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Bursty properties revealed in 
large-scale brain networks with a 
point-based method for dynamic 
functional connectivity
William Hedley Thompson & Peter Fransson

The brain is organized into large scale spatial networks that can be detected during periods of rest using 
fMRI. The brain is also a dynamic organ with activity that changes over time. We developed a method 
and investigated properties where the connections as a function of time are derived and quantified. The 
point based method (PBM) presented here derives covariance matrices after clustering individual time 
points based upon their global spatial pattern. This method achieved increased temporal sensitivity, 
together with temporal network theory, allowed us to study functional integration between resting-
state networks. Our results show that functional integrations between two resting-state networks 
predominately occurs in bursts of activity. This is followed by varying intermittent periods of less 
connectivity. The described point-based method of dynamic resting-state functional connectivity allows 
for a detailed and expanded view on the temporal dynamics of resting-state connectivity that provides 
novel insights into how neuronal information processing is integrated in the human brain at the level of 
large-scale networks.

The field of dynamic functional connectivity (dFC) in fMRI is still in its relative infancy where different 
approaches and methods have been proposed to isolate brain fluctuations in connectivity that have long been 
known to exist in the brain during rest1,2. There are multiple unresolved issues regarding which methodology 
is the better one and whether the fluctuations are statistically significant3,4 and which preprocessing steps that 
should be taken5.

Methods can be split into three approximate classes. The first derive connectivity estimates over a continuous 
section of the fMRI session, often using a sliding window6–10 but other methods exist, such as temporal deriva-
tives11. The second utilize individual time-points of the data to construct resting state networks12,13. These meth-
ods generally only use a proportion of the data, for example ref. 13 used 15 percent of the data. Recently, this class 
of methods has recently shown that short spontaneous event occur throughout the fMRI time course14. The third 
class do not require deriving covariance matrices, but instead classifying the fMRI signal in different ways. The 
most common from this class is temporal independent component analysis15.

In this work, we set out to quantify dynamic aspects of neuronal integration between resting state networks. 
While all approaches to investigate the dynamics of brain connectivity have their own methodological advantages 
and disadvantages, we aimed to develop a strategy that maximizes the temporal sensitivity, since this would allow 
us to take advantage of the recent methodological developments within temporal network theory16,17. Temporal 
network theory takes into account that connectivity (edges) between different regions of the brain (nodes) may 
not always be present and may change over time. Analogously, a person’s entire social network can be, and is 
often, represented as a static connectivity matrix, but then the temporal information of how frequently each 
person meets is then lost. However, this information can easily be represented in temporal network theory, where 
connections expressed in time will represent both who is connected and how often they meet. Temporal network 
theory opens up the possibility to quantify the nature of network integration as it evolves in time. However, to get 
to this stage, we need a method that is able to compute single time-point connectivity estimates as well as being 
sensitive to temporal fluctuations in brain connectivity.
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Given this background, we optimally want a method for dFC analysis that provides us with an estimate of 
connectivity that has high temporal sensitivity. To achieve this, we need to sample multiple time-points to get 
a robust estimate of the signal covariance. These two requirements are difficult to reconcile in a single method. 
The sliding-window method becomes a trade-off between the two, since increasing the temporal sensitivity (i.e. 
reducing the window length) will decrease the amount of points used in estimating the covariance, which comes 
at the cost of a more noisy estimate of the covariance. In this paper we propose the foundation for a point-based 
method (PBM), a framework that aims to provide high temporal sensitivity without the drawbacks that are inher-
ent to the sliding-window approach. The logic used here is to remove the restraint that the estimates of covariance 
require time-points to be “neighbors” to each other. Instead we propose to gather time-points to estimate the 
covariance by identifying clusters that consist of time-points that have a similar global spatial pattern and esti-
mating the covariance for each of these clusters. Thus, the PBM approach clusters time-points into similar spatial 
patterns and then compute the covariance for each of these clusters.

This framework for dFC analysis was developed to utilize temporal network theory. In this work, we focus on 
one particular property: bursts. Bursty properties in temporal network theory have been applied to a wide range 
of social activities18–21. Theoretically, bursty processes are characterized by a higher occurrence of both shorter 
and longer durations of inter-contact times (ICT, i.e. the time duration between consecutive time-points of con-
nectivity) than what is expected by chance alone (e.g. a Poisson distribution). Consider for example the simple 
case of a single dynamic, fluctuating degree of edge connectivity between two brain regions. Then, we say that the 
temporal pattern of connectivity between the two regions is bursty if the instances in time when the two regions 
are connected (ICTs) are characterized by a fat-tailed distribution where the probability of longer ICTs decays 
slowly. In contrast, a non-bursty process would either have a completely random presence of edge connectivity 
(i.e. follow a Poisson distribution), or possess a tonic/periodic connectivity pattern for which a presence of con-
nectivity is either constant or oscillating over time with a small temporal variance in ICT. In this work we show 
that between-network connectivity has a bursty connectivity profile.

