardless of the size of the

displacement. It however has the disadvantage that the ‘‘motion-

edge’’ separating coherent motion within the ESA and non-

coherent noise outside the ESA was sometimes discernible when

viewed directly. To ensure that the ‘‘motion-edge’’ could not be

used to discriminate the direction of motion the stimulus was

elongated along the axis of motion (see also [51,52]), pushing the

‘‘motion-edge’’ further into the periphery.

Procedure. The stimulus on each trial consisted of a 2-field

RDK with rightward or leftward motion. The observer viewed the

stimulus monocularly and reported the perceived direction of

motion, right or left, using the arrow keys on the keyboard. Audio

Correspondence Noise and Dmax
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feedback was provided following each trial and the next trial was

initiated. All stimulus parameters, apart from the direction of

motion, were fixed within a block; between blocks we varied dot-

displacement and dot-density. Each block of trials consisted of 10

practice trials and 45 recorded trials. The practice trials were not

used in the analysis; their main function was to help observers

adjust to the randomised changes in stimulus conditions between

blocks.

Dot-density was varied between blocks by varying the number

of dots within the ESA, which was of fixed area. The number of

dots within the ESA was selected from: 20, 40, 80, 160, 320, 640,

1280, 2560 and 4000. The displacement sizes were: 50, 60, 80,

100, 125, 150, and 200 arcmin. For each dot-density and dot-

displacement combination, three blocks were run, yielding 135

recorded trials per condition. A displacement size was randomly

selected, and 27 blocks (three cycles of the nine randomly-ordered

densities) of data were collected with this displacement. This was

repeated at each of the 7 dot displacements in random order. The

performance measure, for each combination of dot-density and

dot-displacement, was the proportion of trials for which the

direction of motion was correctly identified.

Observers. The three authors participated as observers. MC

and ST had normal vision, while observer SN was mildly

amblyopic (VA = 6/12) in his left eye. All data collected was

under monocular conditions, each observer using his dominant

eye. All observers were fully aware of the experimental procedures

involved and willingly consented to their participation in the study.

B. Modelling
Model description. Computer simulations were used to

model the responses of the motion detecting system for the same

stimuli as were used in the psychophysics. The model (Figure 1)

simulated simplified local detectors (presumed representative of

local motion selective cells found in area V1 (e.g. [53]), or area

MT (e.g. [54,55]) that tiled the stimulus plane, with their outputs

feeding to a single global detector (presumed representative of

global motion detecting cells found in area MT (e.g. [20,21,56–

58])).

The local detectors are modified Reichardt detectors [59] that

output the product of the activities in the two catchment areas

(Figure 2), with the activity in each catchment area being

proportional to the number of dots falling within the catchment

area in the appropriate field. The model simulated local detectors

sensitive to rightward and leftward motion. A detector for

rightward (or leftward) motion would sample a location around

the point (x, y) in the first field and around the point (x+dx, y) (or

(x-dx, y)) in the second field, where dx is a positive quantity

representing the dot displacement in the stimulus. The output of

each local detector would be the product of the activities (i.e. the

product of the numbers of dots) in the two catchment areas (see

Figure 2), since this product represents the number of potential

motion vectors linking the two catchment areas, as any of the dots

from the first catchment area could have been displaced to any of

the dot-locations in the second catchment area (see [1]). The

modified Reichardt detector differs from the standard Reichardt

detector in that the catchment areas for rightward and leftward

local detectors are traditionally centred at ((x, y) and (x+dx, y)) and

((x+dx, y) and (x, y)) respectively. The justification for this

modification is presented later in this section. An additional

difference from the standard Reichardt detector is in the use of

variable-size catchment areas, which can be thought of as

rudimentary front-end spatial filters, yielding detectors closer to

the elaborated Reichardt detectors proposed by van Santen and

Sperling [60].

The catchment areas of the local detectors tiled the stimulus

plane, using one of two tiling strategies. In one tiling strategy the

number of local detectors was the same as the number of dots in

the first frame of the RDK, and each first-field dot had one

catchment area of a rightward-tuned local detector and one

catchment area of a leftward-tuned local detector centred on it.

The corresponding second field catchment areas were centred

6dx from the centre of the first-field dot. In the second tiling

strategy, the first field catchment areas were randomly positioned

over the first field, and the second field catchment areas were

positioned 6dx from the centre of the first-field catchment area.

Figure 1. The integration of motion information. Schematic
representing the collation of information from local detectors (based
upon Reichardt detectors) into a global detector sensitive to a single
axis of motion. Solid lines indicate excitatory connections and dashed
lines, inhibitory connections. An excitatory summed response from the
global detector in this case indicates rightwards motion.
doi:10.1371/journal.pone.0042995.g001

Figure 2. A modified Reichardt detector. This forms the basis of
the local detectors in the module. Output from LD1 is excitatory and
indicates rightwards motion. Output from LD2 is inhibitory and
indicates leftwards motion. In this modified detector the central
catchment area that samples in the neighbourhood of (x,y) in the
first-field is shared between LD1 and LD2 (see text).
doi:10.1371/journal.pone.0042995.g002
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The first strategy ensured that sampling (and performance) was

optimal; every signal-dot pair was sampled at least once. The

second strategy simulates the positioning of the human motion

detectors, which cannot be reconfigured to match the positions of

the stimulus dots. The number of local detectors was not a variable

for the first tiling strategy (this number was the same as the

number of first field dots), but could be varied in the second tiling

strategy. However, in the main simulations of human performance

using the second tiling strategy, the number of detectors was fixed

at 1000 and was not permitted to vary freely when trying to match

human and model performance.

