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Dengue is a vector-borne infectious disease endemic in many parts of the world. The disease is spreading in new places due to
human movement into the dengue disease supporting areas. Temperature is the major climatic factor which affects the biological
processes of the mosquitoes and their interaction with the viruses. In the present work, we propose a multipatch model to assess
the impact of temperature and human movement in the transmission dynamics of dengue disease. The work consists of system
of ordinary differential equations that describe the transmission dynamics of dengue disease between humans and mosquitoes.
Human population is divided into four classes: susceptible, exposed, infectious, and recovered. Mosquito population is divided into
three classes: susceptible, exposed, and infectious. Basic reproduction numberR0 of the model is obtained using Next-Generation
Matrix method. The qualitative analysis of the model is made in terms of the basic reproduction number. Parameters used in the
model are considered temperature dependent. Dynamics of vector and host populations are investigated with different human
movement rates and different temperature levels. Numerical results show that proper management of human movement between
patches helps reducing the burden of dengue disease. It is also seen that the temperature affects the transmission dynamics of the
disease significantly.

1. Introduction

Dengue disease is a vector-borne viral infection that usually
occurs in tropical and subtropical countries. Nowadays, the
disease has been recognized in over 100 countries and an
estimated 50–100 million dengue cases occur annually. The
disease is threatening about 40% of theworld’s population [1].
The disease is transmitted by the bites of infected mosquitoes
named Aedes aegypti and Aedes albopictus. Four serologically
different viruses DEN 1–DEN 4 cause the disease. Infection
from one serotype grants life-long immunity to that strain
and also shows temporary cross-immunity to the others.
However, ultimately the recovered patient will become more
susceptible to the other three forms [2, 3].We assume that the
infectivity of the mosquitoes ends with their death since they
have a short lifespan.

Mathematical modeling has become an interesting tool
for the understanding of epidemic diseases and to propose

strategies to control the transmission of the disease. In
1927, Kermack and McKendrick developed an SIR model to
describe epidemic diseases [4]. The model is being followed
bymany researchers to investigate the transmission dynamics
of infectious diseases with some modifications. Esteva and
Vargas proposed the SIR model to address dengue disease
transmission considering constant and variable human pop-
ulations [5, 6]. Since then many mathematical models have
been proposed to study different aspects of dengue disease
transmission. Authors [7, 8] discussed the role of awareness
in controlling dengue disease transmission. Pinho et al.
used a mathematical model for dengue disease transmission
analysis comparing two dengue epidemics [9]. Authors [10–
14] focused on incubation period to study dengue disease
transmission. Sardar et al. discussed a mathematical model
of dengue disease transmission with memory. They incorpo-
rated memory in the model by using a fractional differential
operator [15].

Hindawi
Computational and Mathematical Methods in Medicine
Volume 2017, Article ID 1747134, 9 pages
https://doi.org/10.1155/2017/1747134

https://doi.org/10.1155/2017/1747134


2 Computational and Mathematical Methods in Medicine

Dengue infections are sensitive to the climate. Changing
climate factors affect the potential for the geographic spread
and future dengue disease. One of the principal determinants
of Aedesmosquitoes’ survival is temperature which has been
associated with seasonal changes. The temperature plays
an important role in the life cycle and behavior of the
mosquitoes. So, mathematical studies have been made to
understand the role of temperature in transmission dynamics
of dengue disease. Brady et al. modeled Aedes aegypti and
Aedes albopictus survival at different temperature levels in
laboratory and field settings [16]. Liu-Helmersson et al.
studied the vectorial capacity of Aedes aegypti and made
investigations on the effects of temperature and implica-
tions for global dengue epidemic potential [17]. Polwiang
discussed the seasonal basic reproduction number of dengue
and impacts of climate on transmission of the disease
[18].