Results
Illustration of the derivation of s- and t-graphlets.  Our aim is to construct a connectivity matrix per 
time point and then test whether the temporal pattern of connectivity for an edge is bursty. For this we developed 
a method which we first illustrate with a simplified example (see methods for technical details).

We use the term graphlet to describe multiple connectivity matrices over a non-nodal dimension. The nodal 
dimension here is spatial (i.e. ROIs/nodes represent different brain regions). The term graphlet is a useful concept 
when analyzing fluctuations of graph metrics over some variable (see ref. 22 where “f-graphlets” were created 
expressing network fluctuations over frequency). The method used here creates graphlets over states (s-graphlets) 
and time (t-graphlets).

In our simple example, we take the time series extracted from three ROIs in a single subject after preproc-
essing (Fig. 1A). The time-points can be grouped by clustering time points along the spatial dimensions using 
the k-means clustering method (k =​ 4) (Fig. 1B). We name the clusters “states”, which implies that each cluster 
contains time-points that have similar relative global configurations of the signal intensity between the ROIs. For 
each state, a connectivity matrix is created that is based on the covariance of all the time-points clustered in that 
state (Fig. 1C). This gives k number of unique connectivity matrices. The corresponding connectivity matrix for a 
state is called an s-graphlet. Clearly, the connectivity profiles among the four s-graphlets shown in Fig. 1C are dif-
ferent from each other. Of note, conventional network theory measures can be applied on s-graphlets (e.g. degree 
centrality, betweenness centrality and community detection, see ref. 23). Finally, a connectivity matrix is assigned 
to each time-point by applying a function on the derived s-graphlets. In this work, we use a simple t-graphlet 
derivation function where each time-point is identical to the s-graphlet corresponding to the cluster the time 
point was a part of (Fig. 1D, see also Supplementary Figure S1 for an illustrative example). With a time series of 
connectivity values, methods from temporal network theory can be applied (e.g. burstiness, persistency, temporal 
motifs, see ref. 16). Different strategies to derive t-graphlets from s-graphlets will each bring with them their own 
assumptions, advantages and disadvantages. The one used here is simple and utilizes only similar assumptions 
from conventional functional connectivity studies, but limits the span of the time series to k possible values (see 
discussion).

Results of k-mean clustering the spatial dimensions.  We leave our illustrative example and turn 
our attention to the full dataset (100 subjects from the Human Connectome Project24, resting-state fMRI, 1200 
time-points, 264 spatial dimensions, reduced to 67 spatial dimensions with PCA, 10 predefined networks). 
K-means clustering of time points along the spatial dimensions (k =​ 8) resulted in 8 different clusters. States iden-
tified were found across subjects (Fig. 2A). Some states generally occurred more frequently than others (Fig. 2B).

The clusters were derived from the BOLD time series of ROIs and it is important to consider how the ampli-
tude of signal varies between states. The average BOLD z-values for each ROI are shown in Fig. 2C for each of 
the eight derived states. From Fig. 2C, some trends can be observed. For example, in the slightly less occurring 
states (states 2 and 5, see Fig. 2A), all ROIs have their lowest and highest amplitudes respectively. Moreover, for 
state 4, the nodes/ROIs residing in the default mode network have on average higher BOLD amplitude than all 
other nodes. Caution is however needed in interpreting the amplitudes shown in Fig. 2C. It is important to keep 
in mind that clustering of the BOLD amplitude of ROI time series is based on the global spatial context (i.e. the 
relation to all 264 ROIs), not merely the signal intensity of one ROI. This claim is justified when considering the 
variance of the amplitude of ROI signal intensity time series (Fig. 3). The behavior exemplified in Fig. 3 shows 
similar intensities of a single time series being assigned to multiple different states, demonstrating that clustering 
is based on the relative global configuration between the ROIs.



www.nature.com/scientificreports/

3Scientific Reports | 6:39156 | DOI: 10.1038/srep39156

One final aspect regarding the clustering performance that might be of concern is what is happening when 
a state transition occurs. Two options are possible: Either the activity jumps in some non-linear fashion or that 
there is a gradual transition between states. By taking the average Euclidean distance of the signal intensity of all 
ROIs at successive time points preceding and following a state transition, we can observe that the largest differ-
ence occurs at the transition between states (Supplementary Figure S4). However, this distance between succes-
sive time points increases as a state transition approaches. This suggests that the dynamic evolution of the BOLD 
signal is a gradual change between states rather than an abrupt, nonlinear transitions. That being said, there is still 
a large difference between time points when there is a state change, entailing that a larger change occur at a point 
of state transition, justifying their classification.

