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Patient-Specific Deep Architectural Model for ECG Classification
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Heartbeat classification is a crucial step for arrhythmia diagnosis during electrocardiographic (ECG) analysis. The new scenario of
wireless body sensor network- (WBSN-) enabled ECG monitoring puts forward a higher-level demand for this traditional ECG
analysis task. Previously reported methods mainly addressed this requirement with the applications of a shallow structured
classifier and expert-designed features. In this study, modified frequency slice wavelet transform (MFSWT) was firstly employed
to produce the time-frequency image for heartbeat signal. Then the deep learning (DL) method was performed for the heartbeat
classification. Here, we proposed a novel model incorporating automatic feature abstraction and a deep neural network (DNN)
classifier. Features were automatically abstracted by the stacked denoising auto-encoder (SDA) from the transferred time-
frequency image. DNN classifier was constructed by an encoder layer of SDA and a softmax layer. In addition, a deterministic
patient-specific heartbeat classifier was achieved by fine-tuning on heartbeat samples, which included a small subset of
individual samples. The performance of the proposed model was evaluated on the MIT-BIH arrhythmia database. Results
showed that an overall accuracy of 97.5% was achieved using the proposed model, confirming that the proposed DNN model is
a powerful tool for heartbeat pattern recognition.

1. Introduction

Cardiovascular diseases (CVDs) remain the leading cause
of noncommunicable deaths worldwide. According to the
latest World Health Organization (WHO) report, about
17.5 million people died from CVDs in 2012, accounting
for 30% of all global deaths. The incidence of CVD deaths
is predicted to rise to 23 million by 2030 [1]. Furthermore,
the costs for CVD-related treatment including medication
are substantial. The CVD-related cost in the low- and
middle-income countries over the period 2011–2025 is
estimated approximately 3.8 trillion U.S. dollars [2]. Many
of these deaths and associated economic losses can be
avoided by early detection and monitoring of patients’ car-
diac function. Electrocardiogram (ECG) is the standard and
most efficient tool for CVD diagnosis [3], which captures
the electrical activity of the heart from a human body surface,
providing important information on cardiac functional
abnormalities. The recent introduction of technology for

the wireless body sensor network- (WBSN-) enabled ECG
has attracted the attention of both industry and academic
researchers. WBSN-enabled ECG biosensors are seamlessly
integrated into wearable fabric vest and can provide real-
time continuous 7/24 monitoring and cardiac arrhythmia
detection [4, 5]. This wearable WBSN-enabled ECG has the
essential need for more efficient and robust data analysis
methods for long monitoring of individual patients to ensure
timely medical treatment or intervention. However, there
are still some challenges in WBSN-enabled ECG signal
analysis, particularly for the automatic detection of life-
threatening arrhythmias [6].

Traditional methods exited risk of improper manual
feature selection and limiting complex classification ability.
There have been several reports on heartbeat classifica-
tion [7–14]. Ince et al. [7] proposed an artificial neural
network- (ANN-) based automated heartbeat classification
model with morphological wavelet transform features, which
achieved highly accurate heartbeat classification. Jiang and
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Kong [8] used a block-based neural network model with
Hermite transform coefficients and the selected temporal
features for personalized ECG signal classification. Ye
et al. [9] used morphological features and RR interval infor-
mation in a support vector machine classifier for heartbeat
classification. Alvarado et al. [10] proposed a novel compres-
sion sampler for feature extraction of ECG beats and then
utilized linear discriminant analysis (LDA) for their classifi-
cation. Chazal and Reilly [11] also used LDA as a classifier of
differential temporal features including heartbeat morphol-
ogy, heartbeat intervals, and R-R intervals. There are more
studies on feature and classifier model [12–14]. Typically,
the traditional classification models contain two layers at
most, restricting their ability for complex classification
tasks. Meanwhile, most of these models need manually
designed features. Even the best classifier model will yield
poor performance if important features are not selected.
Additionally, most reported works focus on establishing
common interpatient models for heartbeat classification.
These methods were not using samples from the same
patient for model training and testing [14]. However,
WBSN-enabled ECG monitoring emphasized personalized
heart status care; relatively common and patient-specific
samples will help training a good performance model in
individual heartbeat classification [15, 16]. Patient-specific
method is more suitable in a WBSN-enabled ECG moni-
toring scenario.