Travel and transport contribute to the spread of infectious
diseases like dengue in new places. So, one of the major
factors contributing to the reemergence of infectious diseases
is human movement from one place to the other. They
help the disease in expanding their geographic range. Many
mathematical models are proposed to address the impact
of movement of humans and dispersal of vectors in the
transmission dynamics of infectious diseases. Wang and
Zhao discussed an epidemic model in patchy environment to
describe the dynamics of disease spread amongpatches due to
population dispersal [19]. An epidemic model was proposed
by Wang and Mulone to describe the dynamics of disease
spread between two patches due to population dispersal.
They proved that reproduction number is a threshold of the
uniform persistence and disappearance of the disease [20].
Arino and van den Driessche gave some analytical results for
amodel that describes the propagation of a disease in a popu-
lation of individuals who travel between 𝑛 patches [21]. Hsieh
et al. proposed a multipatch epidemic model to study the
impact of travel of humans on the spread of disease between
patches with different level of disease prevalence [22]. Cos-
ner et al. investigated the effects of human movement on
the persistence of vector-borne diseases [23]. Dynamics of
malaria disease was studied in patchy environment by Auger
et al. They generalized Ross-Macdonald model to 𝑛-patches
to describe the transmission dynamics of the disease [24].
Lee and Castillo-Chavez [25] and Phaijoo and Gurung [26]
discussed dengue disease transmission dynamics in patchy
environment.

Temperature influences dengue disease dynamics by
affecting dynamics of mosquitoes and vector host interac-
tions. Dengue disease has been spreading rapidly to new areas
via human movement. So, in the present work, we propose
a multipatch SEIR-SEI model of dengue disease considering
the temperature dependent model parameters to study the
impact of temperature and movement of humans on the
persistence of dengue disease. We have considered different
temperature levels and different movement rates in different
patches. Basic reproduction number of the individual patches
and a combined basic reproduction number are computed.
Local stability of disease-free equilibrium point is proved by
basic reproduction number.

2. Model Description and Formulation

The total human (host) population in each patch is sub-
divided into the classes: susceptible 𝑆ℎ𝑖 , exposed 𝐸ℎ𝑖 , infec-
tious 𝐼ℎ𝑖 , and recovered 𝑅ℎ𝑖 . Mosquito (vector) population
is subdivided into the classes: susceptible 𝑆V𝑖 , exposed 𝐸V𝑖 ,
and infectious 𝐼V𝑖 , 𝑖 = 1, 2, 3, . . . , 𝑛. Recovered class in the
mosquito population is not considered due to their short
lifespan.

The recruitment rate of host population is𝐴ℎ𝑖 . Susceptible
hosts get infected by infectious vectors at the rate 𝑏𝑖𝛽ℎ𝑖 𝐼V𝑖 /𝑁ℎ𝑖 ,
where 𝑏𝑖 is the biting rate and 𝛽ℎ𝑖 is the transmission probabil-
ity from vector to host. The exposed host becomes infectious
at the rate ]ℎ𝑖 after developing the symptoms. Infectious host
recovers at the rate 𝛾ℎ𝑖 . Host dies naturally with the rate 𝑑ℎ𝑖 .
In case of vector population, susceptible vector gets infected
by interaction with infectious hosts at the rate 𝑏𝑖𝛽V𝑖 𝐼ℎ𝑖 /𝑁ℎ𝑖 .The
exposed vector becomes infectious at the rate ]V𝑖 developing
the symptoms of the disease. 𝑑V𝑖 is the natural death rate of
vectors.

Here, the model parameters 𝑏𝑖, 𝛽ℎ𝑖 , 𝛽V𝑖 , 𝑑V𝑖 , and ]V𝑖 are tem-
perature dependent. The temperature dependency relations
are discussed below [17, 18]:

𝑏𝑖 (𝑇) = 0.0043𝑇 + 0.0943 (21∘C ≤ 𝑇 ≤ 32∘C) ,
𝛽V𝑖 (𝑇)
= {{{

0.0729𝑇 − 0.9037 (12.4∘C ≤ 𝑇 ≤ 26.1∘C) ,
1, (26.1∘C < 𝑇 < 32.5∘C) ,

𝛽ℎ𝑖 (𝑇) = 0.001044𝑇 (𝑇 − 12.286)√32.461 − 𝑇,
(12.286∘C < 𝑇 < 32.461∘C) ,

]V𝑖 (𝑇) = 4 + 𝑒5.15−0.123𝑇, (12∘C < 𝑇 < 36∘C) ,
𝑑V𝑖 (𝑇)
= 0.8692 − 0.159𝑇 + 0.01116𝑇2 − 3.408 × 10−4𝑇3
+ 3.809 × 10−6𝑇4, (10.54∘C ≤ 𝑇 ≤ 33.41∘C) .