There are two global motion detectors, tuned to rightward and

leftward motion. The rightward (leftward) global detector sums the

outputs of all the local detectors sensitive to rightward (leftward)

motion. The model’s reported direction of motion for a given

RDK stimulus corresponds to the direction of tuning (right/left) of

the global detector with the larger of the two activities for that

stimulus. The model’s response for a particular stimulus is

considered to be correct if it matches the direction of coherent

displacement of the dots between frames on that trial. The model’s

proportion of correct responses for a particular stimulus-condition

is determined from repeated presentations of instances of this

stimulus.

The previously mentioned modification to the Reichardt

detector used in the simulations was necessitated by the tiling

strategy used in the simulations. When the tiling was optimal, the

catchment area in the first field of the rightward detector was

centred at a first frame dot. Using the modified detector ensured

that even the leftward detector was centred at a first frame dot. If

the traditional Reichardt detector had been used along with our

optimal tiling strategy, this would have resulted in a rightward bias

for motion in our local detectors, since our leftward detector would

not be guaranteed to have at least one dot within the catchment

area of the first field. In the interests of consistency, the modified

Reichardt detector was used even when the tiling was random.

Assumptions of the model. The model described above

makes several implicit assumptions, and these are listed here, along

with some justification for these assumptions. The Appendix

presents informal verification of some of the assumptions listed

here.

1. Local detectors that are optimally positioned
outperform randomly positioned detectors. When the tiling

of the stimulus plane follows the first of the two methods described

in the previous section, every signal pair of dots is guaranteed to be

sampled at least once. In addition, adding more local detectors to

the simulations will not improve model performance, since the

additional detectors will only be sampling information that has

already been sampled at least once (i.e., no new information would

be obtained by further re-sampling the same information).

Simulation results presented in Appendix A confirm that the

performance of the model cannot be improved beyond that

obtained for optimally positioned local detectors simply by

increasing the number of local detectors that are centred within

the ESA and are randomly positioned with respect to the first field

dots. Simulations with optimal tiling are useful for determining the

performance of an ideal detector that uses all the information

available in the stimulus, for the purposes of estimating absolute

efficiency [1,61]. In the current study the absolute efficiencies were

found to be low and uninformative and therefore modelling of

human performance in the main simulations was done with

random tiling.

2. Local detectors that have catchment area separations
matched to the dot-displacement outperform detectors with
catchment area separations that are mismatched to the dot-

displacement. The separation of the catchment areas of the

simulated local detectors matched the dot displacement in the

stimulus. The implicit assumption here is that the motion detecting

system contains banks of spatio-temporal filters tuned to different

dot displacements [1], and the strongest response to the stimulus

would be from the filters that are appropriately matched to the dot

displacement in the stimulus. For the same reason, only horizontal

motion detection was simulated, the assumption being that though

detectors are available to detect motion in all directions, the

detectors responding maximally to a horizontal motion stimulus

would be those tuned for horizontal motion. See Appendix B for

simulations that informally test this assumption. In these simula-

tions we varied the mismatch between the separation of the

catchment areas of the local detectors and the size of the dot

displacement in the stimulus. The model performance was best

when the separation matched the displacement size and system-

atically decreased as the separation was increased or decreased

(Appendix B).

3. Only local detectors which have their first field

catchment areas centred within the ESA contribute to the

global detectors. When collecting the psychophysical data, the

observers always knew that the motion stimulus was confined to

the central part of the total stimulus area. It is not clear that

human observers could have confined their motion computations

to the ESA, ignoring the flanking noise dots. However, having the

first field’s catchment area centred within the ESA ensured that

the local detectors picked up less of the noise and more of the

motion information available in the stimulus.

4. Radius of the catchment areas of the local detectors

scales with size of the dot-displacement in the stimulus. In

order to successfully capture the signal from a large dot-

displacement, a motion detector would need a correspondingly

large separation between its catchment areas. In our laboratory

stimuli, the displacement of the dots is rigid, with all signal dots

being displaced identically. However, in biological settings,

deformations frequently accompany motion; all the spots on a

sprinting leopard are not displaced the same distance over a brief

time-interval. Scaling the radius of the detector catchment areas

according to the size of the dot-displacement ensures a constant

tolerance for non-rigid motion, regardless of the size of the average

displacement in the stimulus. Thus the model assumes that the

radius of the catchment areas (R) is given by the following

equation:

R~k|(dx) ð1Þ

where dx is the size of dot-displacement, and k is the constant of

proportionality.

Appendix C describes how model performance is affected when

k is increased. When k is small, the probability that any particular

randomly-positioned local detector will be stimulated by a

coherent pair of dots is reduced and more local detectors would

be needed to adequately tile the stimulus plane. If an adequate

number of local detectors are used, model performance is high for

small values of k. As the value of k is increased, the catchment

areas of the local detectors increase in a quadratic manner, as does

the number of dots within each half of any local detector. This has

the effect of rapidly increasing the number of potential motion

vectors between the two catchment areas (even in the absence of

an actual motion signal), and hence the correspondence noise

increases. This results in a drop in performance with increase in k

until for sufficiently large k motion detection is no longer reliable

and Dmax is reached (Appendix C).

Correspondence Noise and Dmax

PLOS ONE | www.plosone.org 4 October 2012 | Volume 7 | Issue 10 | e42995



Equation 1 suggests that detectors tuned to larger displacements

would have larger catchment areas. Since the temporal interval for

optimal direction-discrimination performance (highest sensitivity)

using 2-field RDK is 17–42 ms and is largely independent of

displacement size [62], one interpretation of the above equation is

that detectors tuned to larger velocities would have larger

catchment areas and would hence be tuned to lower spatial

frequencies. This is supported by psychophysical studies reporting

shifts to lower spatial frequency mechanisms in the presence of

image motion (e.g. [63,64]) and by physiological studies of MT

neurons that show preferred speeds for RDK stimuli that are

highly correlated (r = 20.81) with preferred spatial frequencies of

these neurons and less correlated with their preferred temporal

frequencies (e.g Figures 10(E) and 10(F) in [65]).