Figure 1.  A schematic example that serves to illustrate the methodological framework used in this paper. 
(A) Z-values from three different regions of interest (ROI) during a single resting-state scan (demeaned and 
normalized by subtracting the mean and dividing by the standard deviation). (B) A 3D representation where 
each time-point is presented as a point in a three-dimensional space where each dimension represents the 
z-values of each of the three ROIs. Subsequently, k-mean clustering is performed which results in four clusters 
(color-coded). The individual clusters represent different states based on the underlying similarities in cluster 
space that is spanned by the time-series extracted from the three ROIs. (C) For each cluster derived in the 
step shown in B, a connectivity matrix between all ROIs is computed by means of a Pearson correlation that is 
based on all the time-points that belonged to that particular cluster. We name each connectivity matrix a state-
graphlet (s-graphlet) on which, if desired, standard (static) graph theoretical measures can be computed. (D) In 
a last step, we create a time-series of s-graphlets where they act as representative connectivity templates at each 
instance in time. We call the time-series of connectivity matrices temporal graphlets (t-graphlets). Lastly, on 
the t-graphlets, we apply temporal network theory to compute dynamical properties of functional resting-state 
connectivity.
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Significant differences in s-graphlet connectivity.  For each state/s-graphlet, all time-points that 
belonged to the corresponding cluster were used to compute the connectivity matrices between all ROIs as 
shown in Fig. 2D (see also Supplementary Figure S5 for a Kamada-Kwai spring-embedded plot of all states). 
The two s-graphlets with the least amount of time-points/image volumes attached to them (s-graphlets 2 and 5)  
show very visible increases in overall brain connectivity. Other differences between s-graphlets in Fig. 2D, 
although less apparent, can be observed. These differences can be see near both the diagonal, indicating differ-
ences in within-RSN connectivity, and away from the diagonal, indicating an increased degree of between-RSN 
connectivity.

The question whether the derived connectivity matrices for the different states are actually significant differ-
ences in functional connectivity is of importance. As noted in our simple example shown in Fig. 1, there is no 
built-in mechanism in the k-means clustering method that enforces s-graphlets/state connectivity matrices to be 
significantly different from each other. Hypothetically, the variance along the spatial dimensions for each state 
could be very similar between two clusters, which would result in s-graphlets that do not significantly differ from 
each other. To ensure that this was not the case, we tested for significant differences between all the s-graphlets 
using a data shuffling method (p <​ 0.001, two-tailed, FDR-adjusted).

Since the focus of our study was to examine the dynamics of network integration, we have chosen to present 
how the s-graphlets significantly differed from each other at the level of resting-state networks. A comparison of 
the proportion of varying edges of connectivity for all pair-wise combinations of resting-state networks for all 
eight s-graphlets is shown in Fig. 4. Each matrix shows the percentage of edges that is significantly larger in one 

Figure 2.  Distribution of image volumes (or equivalently, time-points) across states (s-graphlets) and 
subjects. (A) Percentage of image volumes in three representative subjects that were assigned to each of the 
eight states by means of k-mean clustering (number of clusters, k =​ 8). (B) Percentage of image volumes for 
all subjects that were assigned to each of the eight states. (C) Average Z-value over all assigned time-points in 
each state for each node. The colored bar at the bottom of the figure corresponds to the nodes assigned to each 
network. (D) Connectivity matrices for all states/s-graphlets using time-points concatenated across all subjects. 
The nodes in each connectivity matrix are ordered according to their designated resting-state network  
(DM - default mode, Vis - visual, Sa - Saliency, Au - Auditory, VA - ventral attention, SM - sensorimotor,  
FP - fronto-parietal attention, CO - cingulo-opercular, Sub - Subcortical, DA - dorsal attention, U - unassigned).
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s-graphlet compared to the other (same test as above). Taken together, the results shown in Figs 3 and 4 strongly 
suggest that the k-mean clustering of the resting-state fMRI data into 8 states/s-graphlets have yielded a parti-
tioning that separates the data into states that each have their own unique characteristics in terms of connectivity 
profiles, both at the level of individual edges between ROIs as well as for the ten a priori defined resting-state 
networks.

S-graphlets do not correlate with movement.  There is a possibility that at least one of the 
states/s-graphlets correlates with movement, as micro head-movement is known to be a major concern for rest-
ing state connectivity studies25,26. The relative amount of motion-afflicted time-points for each state/s-graphlet 
is displayed in Supplementary Figure S6. Although motion-afflicted time-points are present in all states, it can 
be seen that state 8, and to some small extent also states 2 and 7, had a slightly higher disposition for micro 
head-movement in relative measures compared to the other five states. So the question is if the relatively higher 
propensity for head-movement observed for state 8 should be taken as an indication it is a state that can be attrib-
uted to micro head-movements? When considering this possibility it is important to keep in mind that the num-
bers of motion-afflicted time-points provided in Supplementary Figure S6A are given as a percentage of the total 
number of time-points across subjects that had a FD-value higher than 0.5. Importantly, the average (across sub-
jects) number of time-points for which the FD-value was larger than the chosen threshold was 14.6 time-points 
per imaging session (1.2 percent of the total of 1200 time-points). For example, this implies that the number of 
approximately 330 image volumes deemed to be affected by micro-motion in state 8 as shown in Figure S6B cor-
responds, on average, to 4.32 time-points afflicted with micro head-motion per session. So, although the amount 
of motion-afflicted time-points differs between states, the difference in absolute terms is quite small, which sug-
gests that no particular state can be singled out as a state that is driven by micro head-movements.