Deep learning (DL) is an ideal and potential approach for
the heartbeat classification of WBSN-enabled ECG, which
can further improve classification performance. As a new
research area of machine learning, DL has progressed rapidly
since 2006 [17–19]. DL is based on algorithms for learning
multiple levels of representation for the modeling complex
relationship between data sets. Specifically, it is recognized
as an effective method of abstracting hierarchical represen-
tation from unlabeled data; since higher-level features are
defined by lower-level ones, the hierarchical feature repre-
sentation of DL is referred to as “deep architecture” [20].
DL models by virtue of their multiple levels and nonlinear
information processing provide much more efficient repre-
sentations of complex functions, resulting in improved
performance compared to shallow models [21]. Several
studies have confirmed that deep architectural models
exhibit excellent performance beating the existing tradi-
tional methods in challenge classification tasks [15, 22, 23].
However, there are still some aspects that need to be further
studied when DL methods are used in traditional ECG
analysis, such as the parameter of layers, size of neurons,
and use of tanning samples.

Motivated by these challenges, we proposed a patient-
specific heartbeat classification framework using time-
frequency representation and a DL architectural model.
Considering time-frequency technology is a powerful tool
for characterizing the biosignals [24], and some of DL frame-
works, such as stacked auto-encoder, convolutional neural
networks (CNNs), anddeepbelief nets (DBNs) [22, 23, 25, 26],
can be used to analyze ECG signal, while heartbeat time-
frequency spectrograms are seen as images. A modified
frequency slice wavelet transform (MFSWT) was used to

generate time-frequency representation of the heartbeat
signal. Stacked denoising auto-encoder (SDA) model was
chosen as the DL architectural model in our works. A SDA
was pretrained by unlabeled MFSWT time-frequency
spectrograms. Subsequently, a deep neural network (DNN)
model was initialized by weights and bases of the trained
SDA and was followed by two levels of fine-tuning. Particu-
larly, after the second fine-tuning stage by using individual
annotated heartbeat samples, the patient-specific DNN
classifier was obtained. Validation of the proposed heart-
beat classification method was performed on MIT-BIH
arrhythmia database.

2. Data Description

MIT-BIH arrhythmia database [27] was selected as the
data source, which is the most commonly used database
for research in ECG signal processing. It consists of 48
annotated, 30min ambulatory ECG records from 2 leads
(II and modified V1, V2, V3, V4, or V5 leads) obtained
from 47 subjects and sampled at 360Hz per channel. Since
lead II ECG is commonly used in ambulatory or WBSN-
based ECG applications, these channel data were used in
the current study.

The five heartbeat classes defined in the American
National Standards Institute (ANSI) for the Advancement
of Medical Instrumentation (AAMI) standard (IEC 60601-
2-47:2012) [28] are (i) normal beat (N), (ii) supraventricular
ectopic beat (SVEB or S), (iii) ventricular ectopic beat
(VEB or V), (iv) fusion beat (F), and (v) paced beats or
unknown beat Q. However, according to the annotation
file from PhysioNet (http://www.physionet.org/), there are
15 beat types in MIT-BIH database. Table 1 shows the group
method for mapping the MIT-BIH heartbeat classes into
AAMI classes.

ANSI/AAMI EC57:2012 recommends exclusion of re-
cords containing paced beat records (numbers 102, 104,
107, and 217) for classifiers’ evaluation. The number of 33
unclassified beats is less than 0.03% of the whole data
samples, which can lead to model overfitting. Thus, in this
study, Q type includes paced beats and unclassified beats
were excluded. Following these exclusions, the heartbeat
data samples were regrouped into four types (N, S, V,
and F) according to the AAMI standard. Thus, the remaining
44 nonpacemaker records without the unclassified beats were
divided into equal training and testing sets [10]. The training
set consisted of record numbers 101, 106, 108, 109, 112,
114, 115, 116, 118, 119, 122, 124, 201, 203, 205, 207,
208, 209, 215, 220, 223, and 230; and the testing set con-
sisted of record numbers 100, 103, 105, 111, 113, 117, 121,
123, 200, 202, 210, 212, 213, 214, 219, 221, 222, 228, 231,
232, 233, and 234.