When the first method of tiling (optimal tiling) was used for

sampling the stimulus plane, k was the only free parameter in the

model. When the stimulus plane was sampled by randomly

positioned local detectors (random tiling), the additional parameter

was the number of detectors used to tile the plane. However,

across the different stimulus conditions simulated, this additional

parameter was fixed at a pre-determined value of 1000 detectors

(please see section titled Preliminary Simulations), so that, even in the

case of random tiling, there was effectively only one free parameter

when trying to model the psychophysical data. The objective of

the simulations was to determine whether human performance for

discriminating direction of motion in RDKs could be modelled

across a wide range of stimulus parameters using effectively one

free parameter.

5. Minimalist approach to modelling could capture the
essence of the computation involved. There are many factors

that certainly contribute to human motion detection performance

that the model does not attempt to represent. Some of these are:

i. The profiles of the receptive fields of the motion detectors. All

dots falling within the catchment areas in our simulations are

weighted equally, i.e. the receptive field profile simulated is

cylindrical. A more realistic simulation would involve

Gaussian/Gabor receptive field profiles. However, it was felt

that this would not affect the outcome of the simulations; the

fundamental frequency of the cylindrical receptive field is the

prime determinant of the spatial filtering properties of the

model and the effects of varying the space constant of the

Gaussian receptive field profile would be qualitatively similar

to varying the radius of the catchment area. In addition, the

saving in computation time on account of this simplification

was enormous, particularly when the dot density was very

high.

ii. The area of integration of the global detectors. The global

detectors in our simulations integrate information over the

entire stimulus area, whereas the area over which integration

of motion information is efficient has been psychophysically

determined to have a radius of approximately 2 degrees [1].

This radius matches well with the receptive field sizes

measured for global motion detectors in MT/V5 [66].

However, the variation in receptive field sizes reported for

MT neurons in different studies is large (e.g. [9,22,53,67–69]).

The above factors (among others) have an influence on human

motion detection performance, but including these factors in the

model would introduce many more free parameters in the

simulations. We anticipated that the absence of a representation

of these in our minimalist model could be compensated for by

appropriate adjustments to k. Therefore, the radius of the

catchment area (R) obtained from the simulations should be seen

as the effective radius, which simulates the consequences of spatially

scaling the receptive fields of motion detectors, along with other

factors that are not explicitly represented in the model.
Comparison with previous models/approaches. Several

similarities and differences exist between the model simulated here

and previous approaches to simulating motion in RDKs:
1. Low-pass filtering. Previous studies have suggested low-

pass filtering of the individual fields before feature matching across

the filtered images [40,70]. The summing of the dots within each

catchment area is equivalent to low-pass filtering the image; the

larger the radius of the catchment radius, the lower the cut-off

frequency.
2. Feature matching. The feature matching stage of some of

the earlier models (e.g. [40,70]) is entirely eliminated in the current

simulations. This does away with the need for an algorithm for

feature matching in the filtered images. In this respect, the

simulations here are similar to those of [43].
3. Banks of spatio-temporal filters. The human motion

detecting system is presumed to consist of banks of spatio-temporal

filters [1]. Though only one set of filters are simulated, the

assumption made is that there exist banks of filters and the one

simulated, and hence used in the decision making process, is the

one that is expected to be most sensitive to the motion information

available in the stimulus.
4. Information limit/correspondence noise limit. When

the tiling of the stimulus plane is optimal, the performance of the

model is at its informational limit for a particular catchment area

radius (R). This is tested systematically in Appendix A.
Preliminary simulations. The model’s proportion of cor-

rect responses for a particular set of stimulus parameters was

determined by repeatedly presenting the model with instances of

stimuli having these fixed parameters and determining the

proportion of trials for which the model correctly identified the

direction of motion. Simulations indicated that 1000 repetitions (or

trials) were adequate to ensure repeatable model performance (see

Appendix A for simulation results). These simulation results also

indicated that model performance with optimal tiling of the

stimulus plane by the local detectors exceeded the model

performance with randomly positioned tiling of the local detectors,

as predicted above. In the simulation results presented in the rest

of this paper the local detectors randomly sampled the stimulus

plane. This was because the model performance with optimum

tiling was superior to human performance, particularly when the

coherence level was low (data not presented here, see Shafiullah,

2008). Furthermore the simulations showed that model perfor-

mance was close to its asymptotic level when 1000 local detectors

were used, and this number of local detectors was used in all of the

stimulus conditions of the main simulations, so that the number of

detectors was not a free variable when matching psychophysical

performance to model performance.

Results

The results of the observer’s performance for the direction

discrimination task in the RDK across a wide range of conditions,

but when the coherence level is 100%, are plotted in Figure 3A–C.

These show that, unless the conditions were such that the

performance was consistently nearly perfect (e.g. for smaller

displacements between 1 arcmin and 40 arcmin), in which case the

data is not shown, the probability of correctly identifying the

direction of motion for any given displacement diminishes as the

dot density increases across more than two orders of magnitude.

These data were then used to estimate Dmax for each observer

at each dot density. A graph of performance as a function of

displacement was produced for each dot density. A cumulative
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Gaussian function, scaled to fit between 50% and 100% correct,

was fitted to this data by varying the standard deviation (slope) and

mean (75% correct threshold) of the Gaussian. The displacement

corresponding to 75% correct performance estimated from the

fitted Gaussian was used to represent Dmax.