(1)

We consider humanmovement between the patches. Human
of patch 𝑖 moves to patch 𝑗 at the rate 𝑚𝐶𝑗𝑖 and the human of
patch 𝑗moves to patch 𝑖 at the rate𝑚𝐶𝑖𝑗 . Here 𝑖, 𝑗 = 1, 2, 3, . . . , 𝑛
and 𝐶 represents 𝑆, 𝐸, 𝐼, and 𝑅, respectively for susceptible,
exposed, infectious, and recovered human movement rates.

The system of ordinary differential equations describing
the present multipatch model [22] is given by

𝑑𝑆ℎ𝑖𝑑𝑡 = 𝐴ℎ𝑖 − 𝑏𝑖𝛽
ℎ
𝑖𝑁ℎ𝑖 𝑆ℎ𝑖 𝐼V𝑖 +

𝑛∑
𝑗=1

𝑚𝑆𝑖𝑗𝑆ℎ𝑗 − 𝑛∑
𝑗=1

𝑚𝑆𝑗𝑖𝑆ℎ𝑖 − 𝑑ℎ𝑖 𝑆ℎ𝑖 ,
𝑑𝐸ℎ𝑖𝑑𝑡 = 𝑏𝑖𝛽

ℎ
𝑖𝑁ℎ𝑖 𝑆ℎ𝑖 𝐼V𝑖 +

𝑛∑
𝑗=1

𝑚𝐸𝑖𝑗𝐸ℎ𝑗 − 𝑛∑
𝑗=1

𝑚𝐸𝑗𝑖𝐸ℎ𝑖
− (]ℎ𝑖 + 𝑑ℎ𝑖 ) 𝐸ℎ𝑖 ,



Computational and Mathematical Methods in Medicine 3

𝑑𝐼ℎ𝑖𝑑𝑡 = ]ℎ𝑖 𝐸ℎ𝑖 + 𝑛∑
𝑗=1

𝑚𝐼𝑖𝑗𝐼ℎ𝑗 − 𝑛∑
𝑗=1

𝑚𝐼𝑗𝑖𝐼ℎ𝑖 − (𝛾ℎ𝑖 + 𝑑ℎ𝑖 ) 𝐼ℎ𝑖 ,
𝑑𝑅ℎ𝑖𝑑𝑡 = 𝛾ℎ𝑖 𝐼ℎ𝑖 +

𝑛∑
𝑗=1

𝑚𝑅𝑖𝑗𝑅ℎ𝑗 − 𝑛∑
𝑗=1

𝑚𝑅𝑗𝑖𝑅ℎ𝑖 − 𝑑ℎ𝑖 𝑅ℎ𝑖 ,
𝑑𝑆V𝑖𝑑𝑡 = 𝐴V

𝑖 − 𝑏𝑖𝛽V𝑖𝑁ℎ𝑖 𝑆V𝑖 𝐼ℎ𝑖 − 𝑑V𝑖 𝑆V𝑖 ,𝑑𝐸V𝑖𝑑𝑡 = 𝑏𝑖𝛽
V
𝑖𝑁ℎ𝑖 𝑆V𝑖 𝐼ℎ𝑖 − (]V𝑖 + 𝑑V𝑖 ) 𝐸V𝑖 ,𝑑𝐼V𝑖𝑑𝑡 = ]V𝑖𝐸V𝑖 − 𝑑V𝑖 𝐼V𝑖 ,

(𝑖, 𝑗 = 1, 2, 3, . . . , 𝑛, 𝑖 ̸= 𝑗) ,
(2)

where

𝑆ℎ𝑖 (𝑡) + 𝐸ℎ𝑖 + 𝐼ℎ𝑖 (𝑡) + 𝑅ℎ𝑖 (𝑡) = 𝑁ℎ𝑖 (𝑡) ,
(Total host population of patch 𝑖 in time 𝑡) ,

𝑆V𝑖 (𝑡) + 𝐸V𝑖 + 𝐼V𝑖 (𝑡) = 𝑁V
𝑖 (𝑡) ,

(Total vector population of patch 𝑖 in time 𝑡) .
(3)

3. Equilibrium Point and Stability Analysis

In this section, we find disease-free equilibrium (DFE) of the
system of (2) and discuss its stability. An equilibrium is said
to be disease-free if there is no infective population in both
host and vector populations.