The objective of the proposed framework is to classify
heartbeats into N, S, V, and F classes. Clinically, supraven-
tricular ectopic beats (SVEB) and ventricular ectopic beats
(VEB) are two critically abnormal and serious heartbeats,
and the performance of the classifiers also was elevated by
testing S and V heartbeat classification [9, 10, 15].
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3. DL Architectural Model-Based Heartbeat
Classification

The comparison between traditional and proposed heart-
beat classification frameworks is shown in Figure 1. Both
include three steps: preprocessing, feature extraction, and
classification.

The key differences, which distinguish the new frame-
work, are as follows:

(i) The use of MFSWT to generate time-frequency
spectrogram for using deep learning methods

(ii) Adoption of stacked denoising auto-encoder
(SDA) for automatic abstraction of features from
MFSWT spectrogram (instead of human experts),

to avoid the associated risk of improper manual
feature selection

(iii) Integration of data-driven feature extraction and DL
architectural classification into a single learning
framework for improved heartbeat classification.

3.1. Preprocessing of ECG Signal. Preprocessing of ECG
signal includes signal quality assessment (SQA) [29], denois-
ing, QRS detection, heartbeat segmentation, and calculation
of time-frequency spectrogram. Since the present study
concerns the illustration of DL-based model for heartbeat
classification, the SQA step was omitted, except for the
removal of low signal quality heartbeats and their pre- and
after beats from the data set. Power and high-frequency noise

Table 1: Heartbeat classes given by the MIT-BIH database along with the regrouping defined by the AAMI standard [10, 28].

MIT-BIH class MIT-BIH number AAMI groups Number of samples

Normal beat 1

N: beats not found in the classes S, V, F, and Q 90631

Left bundle branch block beat 3

Right bundle branch block beat 2

Atrial escape beats 34

Nodal (junctional) escape beat 11

Atrial premature beats 8

S: supraventricular ectopic beats 2781
Aberrated atrial premature beats 4

Nodal (junctional) premature beats 7

Supraventricular premature beats 9

Premature ventricular contraction 5
V: ventricular ectopic beats 7236

Ventricular escape beat 10

Fusion of ventricular and normal beat 6 F: fusion beats 803

Paced beat 12

Q: paced beats or unclassified beats
8010

Fusion of paced and normal beat 38

Unclassified beat 13 33

MFSWT spectrogram
+

Feature learning:
stacked denoising

auto-encoder (SDA)

Signal quality assessment
Filtering

QRS detection
Heartbeat segmentation

Signal quality assessment
Filtering

QRS detection
Heartbeat segmentation

Temporal, spectral, 
morphological and

statistical features
+

Feature selection:
PCA, Relief, and others

Traditional classifier
(ANN, KNN, HMM,

SVM, etc.)

Deep architectural 
classifier (DNN)

Heartbeat
classes

Heartbeat
classes

Shallow layerExpert designed

Data driven 

(a)

(b)

ClassificationFeature extractionPreprocessingOriginal ECGs

Multilayer

Figure 1: Schematic illustration of two heartbeat classification frameworks: (a) traditional framework and (b) the framework of proposed DL
architectural model with time-frequency representation.
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and baseline drift were eliminated by using twomedian filters
with window sizes of 200ms and 600ms [10] as shown in
Figure 2(a). Although many algorithms are used for QRS

detection [30], the derivative-based algorithm with a charac-
teristic steep slope of the QRS complex was chosen to detect
R-peaks in view of its high accuracy. Figure 2(b) provides
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Figure 2: ECG preprocessing, sample heartbeat waveform from number 201 record lead II, including normal (N), premature
ventricular contraction (PVC), and atrial premature contraction (APC) AAMI heartbeat classes. (a) Baseline drift elimination; (b)
QRS-complex detection; (c) MFSWT spectrogram corresponding to the waveform in (b); (d)~(i) MFSWT spectrograms corresponding
to each segmented heartbeat by 700ms windows in (b). In the absence of other special instructions, all spectrograms were normalized
to [0, 1].
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details of the comparison of the detected R-peaks and the
annotation points where all six R-peaks can be identified.
700ms windows (red boxes in Figure 2), centered at the
detected R-peaks (300ms before and 400ms after), were
used to segment each heartbeat. As shown in Figures 2(b)
and 2(c), the normal, premature ventricular contraction
(PVC), and atrial premature contraction (APC) beats are
segmented, and the corresponding MFSWT spectrograms
were shown in Figures 2(b)~2(i).