The estimated values of Dmax for each observer were then

plotted as a function of the dot density in Figure 4A. This showed

that Dmax diminished as a function of dot density in a predictable

way, well represented by a power function with a negative

exponent.

At the level of the raw data, i.e. the direction discrimination

performance for a known dot displacement and dot density, it was

possible to use the model to generate equivalent data once the

model had been constrained by a single parameter, the value of k.

From this it was possible to produce the model fits that are shown

in Figures 3D, 4B and 5 at different levels of the data analysis.

A. The Effect of Dot Density on Performance
Figure 3, panels A–C, shows the direction discrimination

performance from each of the three observers as a function of

displacement size, with dot density as a parameter. Figure 3 panel

D shows the fit of the model, when k was set to its optimum value

of 1.88 for fitting across all the data for the range of testing

conditions and averaging the performance across the observers

(see section below titled ‘‘Simulations of motion perception

performance’’ for details regarding the optimisation of k). This

was believed to be justified as the individual differences in

performance were small compared to the effects of the parameters

under investigation, namely displacement size and dot density. To

avoid clutter, 95% confidence intervals for the data points are not

shown but range from 68% at performance levels near the chance

level of 50% to 60% at 100% performance.

Each observer follows a similar pattern, with performance

diminishing with increasing dot density and with increasing

displacement size. The psychophysical data curves appear to

move to the left and steepen slightly in slope as dot density is

increased. The model’s performance show the same qualitative

effects of displacement size and dot density and match the slopes of

the functions reasonably accurately, considering the level of

uncertainty in each datum point and that the model has been fitted

to an average of the observers (see Figure 5 for data showing

average performance of the three observers) rather than each

individual. The position of each model fit curve along the abscissa

does not, however, match the psychophysical data for the

individual observers so well and it is evident that the model

requires further tuning to better match individual performances.

The scale of the effect of the dot density and displacement size on

performance was confirmed statistically using a repeated measures

two-way ANOVA on the psychophysical data from the three

observers. This showed significant effects of dot density

(F8,126 = 92.4, p,10248) and displacement size (F6,126 = 245.8,

p,10266) as well as a significant interaction (F48,126 = 3.44,

Figure 3. Effect of dot displacement size on human and model performance. Direction discrimination performance with an RDK and right
vs left motion for three observers (panels A–C) and the correspondence noise model (panel D) as a function of dot displacement size, with dot density
as a parameter. Squares and thick solid line: 0.13 dots/deg2, Diamonds and medium solid line: 0.27 dots/deg2, Triangles and thin solid line: 0.53 dots/
deg2, Squares and thick dashed line: 1.07 dots/deg2, Diamonds and medium dashed line: 2.13 dots/deg2, Triangles and thin dashed line: 4.27 dots/
deg2, Squares and thick dotted line: 8.53 dots/deg2, Diamonds and medium dotted line: 17.07 dots/deg2, Triangles and thin dotted line: 26.67 dots/
deg2.
doi:10.1371/journal.pone.0042995.g003
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p,1027). From the significant interaction it is evident that the

performance curves are not simply shifted versions of one another

and that a successful model must describe both the change in

abscissa position and the change in the slope of the function as dot

density is varied.

B. Estimating Dmax from Direction Discrimination
Performance

Both the modelled data and the psychophysical data were fitted

with cumulative Gaussian functions as explained earlier, and the

displacement that represented the 75% correct point on these fits

was used to define the value of Dmax for the given dot density and

observer (or model). This allowed us to investigate the effect of dot

density on Dmax for both the psychophysical data and for the

modelled data.

C. Effect of Dot Density on Dmax
Figure 4 shows how Dmax depends upon the dot density. In the

upper panel, showing the psychophysical results from the three

observers, the most apparent feature is the consistent reduction in

Dmax as dot density increases followed by a more gradual

reduction in Dmax as dot density increases further. This feature

would be even more apparent if dot density were plotted on a

linear scale. The individual differences in Dmax are also apparent,

especially at the lower dot densities where Dmax ranges between

approximately 150 and 175 arcmin.

The lower panel of figure 4 compares the averaged human

direction discrimination performance to the model direction

discrimination performance, by plotting experimental and model

values of Dmax as a function of dot density. When this is done, the

model closely corresponds with the human data over a three-fold

change in Dmax and a 200-fold change in dot density. Only at a

dot density of 0.13 dots/deg2 do the two data sets differ noticeably.

D. Simulations of Motion Perception Performance
Figures 3D and 4B show model performance once the optimal

value of k ( = 1.88) had been determined. The procedure for

determining this optimal value of k is described below. The process

to find the optimum value of k for the model began by visually

selecting the value of k that gave the best match between the

direction discrimination performance of the model and the

average human observer across the range of dot densities and

displacement sizes for which data was available. In this part of the

modelling, the different values of k were sampled very coarsely.

This visually determined value of k formed a preliminary estimate

of the scaling factor. Starting from this point, a range of five

separate k values in steps of 625% (0.1 log units, or 1dB) were

chosen and the model data generated from them at displacement

sizes of 60, 80, 100, 125 and 150 pixels and dot densities of 20, 80,

320, 1280 and 4000 dots per ESA. The ESA was sampled with

1000 randomly position local motion detectors and the direction

discrimination performance across 1000 trials of each combination

determined. A sum of residual error (expressed with a x2 statistic)

between the model and the average human data was calculated at

each value of k and these residual errors were plotted as a function

of k. This produced a U-shaped function that was fitted with a

quadratic equation. The k value at which this function reached a

minimum was chosen as the best fitting value of k.

Whilst the results from the modelling in aligning to the raw and

derived data in the figures presented so far have been supportive of

the model as an explanation for human visual motion direction

discrimination performance, it would be interesting to see more

explicitly the performance of the model under the range of

conditions under test, and to find a statistical metric to evaluate its

effectiveness at explaining the human data. To that end, figure 5 is

presented below.