Theorem 1. Model (2) has a unique disease-free equilibrium.

Proof. In disease-free situation, 𝑆ℎ𝑖 = 𝑆ℎ∗𝑖 > 0, 𝑆V𝑖 = 𝑆V∗𝑖 > 0
and other variables 𝐸ℎ𝑖 = 0, 𝐸V𝑖 = 0, 𝐼ℎ𝑖 = 0, 𝐼V𝑖 = 0, and 𝑅ℎ𝑖 = 0
for 𝑖 = 1, 2, 3, . . . , 𝑛.

System of (2) for host population in disease-free situation
can be written as

𝑋𝑆ℎ∗ = 𝐴ℎ, (4)

where

𝑋 = diag(𝑑ℎ𝑖 + 𝑛∑
𝑗=1

𝑚𝑆𝑗𝑖) −𝑀𝑆,

𝑀𝑆 =
[[[[[[[[

0 𝑚𝑆12 ⋅ ⋅ ⋅ 𝑚𝑆1𝑛𝑚𝑆21 0 ⋅ ⋅ ⋅ 𝑚𝑆2𝑛... ... d
...

𝑚𝑆𝑛1 𝑚𝑆𝑛2 ⋅ ⋅ ⋅ 0

]]]]]]]]
,

𝐴ℎ = [𝐴ℎ1, 𝐴ℎ2, . . . , 𝐴ℎ𝑛]𝑇 ,
𝑆ℎ = [𝑆ℎ∗1 , 𝑆ℎ∗2 , . . . , 𝑆ℎ∗𝑛 ]𝑇 .

(5)

System of (2) for vector population in disease-free situation
can be written as

𝑌𝑆V∗ = 𝐴V, (6)

where

𝑌 = diag (𝑑V𝑖 ) ,
𝑆V = [𝑆V∗1 , 𝑆V∗2 , . . . , 𝑆V∗𝑛 ]𝑇 ,
𝐴V = [𝐴V

1, 𝐴V
2, . . . , 𝐴V

𝑛]𝑇 .
(7)

Since the matrix 𝑋 has all off-diagonal entries negative and
each column sum is positive, 𝑋 is nonsingular 𝑀-matrix.
Matrix 𝑋 is irreducible as the matrix has nonzero diagonal
elements. So, 𝑋 must have positive inverse [27]. Hence, the
system of (4) has a unique solution 𝑆ℎ∗ = 𝑋−1𝐴ℎ > 0.

Again, matrix 𝑌 is a diagonal matrix with positive diago-
nal elements. So, 𝑌−1 exists with positive diagonal elements.
Hence, the system of (6) has a unique solution 𝑆V∗ = 𝑌−1𝐴V

and system (2) has a unique disease-free equilibrium.

Basic Reproduction Number.When a typical infective is intro-
duced into a completely susceptible population, the expected
number of new infections produced by this single infective
during its infectious period is called basic reproduction
number.

To find the mathematical expression for the basic
reproduction number, we order the variables related to
the infections by 𝐸ℎ1 , 𝐸ℎ2 , . . . , 𝐸ℎ𝑛, 𝐸V1, 𝐸V2, . . . , 𝐸V𝑛, 𝐼ℎ1 , 𝐼ℎ2 , . . . , 𝐼ℎ𝑛 ,𝐼V1 , 𝐼V2 , . . . , 𝐼V𝑛 . We use Next-Generation Matrix method [28,
29] to find transmission matrix, 𝐹, and transition matrix, 𝑉,
and we find basic reproduction numberR0 as

R0 = 𝜌 {𝐹𝑉−1} . (8)

For the system of (2),

𝐹 =
[[[[[[[[[[

0 0 0 diag(𝑏𝑖𝛽ℎ𝑖𝑁ℎ𝑖 𝑆ℎ∗𝑖 )0 0 diag(𝑏𝑖𝛽ℎ𝑖𝑁ℎ𝑖 𝑆V∗𝑖 ) 0
0 0 0 00 0 0 0

]]]]]]]]]]
,

𝑉 = [[[[[[

𝑉11 0 0 00 𝑉22 0 0𝑉31 0 𝑉33 00 𝑉42 0 𝑉44
]]]]]]
.