3.2. Modified Frequency Slice Wavelet Transform. Frequency
slice wavelet transform (FSWT) is essentially an extension of
the short-time Fourier transform in frequency domain [31].
FSWT achieves good performance in transient vibration
response analysis and damping modal identification [32].
However, low-frequency biosignals are not well represented
by original FSWT due to its defined window size of frequency
slice function (FSF) changes sharply in low-frequency area.
To accurately locate the components of heartbeat signal
in time-frequency plane, “modified frequency slice wavelet
transform (MFSWT)” was proposed. MFSWT follows the
rules of producing time-frequency representation from
the frequency domain but incorporating a set of bound
signal-adaptive FSFs which serve as a set of dynamic fre-
quency filters, which can well represent signal in time-
frequency domain.

Assume that f̂ u is Fourier transform of f t . The
MFSWT is expressed in frequency domain as

Wf t, ω =
1
2π

+∞

−∞
f̂ u p̂∗

u− ω

q f̂ u
eiutdu, 1

where t and ω are observed time and frequency, respectively.
“∗” represents the conjugation operator. p̂ x = e−x

2/2 is
selected as the FSF in (1), and p̂ 0 = 1. The shape of FSF is
like an inverted bell. q is defined as a scale function of f̂ u
and enables the transform with signal-adaptive property.

q = δ + sign ∇ f̂ u , 2

where δ is the frequency which corresponds to the maximum
f̂ u . ∇ ⋅ is differential operators, and sign ⋅ means
signum function, which returns 1 if the input is greater than
zero, 0 if it is zero, or −1 if it is less than zero. According
to (2), q changes slowly with f̂ u and generates FSFs as
a function of f̂ u . As dynamic frequency filters, FSFs
were used to estimate the energy distribution of different
frequency bands. Similar to the scale used for different size
objects in microscopy, narrow window size of FSFs corre-
sponds to the small values of f̂ u and wide window size
of FSFs corresponds to the large values of f̂ u . Due to
the effect of the adaptive FSF, energy of signal components
with large f̂ u can be reinforced in time-frequency spec-
trogram. Taking advantages of the slowly changing FSFs
and energy enhancement of frequency filtering, MFSWT
achieves accurate time-frequency representation of the
heartbeat signal.

FSFs in MFSWT meet p̂ 0 = 1 according to the proof
in [32]. The reversed MFSWT can be expressed by

f t =
1
2π

+∞

−∞

+∞

−∞
Wf τ, ω eiω t−τ dτdω 3

In this study, MFSWT is used as a tool to generate heart-
beat spectrogram for SDA feature extraction. Figure 3 shows
an example. The comparison between the original and the
reconstructed heartbeat signal is shown in Figure 3(a).
Percentage root-mean-square difference (PRD) equal to
zero indicates that signal can be exactly reconstructed by
the reversed MFSWT from the spectrogram. Heartbeat
time-frequency spectrograms of MFSWT, Wigner-Ville
distribution (WVD), continuous wavelet transform (CWT),
and FSWT are shown in Figures 3(b)~3(e), respectively. As
outlined in Figure 3(b), accurate locations of P-, QRS-, and
T-waves and power noise components in time-frequency
spectrogram, which correspond well to the signal in the
time domain, were achieved by using the MFSWT. In
comparison to WVD, CWT, and FSWT, the spectrogram
of MFSWT has better interpretability. Additionally, without
troublesome parameter selection, MFSWT is easier to use
than other methods. The goal of machine learning is to
replace humans for pattern recognition, consideringMFSWT
spectrograms are more readily accepted by clinicians, which
are adopted as time-frequency images for DL classification
in the present work.

3.3. Stacked Denoising Auto-Encoder. Auto-encoder (AE) is
the basic unit of stacked denoising auto-encoder, which
can capture the maximum possible information contained
in a given sample, while minimizing the reconstruction
error rate. A basic encoder is a function that takes an
input V ∈ RdV to a hidden representation h ∈ Rdh , which can
be stated as

h = sAE WV + b , 4

where W is a dV × dh weight matrix, b ∈ Rdh is a bias, and
sAE is a nonlinear logistic sigmoid activation function
s x = 1/ 1 + e−x .