Temporal sensitivity and state transitions.  The state assignment through time show quite quick tran-
sitions in three example subjects (Fig. 5A). For visual comparison, we performed a sliding window dynamic 
connectivity analysis with the same subjects (Fig. 5B). Note, the comparison with the sliding window analysis is 
illustrative of the different temporal scales of the two methods, but not quantitative in terms of the “states” iden-
tified by the methods and the sliding window method does not necessarily require identification of states. Rather, 
with this qualitative illustration, we merely wish to show that PBM is more appropriate to investigate quicker 
temporal properties.

The average duration for staying in a given state/s-graphlet is 6.3 scans or 4.5 seconds (Fig. 5C). Histograms 
that shows the full distribution of the duration for staying in each state is shown in Supplementary Figure S7.

Figure 3.  Assignment of states for resting-state fMRI data where state (color-coded) is plotted on top of 
the standardized BOLD time-series for three different ROIs in one representative subject (only the first 400 
time-points are shown). Each BOLD signal intensity time-point is assigned to one of the eight possible states 
by the point-based method. Here, it is important to point out the point-based clustering method does not result 
in a trivial partitioning of the time-series based on the amplitude of the BOLD signal. For an example, the first 
peak (t =​ 10 TR) in the first ROI (upper panel) with a Z-value greater than 0.5 is assigned to state 1 whereas a 
trough at t =​ 204 TR (Z-value less than −​0.5) is also assigned to state 1. Many other examples of this behavior 
can be found in Fig. 3, for example the second ROI (middle panel) has local trough at t =​ 240 TR and a peak at 
t =​ 300 TR that are assigned to the same state (state 3). Hence, the point-based method yields a complex pattern 
of states that are based on the global features of the space spanned by the ROI signal intensity time-courses 
using the PCA components as input.
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We then computed the transition probabilities between different states. The state transition probability matrix 
shown in Fig. 5D reveals that some states are more reachable than others. It is noteworthy that the two states 
that show an apparent high degree of connectivity across RSNs (s-graphlets 2 and 5, see Fig. 2C) are both highly 
likely to transfer into states 3 and 6 respectively, for which the global pattern of strength of connectivity for the 
visual, auditory, and motor networks are stronger in states 2 and 5 whereas the frontal-parietal and default mode 
networks harbor the opposite pattern. Moreover, we asked whether the probability of transitioning from a state 
to another correlated with the similarity between the corresponding s-graphlets. Using the normalized taxicab 
distance, we found that there is a negative correlation between the probability of transitioning from one state to 
another and the corresponding similarity in terms of distance between the two s-graphlets (Fig. 5E, ρ =​ −​0.3338, 
p =​ 0.0119), which speaks against the possibility that states are too short and that state transitions are abrupt and 
non-linear.

Bursty temporal properties of connectivity.  To explore the temporal network properties, an s-graphlet 
is assigned to each time point. The s-graphlet assigned is that which was derived from the cluster that the time 

Figure 4.  Difference in connectivity between s-graphlets at the level of resting-state networks. The results 
show that all s-graphlets have significant differences between resting state networks. Percent of edges between 
different resting state networks for each s-graphlet comparison where an edge was significantly larger in one 
state compared to the other (p 0.001, FDR adjusted).
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point was assigned to (see example shown in Fig. 1D). The series of connectivity matrices now express temporal 
information, becoming a t-graphlet, and thus allowing us to study how the differences in connectivity evolve in 
time. The t-graphlets were then converted into binary connectivity matrices (propertional threshold set at 5% 
and 10%).

We then tested whether the temporal pattern of connectivity was bursty, random or non-bursty. Non-bursty 
edges will have either tonic or periodic activation profiles. Edge examples of bursty and periodic/tonic 
inter-contact times (ICT) from a single subject are given in Fig. 6A. The empirical distribution of the ICT 
obtained from a single edge (pooled over subjects) was compared to a fitted Poisson and an approximated Pareto 
distribution (Fig. 6B). The ICT distribution shows a fat-tail, indicative of a bursty process.