When interpreting this figure it is important to note that only

one parameter in the model, k, was available to modify to

determine the best fit across all nine functions to the data and that

an average of the direction discrimination performance across the

three observers was used. The dashed and solid lines, representing

the best fitting cumulative Gaussian function to the data from the

average observer and from the model respectively, lie close to the

data points in all the functions except for at the highest dot density

of 26.67 dot/deg2 where human performance asymptoted above

50%.

The model fit was found to be an adequate fit to the human

performance data in 7 of the 9 functions (p-values indicated in the

individual panels of Figure 5). The model failed to satisfactorily

explain the human data at dot densities of 0.13 and 0.27dots/deg2.

In each case the model overestimated the human performance at

lower displacement sizes and fell as a function of displacement size

with a steeper slope. With these very sparse patterns and large

displacements the possibility of opportunistic feature tracking

arises, and this could preserve direction discrimination perfor-

mance beyond that predicted by considering only the correspon-

dence noise.

Figure 4. Effect of dot density on human and model Dmax. A.
The value for Dmax derived from the raw direction discrimination
performance data. Dmax is plotted as a function of dot density for each
of the three observers. Open circle MC; open square SN; open diamond
ST. Error bars show the 95% confidence interval for Dmax derived from
the fitting procedure. B. Open diamonds show the Dmax values derived
from the average performance of the three observers with the filled
squares indicating the values of Dmax derived from the model results of
direction discrimination performance as a function of displacement size.
The error bars are as for the top panel. When error bars are not present,
errors are smaller than the symbol size.
doi:10.1371/journal.pone.0042995.g004
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Figure 6 is a summative figure plotting the human direction

discrimination performance against the model direction discrim-

ination performance, using data from all 9 dots density levels and

the 5 displacement levels that were modelled. All points lie close to

the line of equality, shown by the solid thick line, and the data are

well represented by a linear fit where performance = 0.796model

performance +14% (r2 = 0.91). There is a marginal trend for the

model performance to exceed that of the human observers when

performance levels are high and for human performance to exceed

that of the model when performance is close to chance. A closer

inspection of Figure 5 indicates that the largest differences between

human and model performance are seen for lower dot densities

(first three panels) and smaller displacements (,100 arcmins).

These data would be mapped to the data points that fall furthest

from the line of equality towards the upper-right quadrant of

Figure 6, i.e. data corresponding to high human and model

performance. A potential explanation for the mismatch in

performances at lower dot densities and smaller displacements is

that the global detector in the model, which integrates information

over the entire stimulus, might be relatively more efficient than the

human global motion detectors that integrate efficiently over

regions of radius of approximately 2 deg [1]. The model’s relative

advantage in efficiency is presumably lost when the displacements

become large (as do the local detectors) and/or the dot density

becomes large as the model integrates increasingly noisy motion

information; the human observers integrate relatively less noisy

Figure 5. Comparison of human and model performance for different dot densities. Psychophysical (open symbols) and model (closed
symbols) direction discrimination performances are plotted as a function of displacement size. Panels, reading from left to right, then top to bottom,
display data from dot densities of 0.13, 0.27, 0.53, 1.07, 2.13, 4.27, 8.53, 17.07 and 26.67 dots/deg2. Model k = 1.88; Coherence level = 100%; 1000
random local detectors were incorporated in the model. Psychophysical performances were the average of three human observers and the error bars
show the range. Model performances were a result of 1000 trials at each data point and the error bars represent the 95% confidence interval. A fitted
cumulative normal function is shown by the solid lines (model data) and dashed lines (human data). The p-value of the x2 statistic was measured to
determine the strength of association between the psychophysical and model data and is displayed for each density.
doi:10.1371/journal.pone.0042995.g005
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information due to the smaller region of integration of the global

motion detectors. In summary, the model performance closely

matches that of human observers and any difference in the two is

most likely to be a consequence of the model having a single global

detector for each of the two directions of motion.

General Discussion

Barlow and Tripathy [1] systematically investigated the

influence of correspondence noise on threshold coherence in

kinematograms. The current study extends our understanding of

the influence that correspondence noise has on Dmax in

kinematogram stimuli which have all of the dots moved

coherently. Psychophysical performance measures were obtained

across a wide range of dot densities and displacement sizes, from

which Dmax was estimated over a wide range of dot densities. A

minimalistic model was proposed to compute performance based

on the correspondence noise in each stimulus. The model had two

parameters, the number of local detectors at the front end of the

motion detecting system that have receptive fields overlapping the

stimulus and the scaling factor k which determines the range of

displacements to which a particular detector responds. The

number of detectors used in the simulation was selected,

independently of any attempts at matching human performance

data, by choosing a number giving arbitrarily close performance to

the asymptotic level (see Preliminary Simulations). Only k was

adjusted in order to find a single value that would optimise

matching between the model and the human data across the entire

stimulus space investigated. This minimalistic approach success-

fully simulated motion discrimination performance across a wide

range of stimulus parameters (Figures 5 and 6).

The following sections discuss: the relation of this work to

previous psychophysical work on motion detection, the links

between the model proposed and earlier simulations of Dmax,

neurophysiological implications of the current work, and implica-

tions for statistical efficiency.

A. Relation to Previous Psychophysical Work
Several studies have investigated the effect of dot density on

Dmax (e.g. [5,42,43,71,72]). Most of these studies found that

Dmax increased systematically with decreasing dot densities,

particularly when the dot densities were very low. The exception

was the study by Baker and Braddick [5], which found no effect of

dot density on Dmax.