The decoder maps the output of the hidden layer h back
to the reconstruction V̂ by a similar transformation.

V̂ = sDC W′h + b′ , 5

where sDC is also a logistic sigmoid activation function and
Wdh×dV̂

′ and b′ ∈ RdV̂ are two parameters of decoder. Let

W′ =WT be referred to as tied weights.
The parameters of AE are optimized if the average

reconstruction error is minimized, which corresponds to
minimize the following objective function:

O W, b, b′ = 〠
V∈Dn

L V , V̂ , 6
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where L is a reconstruction error. The function of cross-
entropy loss can be used as L if input samples Dn for training
are in [0, 1].

L V , V̂ = −〠
dV

k=1
Vklog V̂k + 1−Vk log 1− V̂k 7

For robust feature extraction, Vincent et al. [26] pro-
posed denoising auto-encoders (DAE). DAE is trained to
reconstruct the input from a corrupted version of the input.
Thus, the model has an antinoise property. The objective
function of DAE can be written as in (8), which can be
optimized by the stochastic gradient descent method [21].

O W, b, b′ = 〠
V∈Dn

EV q V ∣V L V , V̂ 8

In (8), E is the expectation, and the corrupted version V
of V produces q V ∣V by a corruption process. Stochastic
corruption process, which randomly sets a fraction P of
inputs to zero, is used as the corruption process in this work,
and an example is shown in Figure 4. The parameter P
controls the degree of regulation.

SDA is achieved by stacking multiple DAEs with their
corresponding decoders. Here, the SDA was used for primary
feature extraction and initialization of deep neural network
weights. The schematic view of a three-layered SDA is shown
in Figure 5. Each layer of SDA is a DAE, and unsupervised
layer-by-layer training minimizes the reconstruction error
of each DAE. Figure 5(b) shows part of first layer weightings
of unsupervised trained SDA model. Details of weights
marked with a red box in Figure 5(b) are shown in
Figure 5(d), which demonstrates that spectral features of
heartbeat are captured by the trained SDA model and are
stored as the weights. The extracted features of number 100
record first heartbeat are shown in Figure 5(c), In this case,
the number of final abstracted features is 256, and the output
of the bottleneck layer is sparsity, which helps the subsequent
discriminant classification.

3.4. DNN Classifier. Since heartbeat classification is a multi-
ple output task, a softmax regression layer with “N, S, V,
and F” output is added on top of the bottleneck layer as shown
in Figure 5(a). Then, the SDA encoder and the softmax layer
are combined to form a DNN classifier. W{i}, bi, and h{i}
are the weights, bases, and outputs of each hidden layers,
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respectively. The heartbeat class can be identified when the
final hidden layer output feeds into the last softmax layer.

4. Patient-Specific DNN Classifier Training

Due to existing interpatient signal variability, different
patients’ beats of the same class are different; it is difficult
to train a common interpatient model, which can perfectly
classify heartbeats from other patients. This problem can be
overcome by the use of patient-specific technique [7, 8, 11].
Here, the patient-specific approach was adopted in the

present study. We used a small beginning part of individual
samples in model training to maximize performance in indi-
vidual heartbeat classification.

As shown in Figure 6, the whole patient-specific DNN
training consists of three sequential stages: (i) SDA model
training, (ii) common interpatient classifier training, and
(iii) patient-specific classifier training. The first stage is
training the SDA model. Its purpose is to estimate initial
parameters of a DNN classifier from the trained SDA. The
second stage is referred as fine-tuning [16–18]. After using
encoder layers of SDA and a softmax layer forming a DNN
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classifier, fine-tuning is used to minimize the heartbeat clas-
sification prediction error with samples of training set listed
in Section 2. After fine-tuning, an interpatient DNN classifier
is achieved. In the third stage, newly annotated heartbeats of
the testing set (i.e., first 300 beats) are used for further fine-
tuning based on the trained interpatient classifier. In this
stage, the same algorithm in the second stage is adopted but
with different train samples. The program will stop until clas-
sification performance has no further improvement or the
maximum number of iterations is reached. At this stage, per-
sonalized heartbeat DNN classifiers can be generated. The
last stage called as enhanced fine-tuning in our work aims
to further parameter adjustment of the trained interpatient
classifier to address the individual variations.