(9)
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Here,

𝑉11

=
[[[[[[[[[[[[

∑
𝑗 ̸=1

𝑚𝐸𝑗1 + ]ℎ1 + 𝑑ℎ1 −𝑚𝐸12 ⋅ ⋅ ⋅ −𝑚𝐸1𝑛
−𝑚𝐸21 ∑

𝑗 ̸=2

𝑚𝐸𝑗2 + ]ℎ2 + 𝑑ℎ2 ⋅ ⋅ ⋅ −𝑚𝐸2𝑛
... ... d

...
−𝑚𝐸𝑛1 −𝑚𝐸𝑛2 ⋅ ⋅ ⋅ ∑

𝑗 ̸=𝑛

𝑚𝐸𝑗𝑛 + ]ℎ𝑛 + 𝑑ℎ𝑛

]]]]]]]]]]]]

,

𝑉22 = diag (]V𝑖 + 𝑑V𝑖 ) ,
𝑉31 = diag (−]ℎ𝑖 ) ,
𝑉33

=
[[[[[[[[[[[[

∑
𝑗 ̸=1

𝑚𝐼𝑗1 + 𝛾ℎ1 + 𝑑ℎ1 −𝑚𝐼12 ⋅ ⋅ ⋅ −𝑚𝐼1𝑛
−𝑚𝐼21 ∑

𝑗 ̸=2

𝑚𝐼𝑗2 + 𝛾ℎ2 + 𝑑ℎ2 ⋅ ⋅ ⋅ −𝑚𝐼2𝑛
... ... d

...
−𝑚𝐼𝑛1 −𝑚𝐼𝑛2 ⋅ ⋅ ⋅ ∑

𝑗 ̸=𝑛

𝑚𝐼𝑗𝑛 + 𝛾ℎ𝑛 + 𝑑ℎ𝑛

]]]]]]]]]]]]

,

𝑉42 = diag (−]V𝑖 ) ,
𝑉44 = diag (𝑑V𝑖 ) .

(10)

Matrices𝑉11 and𝑉33 are irreducible nonnegative𝑀-matrices.
So,𝑉−111 and𝑉−133 exist. Also,𝑉22,𝑉31,𝑉42, and𝑉44 are diagonal
matrices. So, their inverses exist. Hence, 𝑉−1 exists and basic
reproduction number,R0, is given by

R0 = 𝜌 {𝐹𝑉−1} . (11)

Theorem2 (local stability). Thedisease-free equilibriumpoint
of the system of (2) is locally asymptotically stable ifR0 < 1 and
unstable ifR0 > 1.
Proof. Jacobian matrix for the system of (2) at disease-free
equilibrium is given by

𝜁 = [𝐴 𝐵0 𝐹 − 𝑉] . (12)

Matrix 𝜁 is triangular matrix. So, the stability of the system of
(2) depends onmatrices𝐴 and𝐹−𝑉. Matrix𝐴 can be written
as

𝐴 = [−𝑋 00 −𝑌] . (13)

Matrices 𝑋 and 𝑌 (defined in Theorem 1) are nonsingular𝑀-matrices. So, the matrix 𝐴 has eigenvalues with negative
real parts [27]. Hence, the stability of model (2) depends on
the matrix 𝐹 − 𝑉 only. Here, matrix 𝐹 is nonnegative matrix
and 𝑉 is a nonsingular 𝑀-matrix. So, the matrix will have
eigenvalues with negative real parts if 𝜌{𝐹𝑉−1} < 1 [29];
that is, R0 < 1. Thus, the disease-free equilibrium is locally
asymptotically stable ifR0 < 1. IfR0 > 1, then 𝑠(𝐹 −𝑉) > 0.
Which shows that at least one eigenvalue lies in right half
plane. So, the disease-free equilibrium is unstable if R0 >1.