We calculated the percentage of edges that showed either significantly bursty or periodic/tonic temporal pat-
terns of connectivity (p ≤​ 0.05, two-tailed). At both edge thresholds used (top 5 and 10 percent respectively), 
the results shown in Fig. 6C–F suggest that within-RSN connectivity (diagonal elements) contains a mixture 
of both periodic and bursty dynamic connectivity patterns. Perhaps rather unsurprisingly, a substantial part of 
within-RSN temporal connectivity, in particular so for the lower 10 percent edge threshold, is characterized by 
tonic patterns of connectivity. Although the between-RSN connectivity profiles also display a mixture of both 
tonic/periodic and bursty edges, the results shown in Fig. 6C–F suggest that between-network integration is 
dominated by bursty ICTs rather than tonic/periodic ICTs. The distribution of all bursty coefficients are shown in 
Fig. 6G. Here we see that many edges always remain below the magnitude threshold and get a value of −​1 (regard-
less of threshold choice) showing that they have tonic activation instead of periodic. Then there is a distribution 
of edges that is, for the most part, above 0 and show, to a varying degree, a more bursty connectivity pattern. By 
taking the average of the burstiness coefficient for all between-RSN edges and within-RSN edges (where an edge is 
present in at least one state) demonstrates that the between-RSN edges have a bursty coefficient (on average) and 

Figure 5.  Transition of state in resting-state fMRI time-series. (A) Example of the temporal transition of 
s-graphlet/state in three representative subjects (time is here expressed in TR (scans) =​ 0.72 seconds) using 
the point-based method of dynamic functional connectivity. (B) Corresponding temporal transition of state 
in the same subjects using the sliding window method (window length =​ 86.4 seconds). Note that although 
the coloring scheme used is the same for the two methods shown in panels A and B, this does not imply that 
the actual state connectivity patterns are identical. (C) The average (across subjects) duration (again expressed 
in TR) a subject stays in any given state (1–8) before a transition of state occur. Error bars depict the standard 
deviation. (D) Transition probability graph showing the probability that a transition of state occur between time 
t and t +​ 1. Each matrix row adds up to 100 percent. (E) The probability of the occurrence of a state transition 
versus the distance between two s-graphlets. The figure shows a significant negative correlation between the two 
(ρ =​ −​0.3338, p =​ 0.0119).
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Figure 6.  The burstiness of between- and within-resting-state brain connectivity. (A) An example of two 
bursty (red) and two periodic edges (blue) extracted from one representative subject while retaining the top 5 
percent of the strongest edges (only the first half of the fMRI session is shown). Line indicates the presence of 
the edge. Note that periodic edges of connectivity can always be present. (B) An example of the distribution of 
inter-contact times for a single edge of brain connectivity. Data from all subjects were included and the graph 
was cropped to show the inter-contact times up to 300 TRs (216 seconds). The dashed line shows a fitted Poisson 
distribution and the solid line shows an approximate Pareto distribution (T−α) with α set to 1.8 and T is the 
inter-contact times. The bursty nature of brain connectivity is evident by the fact that the distribution of inter-
contact times displays a heavy fat-tail with a varying degree of longer inter-contact time as well as a cluster of 
very short inter-contact times. This behavior is in stark contrast to the corresponding Poisson distribution.  
(C) Percentage of edges between each combination of resting-state networks that had a periodic temporal 
pattern (p ≤​ 0.05, two tailed). Note that the diagonal elements (within RSN-connectivity) had the majority of 
the periodic edges. (D) Percentage of edges between each RSN combination that had bursty edges (p ≤​ 0.05, two 
tailed) when keeping the top 5% of all edges. Note that the between-RSN integration shows a large presence of 
bursty connectivity. (E) Same as C but keeping the top 10% of all edges. (F) Same as D but keeping the top 10 
of all edges. (G) Distribution of burstiness coefficient over all edges for within and between networks for 5% 
and 10% threshold. (H) Average burstiness coefficient for all between-RSN edges and within-RSN edges when 
withholding the top 5% and top 10% of all edges (edges must be present in at least one time-point) showing a 
statistical difference between the two (p 0.05). Error-bars show standard deviation.
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the within-RSNs edges, on the other hand, have a tonic/periodic coefficient (see Fig. 6H). For both edge thresh-
olds (top 5 and 10 percent), there was a significant increase for the average between-RSN burstiness coefficient 
compared to the average within-RSN burstiness coefficient (p <​ 0.05).

The results shown in Fig. 6 support the view that the large-scale integration and the flow of information 
between resting-state networks are largely implemented in the form of bursts, i.e. an absence of connectivity 
for periods of time that are followed by bursts of activity during which an exchange in information between 
resting-state networks occurs. A possible concern is whether the bursty pattern was induced by the choice of k 
for k-means clustering. This concern is unwarranted, since a similar pattern of burstiness for between-network 
connectivity can be found when other k values are used (k = 5 and 12, see Supplementary Figure S8).

Discussion
The use of temporal network theory combined with the point-based approach to investigate dynamic resting-state 
fMRI connectivity has allowed us to gain new insights into dynamic brain connectivity. In particular, we have 
shown bursts in large-scale brain connectivity between resting state networks. However, the question whether 
the bursty activity identified in this work can be correlated with the underlying neuronal activity is still an open 
question that should be target in more detail in future research. Further, we have presented a novel framework 
for dFC, PBM, that in part builds upon previous methods12,13. However, several features of the proposed method 
make it suitable for investigating the temporal properties of resting-state fMRI data (e.g. incorporating the whole 
time series in the analysis). The fact that each correlation matrix at any time-point is not dependent on its imme-
diate neighbors, which allows for a greater temporal sensitivity in the analysis and does not require a window 
length parameter (but does require parameters for the chosen clustering method). Furthermore, we have shown 
that the fluctuating states have significantly different connectivity profiles, a property which the sliding window 
method has difficulties to achieve within one session4.