5. Experimental Results and Discussion

Evaluation of the trained classifier by the AAMI standard
was done with MIT-BIH arrhythmia database. In prepro-
cessing, all MFSWT spectrograms of each heartbeat were
normalized to [0, 1], and records in the database were divided
into equal training and testing sets as described previously.
The evaluation results were compared to those reported by
other systems [7–14].

Four widely used metrics, that is, sensitivity (SE),
specificity (SP), positive predictive value (PPV), and accuracy
(ACC), were used (and defined next) for the assessment of
classification performance:

SEi =
TPi

TPi + FNi
,

SPi =
TNi

TNi + FPi
,

PPVi =
TPi

TPi + FPi
,

ACCi =
TPi + TNi

TPi + TNi + FPi + FNi
,

9

where TPi (true positive) equals the number of ith class
heartbeats correctly classified, TNi (true negative) is the
number of heartbeats not belonging to ith class and not clas-
sified in the ith class, FPi (false positive) equals the number of
heartbeats erroneously classified into ith class, and FNi (false
negative) equals the number of ith class heartbeats classified
in a different class. SEi and SPi, respectively, reflect the clas-
sifier’s sensitivity and specificity in ith prediction, and PPVi
defines the percentage of positive correct predictions. ACCi
is the ratio between all correctly and incorrectly predicted
heartbeats. Since the data set is imbalanced, the geometric
mean (g-mean) [13], estimated by the geometrical mean of
heartbeat class predicted sensitivities, was also selected as a
performance measure.

g−meanx = x+⋅x−, 10

where x+ and x− are the predicted SE or PPV of the positive
and negative classes, respectively.

Grid searching was used to identify the optimal parame-
ters. The number of layers was changed from 0 to 3. Consid-
ering the feature abstract characteristic of SDA, it is a good
idea to make the size of the hidden layer output smaller than
the input size for each AE or DAE. Seven conditions of the
number of neurons in the first hidden layer are A (64), B
(128), C (256), D (512), E (1024), F (2048), and G (4096).
The number of neurons of next layer was set as half of the
current layer if SDA is a multilayer structure. After encoder
layers, softmax layer maps the abstracted features to four
types of heartbeats. For example, in a 3-layer SDA model,
the number of the first layer is 512 and then the numbers
of neurons of each layer in DNN model are 512-256-128-4.
The beginning 300 beats of test records were used for person-
alized classifier training. Experimental results were based on
the remaining heartbeats of testing sets and shown in
Figure 7. The SVEB and VEB classification results from other
works are shown in Table 4 as benchmarks in Figure 7, and
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DNN
classifier

(2) Interpatient model training
(with fine-tuning)

(3) Patient-specific model training
(with enhanced fine-tuning)

Training set
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The beginning part
heartbeats of particular 

individual record

Softmax
layer

Encoder layer 
of SDA

DNN classifier

Patient-specific classifierInterpatient classifier

Figure 6: The workflow of patient-specific DNN training.
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the best results of our work are marked by asterisks. With
proper parameters, the proposed method outperforms the
benchmarks in all other measures except SE of SVEB. The
experimental results confirm the efficiency of the proposed
patient-specific deep architectural framework. However, to
maintain good stable performance, the size of neurons can
be selected with a narrower range while the number of
layers is added. Based on the classification results and gen-
eralization risk consideration, it is advised that one hidden
layer within 1024~2048 neurons could achieve acceptable
heartbeat classification.

0 to 300 heartbeats of individual samples were used in
patient-specific models training to explore the relationship
between performance improvement and the added number
of personal samples. Experiments were based on a trained
interpatient DNN classifier, which includes one encoder
layer with 1024 neurons and a softmax layer. The relation-
ship is shown in Figure 8. Accuracy, SE, and PPV increase
as the number of individual heartbeats increase. Accuracy
and measures of SVEB and VEB become stable when the
number of beats exceeds 80. Because major F beats of the
testing set are in number 213 record and appear after
2min, the best SE and PPV of F were achieved in the range
of 240~300 beats. The proposed method would produce an
interpatient classifier if no individual samples were used in
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fine-tuning. Confusion matrix of interpatient heartbeat
classification (Table 2) demonstrates an 89.3% heartbeat
classification accuracy. Although SE and PPV of N reached
95.3% and 93.0%, respectively, the other measure values of
S, V, and F are low. From the results, it can infer that the
constructed interpatient deep architectural classifier has poor
ability to process interpatient signal variability.