When only the two patches are taken into the considera-
tion, the basic reproductionR0 is given by

R0 = √12 (𝑚1R201 + 𝑚2R202) + 12√(𝑚1R201 + 𝑚2R202)2 − 4𝑚3R201R202, (14)

where

R01 = √ 𝑏21𝑆ℎ∗1 𝑆V∗1 𝛽ℎ1𝛽V1]ℎ1]V1𝑑V1𝑁ℎ1 2 (𝑑ℎ1 + 𝑚𝐼21 + 𝛾ℎ1 ) (𝑑ℎ1 + 𝑚𝐸21 + ]ℎ1) (𝑑V1 + ]V1) ,

R02 = √ 𝑏22𝑆ℎ∗2 𝑆V∗2 𝛽ℎ2𝛽V2]ℎ2]V2𝑑V2𝑁ℎ2 2 (𝑑ℎ2 + 𝑚𝐼12 + 𝛾ℎ2 ) (𝑑ℎ2 + 𝑚𝐸12 + ]ℎ2) (𝑑V2 + ]V2) ,
𝑚1 = 𝑔1𝑛1 (𝑚𝐼12𝑚𝐸21]ℎ2 + ]ℎ1𝑔2𝑛2)

]ℎ1 (−𝑚𝐼12𝑚𝐼21 + 𝑔1𝑔2) (−𝑚𝐸12𝑚𝐸21 + 𝑛1𝑛2) ,
𝑚2 = 𝑔2𝑛2 (𝑚𝐸12𝑚𝐼21]ℎ1 + 𝑔1𝑛1]ℎ2)

]ℎ2 (−𝑚𝐼12𝑚𝐼21 + 𝑔1𝑔2) (−𝑚𝐸12𝑚𝐸21 + 𝑛1𝑛2) ,𝑚3
= 𝑔1𝑛1𝑔2𝑛2(𝑚𝐼12𝛾ℎ1 + 𝑔3𝑑ℎ2 + 𝑔3𝛾ℎ2 + 𝑔2𝑑ℎ1) (𝑚𝐸12]ℎ1 + 𝑛3𝑑ℎ2 + 𝑛3]ℎ2 + 𝑛2𝑑ℎ1) ,
𝑔1 = 𝑑ℎ1 + 𝑚𝐼21 + 𝛾ℎ1 ,
𝑔2 = 𝑑ℎ2 + 𝑚𝐼12 + 𝛾ℎ2 ,

𝑔3 = 𝑚𝐼21 + 𝛾ℎ1
𝑛1 = 𝑑ℎ1 + 𝑚𝐸21 + ]ℎ1 ,
𝑛2 = 𝑑ℎ2 + 𝑚𝐸21 + ]ℎ2 ,
𝑛3 = 𝑚𝐸21 + ]ℎ1 .

(15)

Here, R01 is the basic reproduction number of patch 1 and
R02 is the basic reproduction number of patch 2.

4. Simulations and Discussion

Temperature plays a significant role in the transmission
dynamics of dengue disease. Small change in temperature
can affect whole dynamics of the disease. Human movement
from one place to the other helps spreading disease into
new areas and influences the prevalence of the disease. Thus,
both temperature and human movement have a significant
influence on the transmission dynamics of dengue disease.
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Figure 1: Dynamics of infectious hosts of patch 1 without host
movement between the patches.
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Figure 2: Dynamics of infectious hosts of patch 2 without host
movement between the patches.

For the simulation purpose, the following data are used:𝑁ℎ1 =50000, 𝑑ℎ1 = 𝑑ℎ2 = 0.00004029, ]ℎ1 = ]ℎ1 = 0.1667, 𝛾ℎ1 = 𝛾ℎ2 =0.0714, 𝑁ℎ2 = 20000. The parameters 𝑏𝑖, 𝛽ℎ𝑖 , 𝛽V𝑖 , 𝑑V𝑖 , ]V𝑖 are
considered temperature dependent following [17].

Figures 1–4 are drawn with different temperature levels
to investigate the dynamics of infectious hosts of patch 1 and
patch 2. Figures 1 and 2 are drawn when there is no human
movement between the patches. Here, patch 1 is high disease
prevalent compared to patch 2. With the human movement,
it is seen that infectious host population is decreased in
patch 1 and the population is increased in patch 2. Thus, the

0

1000

2000

3000

4000

5000

6000

7000

8000

In
fe

ct
io

us
 h

os
t p

op
ul

at
io

ns
 o

f p
at

ch
 1

T = 20
∘C

T = 25
∘C

T = 30
∘C

50 100 150 200 250 300 350 4000
t (time in days)

Figure 3: Dynamics of infectious hosts of patch 1 with host
movement between patches.
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Figure 4: Dynamics of infectious hosts of patch 2 with host
movement between patches.

human movement can cause the low endemic patch to be
high endemic and high endemic patch to be low endemic
patch (Figures 1–4). Also, the figures show that the burden of
disease is increased with temperature. Again, the number of
infectious hosts is seen increasing initially due to interaction
of hosts with infectious vectors. Afterwards the number is
seen decreased due to recovery from the disease and natural
death of hosts (Figures 1–4).