A considerable amount of resting state network analysis have focused on isolating different networks that 
presumably to some degree reflect different cognitive processes in the brain27. However, information still 
needs to be passed on between RSNs at some time-point. In recent years there has been an increased inter-
est to study the dynamic nature of the brain’s connections (which has been referred to the “dynome”28). The 
dynamics of between-RSN connectivity as revealed in the present work provides a rationale for why previous 
studies on resting-state fMRI unequivocally have found well segregated RSN but far less information regarding 
between-network integration, since its bursty nature would make it harder to detect in static connectivity studies.

One outstanding question is whether the bursts seen on a large-scale network level correspond to the bursty 
behaviour of neuronal spiking. It is well known that the BOLD is a neurovascular event that is rather sluggish 
in time and this might cast doubts on whether the rather fast transitions between states shown here are indeed 
feasible or reflect neuronal activity. It is an outstanding question whether, when a collection of single neurons 
display a bursting pattern of activity, and they repeatedly fire discrete groups (or bursts) of spikes, that this scales 
up to bursty connectivity that can be identified with fMRI. Further research is needed to understand the precise 
electophysiological correlates of the bursts isolated here from the BOLD signal. However, there is ample evidence 
that electrophysiological changes detected with EEG correlate with the BOLD signal12,29–34. Electrophysiological 
investigations of the temporal properties of brain signals have found fat tail/power law distributions in both 
EEG30 and MEG35–37 data which lends credence to the idea that similar temporal properties prevail in fMRI data.

There are several limitations and considerations that needs to be discussed in relation to the proposed method. 
First, we would like to emphasize the fact that any type of clustering algorithm can be used for the point-based 
method, but whichever clustering technique that is used, it bears its own disadvantages as well as advantages. We 
opted to use the k-means algorithm mainly due to its previous use on fMRI data and its simplicity. However, other 
methods are possible and we are noncommittal regarding the choice of k-mean used in PBM. We have shown that 
the global spatial dimensions are indeed being clustered but it remains to be shown which clustering technique 
that performs optimally in terms of detecting fluctuating connectivity between networks. It is possible that clus-
tering on more local features (e.g. taking nodes from just two RSNs) will better isolate dynamic features between 
these networks than considering the entire brain context. We, at present, consider the global clustering a prefer-
able strategy as it allows for the possibility of multiple networks integrating information (e.g. presumably, there 
should be a difference when the auditory and attention networks cooperate and when the visual, auditory and 
attention networks cooperate), but until a rigorous comparison of clustering the spatial dimensions is performed, 
it is difficult to provide a definite answer to this question. However, regardless which clustering method that turns 
out that have optimal performance, it can be substituted into the PBM framework presented here.

When the derived states transitioned we found a larger difference between the ROIs at successive time points. 
This is in line of slight non-linearities found in previous research behind state switches38.

Moreover, the cluster parameter needs to be selected and we believe that our choice of k =​ 8 is rather con-
servative and well in line with previous investigations of dynamic resting-state functional connectivity10,13. 
Yet our overall findings of bursty mode of between-network connectivity together with a largely period/
tonic mode of within-network communication were consistent for a wide range of choices of k (k =​ 5 and 
12, see Supplementary Figure S8). Further, our results could be reproduced in an independent dataset (see 
Supplementary Methods and Supplementary Figure S3). Taken together, we feel confident that our findings are 
not critically dependent on cluster dimensionality. There is a valid concern regarding our thresholding strategy 
used. It is possible that choosing a variance-based threshold over a magnitude based threshold prior to calculating 
the bursty coefficient could reveal more dynamics of the within-network connectivity39.

The creation of t-graphlets by only using corresponding s-graphlets into a time series limits the temporal 
variance in connectivity to the number of s-graphlets that exist. The question remains whether this mapping is 
reasonable? Our mapping scheme is fully compatible with the general underlying assumptions of functional con-
nectivity. We assume that an interaction between brain regions can be inferred from their degree of co-variance 
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and that by splitting the entire dataset into clusters based on their global context of brain connectivity, we can 
infer the variability of interaction at each of the states. We then add that each time-point is representative of the 
state it belongs too. Could this derivation of t-graphlets induce the bursty properties detected? In the worst case, 
this method may increase the number of shorter inter-contact times if the connectivity changes considerably 
during the, on average, 6.3 time points when a state persists. But it would not effect the longer inter-contact time 
points as each occurrence of a state should contain at least one volume (time point) prototypical of that state. This 
entails that the general distribution would still be preserved.