The overall classification assessment results obtained by
considering each of the four classes (“N, S, V, and F”) are
summarized in Table 3 when 300 beats are used. The
numbers of correct prediction of N, S, V, and F beats
are 37,622, 1143, 2644 and 292, respectively. The overall
accuracy of the heartbeat classification reached 97.5%.
The results demonstrate that performance of the classifier
can be efficiently improved by using relatively small indi-
vidual samples, the patient-specific classifier can well cope
with interpatient variations.

Comparisons of the proposed model and the state-of-
the-art methods [7–14] were summarized in Tables 4 and
5, which demonstrate that the proposed model achieves
better recognition in patient-specific heartbeat classification
scenario, with ACCs of SVEB and VEB rates of 98.8% and
99.1%, respectively. Specifically, a PPV of SVEB of 94.4%
indicates that the proposed model has the high-level capa-
bility of identifying SVEB. The 71.4% SE of SVEB is superior
to most other reported studies (see Table 4). The results
presented in Table 4 confirm that the proposed model can
satisfactorily identify SVEB and VEB. Evaluation results
for all four-class heartbeat recognitions are outlined in
Table 5, and classification confusion matrix in Table 3. The

results relating to SE and PPV of all types are close to or
surpass those obtained with current state-of-the-art methods.
Accuracy, g meanSE, and g meanPPV reached 97.5%, 85.9%,
and 84.4%, respectively. Similarly, using 1-D CNNs for
patient-specific ECG classification that also achieved superior
performance was reported [15]. These make us have good
reasons to believe that deep learning methods have great
potential in patient-specific ECG signal analysis.

The reasons for the superior performance of the
proposed method are multifactorial. In the first instance,
MFSWT transforms ECG signal from time domain to
time-frequency domain. The distinguishable differences of
heartbeat signals are well preserved in MFSWT spectrogram,
facilitating both SDA feature extraction and the following
personalized DNN classifier training. Secondly, using data-
driven SDA instead of expert human involvement could avoid
the improper feature extraction for classification. Thirdly,
deep architectural patient-specific classifier improves the
accuracy of individual heartbeat prediction. The main lim-
itation of the present study is that it needs extra individual
annotated beats. According to the experimental results,
patient-specific samples are important to the proposed
method. As the results shown in Figure 8, not using individ-
ual samples in the model training, the system may entirely or
partially fail to classify S, V, and F beats. However, using a
few annotated individual beats is possible in clinical practice.
Once the patient-specific classifier has been trained, it can
continually provide accurate heartbeat classification services
for individual patients inWBSN-enabled long-termautomatic
ECG monitoring scenario. Except for individual training

Table 3: Performance of deep architectural classifier on testing set with reference (performance is determined by trained personalized
classifier, testing set excluding the first 300 heartbeats).

Predicted
N S V F Total SE (%)

True

N 37622 68 175 119 37984 99.0

S 448 1143 7 3 1601 71.4

V 106 0 2644 85 2835 93.3

F 52 0 9 292 353 82.7

Total 38228 1211 2835 499 42773 86.6

PPV (%) 98.4 94.4 93.3 58.5 86.1 Accuracy = 97.5%

Accuracy = TPN + TPS + TPV + TPF /number of testing heartbeats

Table 2: Performance of deep architectural classifier on testing set with reference (performance is determined by interpatient scenario; all
testing sets were used).

Predicted
N S V F Total SE (%)

True

N 41873 300 947 810 43930 95.3

S 1520 282 9 25 1836 15.4

V 1240 13 1943 23 3219 60.4

F 376 1 9 2 388 0.5

Total 45009 596 2908 860 49373 42.9

PPV (%) 93.0 47.3 66.8 0.2 51.8 Accuracy = 89.3%

Accuracy = TPN + TPS + TPV + TPF /number of testing heartbeats
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samples, the computationmay limit the usage of the proposed
method. The personalized DNN model training requires the
extensive computation (~1 hour @ Intel i7 4720H, 32GB
RAM, GTX970M laptop), though small computation is
needed for prediction (<0.02ms @ Intel i7 4720H, 32GB
RAM, GTX970M laptop). However, the envisaged significant
expansion of machine and network processing abilities will
facilitate increased usage of the proposed method.