The most systematic study of the effect of dot density on Dmax

was by Eagle and Rogers [42]. They measured Dmax for patch

sizes varying between 2.6 and 645.2 deg2 and for dot coverage (i.e.

the proportion of the stimulus area occupied by the dots –

sometimes referred to as ‘‘dot density’’ in the literature) varying

between 0.025 and 50%. They found that dot coverage/density

had little effect on Dmax for their smallest patch sizes, but had a

substantial effect on Dmax when patch size was increased (also see

[43]). Eagle and Rogers [42] and Sato [43], both, attributed the

absence of an effect of dot density in the Baker and Braddick [5]

study to the small patch size (1.5360.77 deg) used in that study.

The stimulus in the current study had an ESA of 150 deg2 and

dot coverage ranging from 0.06% (20 dots) to 23.7% (4000 dots).

The stimulus that was the closest match from the Eagle and

Rogers [42] study was one with a patch height of 12.7 deg (area of

161.3 deg2) in their Figure 3. For this patch size and for our range

of dot coverage, the average Dmax for the three observers in the

Eagle and Rogers [42] study had a range <135–50 arcmin. The

corresponding range of Dmax in our study was 161–55 arcmin. In

addition, when Dmax and dot density are plotted on log-log axes,

Eagle and Rogers reported ([42], p. 2096) a slope of 20.2, which is

close to the slope of 20.22 seen when the lower panel of our

Figure 4 is replotted on log-log axes. In spite of differences in

stimulus conditions Dmax measures from the two studies are in

reasonable qualitative and quantitative agreement.

The simulations here suggest that the detection of large

displacements requires large detectors; large detectors have large

catchment areas; it is the noise from these large catchment areas

that limits performance.

B. Relation to Previous Simulations of Dmax
Several studies have proposed a low-pass filtering of the RDK

stimulus before motion detection takes place [40,42,43,70]. In our

modelling, the size of the catchment area of the local detectors

determines their spatial frequency tuning; the larger the catchment

area, the less sensitive it is to local variations in dot density or to

spatial detail. Counting the number of dots in each catchment area

is the equivalent of spatial filtering the stimulus; taking the product

of the number of dots in the two catchment areas is equivalent to

evaluating the motion in the local detector by counting the

number of potential motion vectors it sees. Thus our model, which

counts the number of dots in the two catchment areas and

multiples them, is analogous to the detection of motion in low-pass

filtered RDKs of earlier studies.

Though there are several similarities between our simulations of

Dmax and earlier ones, there are important differences. The most

elaborate of the previous simulations are presented in Eagle and

Rogers [40,42], and a comparison with these earlier simulations

will help to illustrate the novelty of our approach. While the

current approach represents significant improvements in the

modelling of Dmax, it must be recognised that the papers of

Eagle and Rogers [40,42] provided very fundamental insights into

disambiguating the ‘‘phase hypothesis’’ from the ‘‘informational

hypothesis’’. A comparison of the two approaches follows.
1. Model Complexity. In these earlier studies the stimulus

was pre-filtered with oriented Gabors and peaks were identified in

the filtered images; Dmax was proposed to be proportional to the

Figure 6. Comparison of human and model performance across
all conditions. Psychophysical vs model direction discrimination
performance pooling data from nine dot density levels and five
displacement levels. The thick solid line is the line of equality whilst the
thin solid line is the line of best fit, where human performance = 0.79 6
model performance +14% (r2 = 0.91).
doi:10.1371/journal.pone.0042995.g006
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mean 2-D spacing of the peaks. The complexity of the earlier

model means that there were a number of free parameters

available for fine-tuning the response: the Gabors are simulated as

a difference of two Gaussians, yielding two free variables for the

centre and surround space constants (sc and ss) and one free

variable (b) for the standard deviation of orientation tuning; the

constant of proportionality k that links Dmax to the mean 2-D

spacing of the peaks is an additional free variable. In contrast,

there were only 2 variables in our simulations: the number of local

detectors and the scaling factor k, and, after preliminary

explorations of the parameter space the first of these was fixed

at 1000 detectors, while the second was a free variable that was

used for simulating the entire data set. This does not imply that

spatial filtering does not occur in the motion detectors of the

human visual system. The goal of the current simulations is to

capture the essence of the computations underlying Dmax, in

particular, the scaling of the detector-size with increase in the size

of dot displacement, and the resulting increase in correspondence

noise and loss of performance. Adding spatial frequency filters to

the front end of the local detectors would have made the

simulations more realistic and improved the match between

human and model performance. However, our minimal model

highlights the principles that the simulation intends to capture.

2. Match of psychophysical and simulation results. Eagle

and Rogers [42] found their simulation results did not match their

psychophysical data qualitatively (compare their Figures 3 and 6),

and invoked contrast-effects at low dot densities in order to explain

the difference between data and simulations. In spite of our

minimalistic approach to modelling, our simulations were effective

in modelling the psychophysical data (our Figure 6). The

simulations had short-comings and these are evident in Figure 6,

with the model systematically underestimating the human

performance when performance is close to chance (i.e. when

displacements are significantly greater than Dmax) and overesti-

mating human performance when performance is close to

saturation (i.e. when displacements are smaller than Dmax).