Figures 5 and 6 show the impact of movement of infec-
tious and susceptible hosts, respectively, on basic reproduc-
tion numberR0. Infectious host can infect the mosquitoes of
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Figure 6: Combined basic reproduction number against 𝑚𝑆21 and𝑚𝑆12.

the patch where the hosts are travelling and the susceptible
hosts can get infected of the disease from the mosquitoes
of the patch where the hosts have travelled. It is observed
that movement of both infectious and susceptible hosts from
low prevalent patch to the high prevalent patch increases
the endemic level of the disease. But their movement from
high prevalent patch to the low prevalent patch decreases the
endemic level of the disease.

Temperature has a significant influence on basic repro-
duction number (Figures 7 and 8). In patch 1, the prevalence
of disease is seen increasing with temperature and the maxi-
mum disease prevalence has occurred at 29.3∘C temperature
as in [17]. In case of patch 2 where average temperature range
is 15∘C to 25∘C, disease prevalence increases with the increase
in temperature and the maximum disease prevalence has
occurred at 25∘C.
4.1. Dynamics with Unidirectional Movement. In this section,
we investigate the impact of host movement in one direction
only with different temperature levels. Figures 9–12 show the
dynamics of infectious host population of patch 1 and patch
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Figure 7: Basic reproduction number of patch 1 without host
movement.
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Figure 8: Basic reproduction number of patch 2 without host
movement.

2 when there is host movement from patch 1 to patch 2 only
or patch 2 to patch 1 only. When the hosts from patch 2 are
not allowed to move to patch 1 (Figures 9 and 10), burden
of disease is decreased in patch 1 and increased in patch 2.
When the hosts from patch 1 are restricted to travel to patch
2, the burden of disease is increased in patch 1 and decreased
in patch 2 (Figures 11 and 12). In each case, the dynamics
of infectious hosts are seen temperature dependent. Disease
prevalence is observed increasing with temperature. Thus,
movement of hosts can cause the patch to be less disease
prevalent (Figures 9 and 12) and more disease prevalent
(Figures 10 and 11).

When only the hosts from patch 2 are allowed to move
to patch 1, basic reproduction number of patch 1 increases
and that of patch 2 decreases with the increase in movement
rate (Figure 13). Also, basic reproduction number of patch 1
decreases and that of patch 2 increases when only the hosts
from patch 1 are allowed to move to patch 2 (Figure 14). So,
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Figure 9: Dynamics of infectious hosts of patch 1 without host
movement from patch 2 to patch 1.
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Figure 10: Dynamics of infectious hosts of patch 2 without host
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the host population can bemoved fromone patch to the other
to bring the disease under control.

5. Conclusion

Temperature plays a significant role in dynamics of dengue
disease transmission. It affects the lifecycle and biting
behavior of mosquitoes. Human movements contribute in
spreading the disease in new places. We have proposed
multipatch model of dengue disease with the human move-
ment between patches considering temperature dependent
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Figure 11: Dynamics of infectious hosts of patch 1 without host
movement from patch 1 to patch 2.
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Figure 12: Dynamics of infectious hosts of patch 2 without host
movement from patch 1 to patch 2.

model parameters. In the present work, we explored the
impact of temperature and host movement between patches
on the transmission dynamics of dengue disease. We have
investigated the stability of disease-free equilibrium point. It
is observed that the point is locally asymptotically stablewhen
basic reproduction numberR0 < 1 and unstable whenR0 >1. Simulated results show that basic reproduction number
depends on temperature and host movement.The prevalence
of disease can increase or decrease with temperature and
mobility of hosts from one patch to the other. Present work
shows that the burden of the disease can be reduced by man-
aging the host movement and the temperature can enhance
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the strength of the disease.These pieces of information can be
helpful to the concerned authorities to bring dengue disease
under control.
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