While the analysis pipeline presented here is a simple mapping procedure to illustrate the conceptual idea of 
the PBM framework, more complex methods of creating t-graphlets based on the clustering information and 
s-graphlets is indeed possible (e.g. deriving t-graphlets based on the weighting of s-graphlets from the distance 
from cluster centroids). Finally, while we have only investigated the property the burstiness of dynamic connec-
tivity, there is a wealth of possible measures from temporal network theory which can be applied.

In sum, we have presented a novel point-based method (PBM) that takes full advantage of the resolution pro-
vided by low TR resting-state fMRI. In doing so we have shown that measures derived from the theory of tempo-
ral graphs can be successfully applied to resting-state fMRI data. This has resulted in new insights regarding how 
functional integration between previously well-known and segregated resting-state networks occurs in time. The 
results from the point-based dFC method suggests that the functional integration between resting-state networks 
has a unique temporal pattern during resting-state conditions that encompasses short bursty periods of con-
nectivity. We believe that the presented method holds promise to be used as a versatile tool to quantify dynamic 
network integration between segregated networks during different experimental conditions.

Methods
Data used, regions and subgraphs of interest, pre and post-processing.  The 100 subject data-
set from the Human Connectome 500 subject release was used24,40. We used the first resting state session RL 
(i.e. phase-encoding gradient in the right-left direction). Further information regarding the MR acquisition 
parameters can be found in refs 24 and 41. The data had undergone image preprocessing and removal of arti-
facts from non-neuronal origins by means of the FIX ICA (FMRIB’s Independent Component Analysis-based 
X-noisifier) data artifact rejection process which removed ICA components from the data that were considered to 
constitute signal contributions from white matter, cerebro-spinal fluid, head movement, cardiac and respiratory 
sources40,42–44). The data consisted of 1200 time-points per subject (TR =​ 0.72).

264 spherical Region-of-Interests (ROI) with a radius of 10 mm defined along cortex and sub-cortical nuclei was 
used (with the centers taken from ref. 45). Each ROI was assigned to a resting state network (as described in ref. 46). 
The 10 resting-state network definitions used were: DM–default mode (58 nodes), SM–sensorimotor (35 nodes), 
Vis–visual (31 nodes), FP–fronto-parietal attention (24 nodes), Sa–saliency (18 nodes), CO–cingulo-opercular (14 
nodes), Au–auditory (13 nodes), Sub–cortical network (13 nodes), DA–dorsal attention (11 nodes), VA-ventral atten-
tion network (9 nodes) and unassigned (38 nodes). The layout of the nodes is shown in Supplementary Figure S2.

To minimize the effect of movement25,26, “scrubbing” was performed. The framewise displacement (FD) for 
each image volume was computed (rejection at FD >​ 0.5). Rejected volumes were deleted and missing data esti-
mated using a cubic spline interpolation. On average, 1.2% of volumes were rejected per subject. A band-pass fil-
ter (0.01–0.1 Hz) was applied, typical in resting-state fMRI studies. time series were transformed into Z-values by 
subtracting the mean and dividing by the standard deviation. The time series were concatenated across subjects 
along the temporal dimension before clustering.

A point-based method to study dFC.  We applied a Principal component analysis (PCA) to the fMRI 
ROI signal intensity time series which reduced the spatial dimensionality of the data to 67 dimensions, which 
accounted for 85% of the variance. This dimensionality reduction was done to improve clustering performance. 
The choice of 85% is relatively arbitrary and was chosen due to a trade off between keeping a large amount of the 
original data and computational time.

K-mean clustering was performed with k set between 2 and 19, where k is the number of clusters the data is 
split into. For each value of k, we performed up to 1000 iterations to reach convergence, and each choice of k was 
repeated 20 times to overcome possible initiation differences. K-mean clustering requires a choice of the param-
eter k. We opted for k =​ 8, a choice that resonates well with the choices made in previous work that have used 
clustering techniques to investigate dynamic fMRI connectivity10,13. Our justification for the choice of k was jus-
tified using a separate dataset for which similar spatial patterns were obtained (see Supplementary Information). 
To further minimize the possibility that our results are influenced by k, key results were reproduced using other 
choices of k (k =​ 5 and 12).

Creating s-graphlets and t-graphlets.  State-graphlets (s-graphlets) express the connectivity patterns in 
each of the k states. They were constructed by taking the Pearson correlation coefficient between each of the 
264 ×​ 264 ROI pairs for time-points that belonged to each cluster. This procedure yielded 8 s-graphlets and as per 
convention with the chosen ROI template, the correlation between ROIs with centers less than 15 mm was set to 
0, a step taken to prevent an abundance of local connectivity45.