However, our simple model accounted for 91% of the variance in

Figure 7. Effect of number of detectors on model performance. Modelled direction discrimination performance with an RDK and right vs left
motion for two displacement sizes (220 arcmin in panel A; 90 arcmin in panel B) and two dot densities (500 dots – filled triangles and horizontal solid
line; 4000 dots – filled squares and horizontal dashed line) as a function of the number of local detectors used to tile the effective stimulus area.
Horizontal lines show the performance when the local detectors optimally tiled the stimulus plane. Thin dashed lines represent three repetitions of
1000 trials each for each value of dot number and show repeatable model performance. The thicker curves and the filled symbols represent the
means of the three repetitions. Error bars are 6 one standard error.
doi:10.1371/journal.pone.0042995.g007
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human performance across the psychophysical parameter space

explored.
3. Performance for displacements different from

Dmax. The earlier studies make a point-value prediction of

Dmax, (i.e. given a stimulus with a particular dot-density, the

model proposed extracts the peaks in the filtered stimulus, and,

from their spacing, estimates Dmax), however, the model does not

predict performance of the human observer if the dot displace-

ment in the stimulus was 0.56Dmax or 1.56Dmax. In contrast,

the model proposed here estimates Dmax by predicting the

psychometric function as a function of dot-displacement, as seen in

Figure 5, and can predict human performance for dot-displace-

ments of a fraction, or a multiple, of Dmax.
4. Filter characteristics. The earlier studies utilised a single

set of filter characteristics to model Dmax; the size of the filter does

not change when the size of dot-displacement changes. The

current study assumes that there are banks of filters tuned to

different dot-displacements and the filters that are most responsive

to a particular dot-displacement are the ones tuned to that

displacement. Even though for any stimulus, the model response is

based on the output of the filter most sensitive to the coherent

displacement in the stimulus, the assumption is that there are a

host of filters in the visual system that are tuned to other

displacements that are not represented in our simulations because

we incorporate a winner-take-all strategy. In addition, the size of the

filter is scaled with the size of the displacement.
5. False matches. In the earlier model the false matches from

intervening dots between the two positions occupied by any signal

dot reduce Dmax. In contrast, in the current model, the critical

variable is not how many false matches lie between the two

positions occupied by a signal dot, but how many mismatches lie

close to the two positions across which co-relations are sought.

Eagle and Rogers [42] had difficulty explaining why their constant

of proportionality linking Dmax to the mean element spacing was

much larger than the maximum of 0.5 that would be predicted for

nearest-neighbour matching. In the current model the nearest-

neighbour concept has less significance compared to the earlier

model, and when k ,0.5, intervening dots that lie outside of the

catchment areas would make no contribution to the noise.

However, this distinction between the two models is obscured

when k .0.5 (as in the current simulations), since dots lying

between the two positions of a signal dot also lie within the bi-local

catchment areas of the local detector centred on those two

positions.

One of the short-comings of the model proposed in this study is

that it is not very realistic. There is only a single global detector for

each direction of motion and this is exactly matched to the

stimulus area. Having many global detectors and a mechanism for

combining information across these global detectors would make

the simulations more realistic, but would substantially increase the

number of free parameters in the model. While the addition of free

parameters would permit modelling the data more accurately, it is

likely that the complexity of the model would have masked the

simplicity of the computation. In our simulations all of these

additional potential complexities have been incorporated into a

single parameter k, and this simplified model gives a very good

account of the data.

C. Implications for the Neurophysiology of Motion
Detection

Barlow and Tripathy [1] proposed a vast array of filters in

cortical area MT, with each filter responding to different

combinations of parameters, such as size, direction of motion,

etc. The current study attempted to model Dmax assuming an

array of detectors tuned to different displacements. The success in

modelling Dmax with the simple model used here adds support for

the filter arrays proposed above. The large value of k ( = 1.88) used

in the simulations indicates that the detectors used were much

larger than the size of the displacement. Our detectors were

approximately 4.76 (L) and 3.76 (W) times the size of the

displacement in the stimulus. The large value of k is also consistent

with broad orientation tuning of the local detectors and the global

detectors that sum the outputs of these local detectors. The large

detectors and the broad directional tuning are both predicted by

the coarse tuning of motion detectors reported in Barlow and

Tripathy [1].

The simulations suggest that detectors that are tuned to large

displacements have large catchment areas, i.e. are tuned to low

spatial frequencies. This might explain why experiments that have

attempted to understand Dmax using spatially filtered stimuli,

have frequently yielded conflicting results. Most of the experiments

with filtered RDKs used fixed cut-off/centre frequencies for

low2/high2/band-pass filtering the stimulus (e.g. [52]). But the

simulations suggest that the spatial frequencies that are critical to

the stimulus change with the size of the displacement in the

stimulus. Therefore to fully understand the spatial frequencies that

are critical for direction discrimination, the design of experiments

that use spatially filtered RDKs should take into account the size of

displacement of the dots in the stimulus when selecting the filter

characteristics.

D. Implications for Statistical Efficiency
Barlow and Tripathy [1] reported efficiencies of about 30% for

detecting coherent motion under coarsely quantised stimulus

conditions. A variety of potential factors were listed as to why the

efficiency, even for the most coarsely quantised stimuli tested, was

well below 100%. The current study identifies an additional source

of efficiency loss to those identified in the previous study. Appendix

A shows that the model performed much better when the local

detectors were positioned optimally, compared to when the

detectors were randomly positioned. In the ideal observer

calculations in Barlow and Tripathy [1], it is presumed that

motion detectors are available at the appropriate positions to make

optimal use of the information presented in the stimulus. However,

the positioning of detectors in the human observer’s motion system

Figure 8. Effect of stimulus-detector mismatch. Modelled
direction discrimination performance with an RDK and right vs left
motion for 220 arcmin displacement size and two dot densities (500
dots – filled triangles and solid line; 4000 dots – filled squares and
dashed line) as a function of the mismatch between the local detector’s
catchment area separations and the stimulus’ dot displacement. Lines
are fits of Gaussian functions to the data.
doi:10.1371/journal.pone.0042995.g008
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is unlikely to be optimally matched to that of the stimulus. This

could result in significant losses in efficiency in the human motion

detection system.