6. Conclusions

A novel framework based on time-frequency representation
and patient-specific DL architectural model for heartbeat
classification is proposed. The model performance was
validated by evaluation on MIT-BIH arrhythmia database.
The results confirmed an overall superior performance with
an accuracy of 97.5%. Superior classification results have been
achieved by using one encoder layer of SDA with 1024 neu-
rons and one softmax-formed DNN model. The advantages

of the proposed framework include its automatic feature
extraction, patient-adaptive nature, and low classification
error. The proposed patient-specific DNN classifier is simple
and effective. Therefore, it is a potential choice for individual
automatic heartbeat classification used in WBSN-enabled
ECG monitoring.
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Table 5: Classification metrics compared to the state-of-the-art four-class heartbeat recognitions (percentage, %).

Methods Accuracy
g-mean N S V F

SE PPV SE PPV SE PPV SE PPV SE PPV

Proposed (a) 97.5 85.9 84.4 99.0 98.4 71.4 94.4 93.3 93.3 82.7 58.5

Chazal and Reilly [11]∗ 93.9 87.2 59.8 94.3 99.4 87.7 47.0 94.3 96.2 74.0 29.1

Jiang and Kong [8]∗ 94.5 62.7 83.8 98.7 96.2 50.6 68.0 86.6 89.4 35.8 84.2

Ince et al. [7]∗ 93.6 74.5 76.9 97.0 97.0 62.1 56.7 83.4 86.5 61.4 73.4

Proposed (b) 89.3 14.6 16.2 95.3 93.0 15.4 47.3 60.4 66.8 0.5 0.2

Mar et al. [12] 89.0 79.3 45.2 94.2 99.2 86.2 56.7 92.4 93.4 66.4 17.7

Alvarado et al. [10] 93.6 84.0 55.2 94.2 99.2 86.2 56.7 92.4 93.4 66.4 17.7

Ye et al. [9] 88.2 62.6 37.0 90.0 98.2 56.4 55.1 84.7 59.5 35.8 5.8

Zhang et al. [13] 88.3 86.7 46.2 88.9 99.0 79.1 36.0 85.5 92.8 93.8 13.7
∗Patient-specific method: require expert intervention.
(a) indicates the patient-specific heartbeat classification scenario. Classifiers were trained by using the first 300 beats of individual patient.
(b) indicates interpatient heartbeat classification scenario.

Table 4: Classification metrics compared to the state-of-the-art SVEB and VEB classification (percentage, %).

Methods
SVEB VEB

ACC SE PPV SP ACC SE PPV SP

Proposed (a) 98.8 71.4 94.4 99.8 99.1 93.3 93.3 99.5

Kiranyaz et al. [15]∗ 96.4 64.6 62.1 98.6 98.6 95 89.5 98.1

Chazal and Reilly [11]∗ 95.9 87.7 47.0 96.2 99.4 94.3 96.2 99.7

Jiang and Kong [8]∗ 96.6 50.6 68.0 98.8 97.7 86.6 89.4 98.9

Ince et al. [7]∗ 97.3 63.5 53.7 98.3 98.0 84.6 86.7 99.0

Proposed (b) 96.2 15.4 47.3 99.3 95.5 60.4 66.8 97.9

Mar et al. [12] 93.3 83.2 33.5 93.7 97.4 86.8 75.9 98.1

Alvarado et al. [10] 97.0 86.2 56.7 97.5 99.1 92.4 93.4 99.5

Ye et al. [9] 97.4 56.4 55.1 98.6 94.6 84.7 59.5 95.4

Zhang et al. [13] 93.3 79.1 36.0 93.9 98.6 85.5 92.7 99.5
∗Patient-specific method: require expert intervention.
(a) indicates the patient-specific heartbeat classification scenario. Classifiers were trained by using the first 300 beats of individual patient.
(b) indicates the interpatient heartbeat classification scenario.
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