To test for significant differences in connectivity among s-graphlets, the null hypothesis was “there was no 
difference in the connectivity between the states derived through the k-means clustering”. For each cluster pair 
comparison, a non-parametric Monte Carlo test shuffled time point membership between the clusters, preserv-
ing the number of points as in the original clusters. At each permutation, the differences was created by deriv-
ing two s-graphlets and subtracting one from the other. After 10,000 permutations, each an edge between two 
s-graphlets was then compared to its distribution of differences (p <​ 0.001, two tailed, FDR-adjusted for all edges 
and s-graphlet comparisons).



www.nature.com/scientificreports/

1 1Scientific Reports | 6:39156 | DOI: 10.1038/srep39156

Temporal-graphlets (t-graphlets) were subsequently constructed as a time series of connectivity matrices for 
which each time-point was assigned to a s-graphlet, see also the illustration given in Fig. 1. The assignment of a 
s-graphlet to a particular t-graphlet was dependent on which cluster that time-point belonged to in the clustering 
step. For each subject, 1200 t-graphlets were created. Each edge in a t-graphlet has k possible values that it can 
take.

Transition Probabilities.  The probabilities of transition from one state to another were derived from each 
subject’s time series of connectivity matrices, i.e. their time series of t-graphlets. Only time-points when a transi-
tion between states/s-graphlets occurred were considered.

Sliding window analysis.  To qualitatively compare the temporal sensitivity of our method, we contrasted 
it with dynamic connectivity measured using the sliding window method. For this comparison, the same data 
and post-processing steps were used. The covariance between each ROI was computed, for each subject using a 
window length of 120 time-points (86.4 seconds), comparable to the window lengths used in the sliding window 
literature (see refs 33 and 47). Next, the time window was slid one time point down and a new connectivity matrix 
was computed. This continued until the end of the time series. We then classified the sliding window connectiv-
ity estimates into states with k-mean clustering, which was applied to each subject (k =​ 8 and followed the same 
procedure as above). Since the dimensionality was large, the dimensions were reduced using PCA prior to the 
clustering. 30 spatial components were retained, which accounted for more than 95% of the variance.

Computing Burstiness.  Burstiness measures whether the presence of network edges are characterized by 
an occurrence of very brief inter-contact times (ICT) intertwined with longer varying ICTs. For a given edge in 
a network, the inter-contact time is defined as the time duration between consecutive presences. To calculate 
the ICTs, we first thresholded and binarized the t-graphlets. We only included edges that displayed larger con-
nectivity. A proportion of the highest edges in a t-graphlet were kept. To increase the robustness of our results, 
we calculated using a threshold of top 5% and 10% of all edges per t-graphlet. An edge’s ICTs were calculated by 
counting the temporal distance (in samples) between the presence of an edge’s connections. As a final step, the 
ICTs for an edge were pooled over subjects. The bursty coefficient used here was taken from Goh & Barabási19,16 
and is calculated by:

σ µ

σ µ
=

−

+
τ τ

τ τ

B
(1)

ij

where στ, and μτ are the standard deviation and the mean of the ICTs, respectively. Burstiness is calculated for 
each edge ij. Bij’ s value ranges between −​1 and 1. When Bij >​ 0, it indicates a bursty pattern. Bij <​ 0 implies a more 
tonic/periodic pattern of brain connectivity with less variability in ICTs. Values centered at 0 suggest that connec-
tivity occurs randomly over time.

Statistical tests for burstiness used Monte Carlo non-parametric tests to shuffle the data, which is one of the 
standard practices of creating null models in temporal network theory16. To test for significant burstiness, our null 
hypothesis was: “the distribution of ICTs followed a Poisson distribution that contained neither tonic/periodic 
nor bursty ICTs”. A distribution from 200 permutations was created where the temporal order of the thresholded 
t-graphlets was shuffled to create new ICTs for each permutation. This was done for all edges. To circumnavigate 
for the multiple comparison problem, we used the maximum and minimum permuted value (taken over all 
edges), to compute distributions of ICTs for which the empirical values could be compared against. For an edge 
to be considered bursty, its value had to be above 0 and equal or higher than the 195th highest permuted value 
from the maximum distribution (p ≤​ 0.05, two-tailed). For an edge to be considered periodic/tonic, it had to 
have a value of less than 0 and equal or lower than the 5th lowest permuted value from the minimum distribution 
(p ≤​ 0.05, two-tailed). We used a significance threshold of p ≤​ 0.05 due to the possibility of all permuted values 
and the empirical values being −​1 (i.e. the edge is always present). The choice of 200 permutations was due to 
computational restraints.

Finally, we tested whether there was a difference in the bursty coefficient for between-RSN versus within-RSN 
edges. Here, the null hypothesis was “there was no difference in the average between-RSN and within-RSN bursty 
coefficients”. To test this, a non-parametric permutation test was created by shuffling whether an edge was designated 
as “within” or “between” RSNs, preserving the number of edges in both groups. The empirical difference between 
average between-RSN and within-RSN values was compared to the distribution of the differences after 1000 permu-
tations. Values larger than the 975th highest permuted value was classed as significant (p <​ 0.05, two tailed).
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