Appendix

This Appendix summarises some of the preliminary simulations

conducted in order to understand the performance of the model.

These simulations explored the consequences for model perfor-

mance when varying variables such as the number of trials to be

simulated, the number of detectors to be used in the simulations,

the type of tiling, the mis-match between detectors and stimuli, etc.

Since these were exploratory simulations that were conducted

prior to actually fitting model performance to psychophysical

performance, some of the parameters used in the simulations

below do not match the parameters used in the simulations

described in the Results section. However, the simulation results

below illustrate the motivation behind some of the modelling

choices made and provided us valuable insight when performing

the simulations described in the section on Results.

A. Estimating the Appropriate Number of Trials and Local
Motion Detectors for Each Stimulus Condition

Simulations were carried out to estimate the number of

repetitions (or trials) necessary in order to ensure repeatable

model performance. The stimuli input to the model had 500 or

4000 dots presented within the ESA, with dot displacements being

220 arcmin or 90 arcmin across the two fields. The simulations

used the following model parameters: k was 0.5 (220 arcmin

displacement) or 1.0 (90 arcmin displacement); the number of

repetitions was set to 1000; the number of local detectors used in

the simulation was 100, 300, 1000, 3000, or 10000 when tiling was

random, and was the same as the number of stimulus dots (500 or

4000) when the tiling was optimal. For each combination of

number of stimulus dots, stimulus dot displacement, and number

of local detectors in the model, three repetitions of 1000 trials each

were conducted and the proportion of correct responses over each

set of 1000 trials was determined.

Figure 7, panels A and B show the simulation results for the 220

and 90 arcmin displacements respectively, with the number of

local detectors plotted on the abscissa and the model’s proportion

Figure 9. Influence of scaling factor (k) on model performance. Results for the model performance for a large range of k tested under two
different local-detector-tiling conditions: Panel A - optimally positioned local detectors; Panel B - randomly positioned local detectors with the
number of local detectors set to 1000. Two dot-densities were used in each tiling condition (500 dots – filled triangles and solid line; 4000 dots – filled
squares and dashed line).
doi:10.1371/journal.pone.0042995.g009
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of correct responses along the ordinate. The three dotted curves

along the filled triangles represent three repetitions of the

simulations for the 500-dots stimulus and the solid curve represents

the mean of the three individual curves. The three dashed curves

along the filled squares and the accompanying short-dashed curve

represent the equivalent simulation results for the 4000-dots

stimulus. The error bars, all smaller than the symbol height,

represent 61 SE. The horizontal solid and short-dashed lines are

the simulation results, when the tiling was optimal, for the 500-

and 4000-dots stimuli, respectively. Note that the numbers of

detectors in these simulations were 500 and 4000 respectively, but

they are shown as a line to facilitate comparison with the

asymptotic performance when the local detectors randomly tile the

stimulus plane. The overlap of the three repetitions of the

simulations, and the SEs indicate that 1000 trials were adequate to

obtain repeatable results and subsequent simulations used 1000

trials for each stimulus condition. In addition, subsequent

simulations used 1000 local detectors per stimulus as this gives

near asymptotic performance levels in each case.

It is apparent from Figure 7 that optimally positioned local

detectors outperform randomly positioned local detectors, even

when the number of randomly positioned detectors far exceeds the

number of dots in the stimulus. This assumption is more

thoroughly tested in [47].

B. Local Detectors that have Catchment Area Separations
Matched to the Dot-displacement Outperform Detectors
with Catchment Area Separations that are Mismatched to
the Dot-displacement

In these simulations a mismatch was deliberately introduced

between the catchment area separations in the model and the size

of the dot displacement in the stimulus. We anticipated that

performance of the model would drop as the mismatch was

increased.

The stimulus consisted of 500- or 4000-dots RDKs with a dot

displacement of 220 arcmin. The simulations used 1000 random-

ly-positioned local detectors, with k = 0.5. The mismatch of the

local detector’s catchment area separations to the dot displacement

was 65%, 610%, 620%, 640%, or 650% of the dot

displacement.

Figure 8 plots the percentage of correct responses as a function

of the mismatch of the catchment area separation to the size of dot

displacement. For the two dot densities, the Gaussian fits to the

data clearly indicate that the peak performance occurs at 0%

mismatch, i.e. when the separation of the catchment areas matches

the dot displacement.

C. Effect of k on Model Performance
In the simulations above k has been fixed at 0.5. Whilst this

appears to be a reasonable starting point, it is important to get an

idea of how the value of k influences the model performance over

the range of values at which we might be modelling. To this end,

for a known set of model stimulus conditions, i.e. dot densities of

500 dots and 4000 dots within the effective stimulus area, and a

displacement size of 220 pixels, we used 1000 trials to estimate the

model performance when the local detectors were positioned

optimally (in this case the number of local detectors matches the

number of dots) and when 1000 local detectors were positioned

randomly. The results are shown in panels A and B respectively in

Figure 9.

As seen previously, performance with the lower dot density is

consistently better, and it is of note that the shape of the various

curves showing how performance falls as k is increased is very

similar across conditions. Essentially, it should be possible to

match different model designs (optimal detector placing or

random detector placing) simply by altering the value of k that is

used.

As expected, increasing the value of k increases the correspon-

dence noise affecting the local motion detector and reduces

performance. It appears from panel B, where the local detectors

are randomly placed and mimic what we would expect to be

happening in the human visual system, that values of k in excess of

1 would not provide motion direction discrimination performance

above chance when the dot density is high. This limitation reflects

the large displacement size that is modelled here as human

observers were incapable of determining the direction of stimulus

motion in cases where the displacement size was beyond 150

arcmin. By lowering the displacement size, the range of values of k

that may be used in fitting human data will be extended at these

high dot densities.
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