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The inherent stochasticity of cellular processes leads to significant cell-to-cell variation in protein
abundance. Although this noise has already been characterized and modeled, its broader implications
and significance remain unclear. In this paper, we revisit the noise model and identify the number
of messages transcribed per cell cycle as the critical determinant of noise. In yeast, we demonstrate
that this quantity predicts the non-canonical scaling of noise with protein abundance, as well as quan-
titatively predicting its magnitude. We then hypothesize that growth robustness requires an upper
ceiling on noise for the expression of essential genes, corresponding to a lower floor on the tran-
scription level. We show that just such a floor exists: a minimum transcription level of one message
per cell cycle is conserved between three model organisms: Escherichia coli, yeast, and human. Fur-
thermore, all three organisms transcribe the same number of messages per gene, per cell cycle. This
common transcriptional program reveals that robustness to noise plays a central role in determining
the expression level of a large fraction of essential genes, and that this fundamental optimal strategy
is conserved from E. coli to human cells.

INTRODUCTION

All molecular processes are inherently stochastic on
a cellular scale, including the processes of the central
dogma, responsible for gene expression [1, 2]. As a re-
sult, the expression of every protein is subject to cell-to-
cell variation in abundance [1]. Many interesting pro-
posals have been made to describe the potential bio-
logical significance of this noise, including bet-hedging
strategies, the necessity of feedback in gene regulatory
networks, etc [1, 3, 4]. However, it is less clear to what
extent noise plays a central role in determining the func-
tion of the gene expression process more generally. For
instance, Hausser et al. have described how the tradeoff
between economy (e.g. minimizing the number of tran-
scripts) and precision (minimizing the noise) explains
why genes with high transcription rates and low trans-
lation rates are not observed [5]. Although these results
suggest that noise may provide some coarse limits on
the function of gene expression, this previous work does
not directly address a central challenge posed by noise:
How does the cell ensure that the lowest expression es-
sential genes, which are subject to the greatest noise,
have sufficient abundance in all cells for robust growth?

To investigate this question, we first focus on noise in
Saccharomyces cerevisiae (yeast), and find that the noise
scaling with protein abundance is not canonical. We re-
analyze the canonical stochastic kinetic model for gene
expression, the telegraph model [6–8], to understand the
relationship between the underlying kinetic parameters
and the distribution of protein abundance in the cell. As
previously reported, we find that the protein abundance
for a gene is described by a gamma distribution with
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two parameters: the message number, defined as the total
gene message number transcribed per cell cycle, and the
translation efficiency, which is the mean protein num-
ber translated per message. Protein expression noise is
completely determined by the message number [3, 9].
Although these results have been previously reported,
the distinction between message number per cell versus
per cell cycle and even between mean protein number and
mean message number is often neglected (e.g. [10]).

To explore the distinction between these parameters
and provide clear evidence of the importance of the
message number, we return to the analysis of noise in
yeast. In yeast, the translation efficiency increases with
message number [11]. By fitting an empirical model
for the translation efficiency, we demonstrate that the
noise should scale with a half-power of protein abun-
dance. We demonstrate that this non-canonical scal-
ing is observed and that our translation model makes a
parameter-free prediction for the noise. The prediction
is in close quantitative agreement with observation [12],
confirming that the message number is the key determi-
nant of noise strength.

Finally, we use this result to explore the hypothesis
that there is a minimum expression level for essential
genes, dictated by noise. The same mean expression
level can be achieved by a wide range of different trans-
lation and transcription rates with different noise levels.
We hypothesize that growth robustness requires that es-
sential genes (but not non-essential genes) are subject to
a floor expression level, below which there is too much
cell-to-cell variation to ensure growth. To test this pre-
diction, we analyze transcription in three model organ-
isms, Escherichia coli, yeast, and Homo sapiens (human),
with respect to three related gene characteristics: tran-
scription rate, cellular message number, and message
number per cell cycle. As predicted by the noise-based
mechanism, we observe an organism-independent floor
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FIG. 1. Robustness hypothesis: The stochasticity in gene ex-
pression is represented by the red shading. We hypothesize
that robust growth requires sufficiently low noise levels for
cellular function. We hypothesize that this critical noise level
should be below the level where the signal (mean) equals noise
(standard deviation).

for the number of messages transcribed per cell cycle for
essential genes, but not non-essential genes. We con-
clude that virtually all essential genes are transcribed
at a rate of at least once per cell cycle. This analysis
strongly supports the hypothesis that the same biologi-
cal optimization imperatives, which determine the tran-
scription rates of many low-expression genes, are con-
served from E. coli to human.

RESULTS

Implications of noise on growth robustness. With the
realization of the stochasticity of central dogma pro-
cesses, a key question is how cells can grow robustly in
spite of cell-to-cell variations in protein expression. The
noise in protein abundance is defined as the coefficient
of variation squared [12–14]:

CV2
p ⌘ �2

p

µ2
p
, (1)

where �2
p is the variance of protein number and µp ⌘ Np

its mean. It is important to emphasize that protein
abundance must double between birth and cell divi-
sion in symmetrically dividing cells during steady state
growth. The protein abundance should therefore be in-
terpreted either as expression per unit volume [15] or
the abundance associated with cells of a defined volume
[12].

The coefficient of variation is inversely related to pro-
tein abundance and therefore low-copy proteins have
the highest noise [3, 9, 12–15]. The challenge faced by
the cell is that many essential proteins, strictly required
for cell growth, are relatively low abundance. How does
the cell ensure sufficient protein abundance in spite of
cell-to-cell variation in protein number? It would seem
that growth robustness demands that, for essential pro-
teins, the mean should be greater than the standard de-
viation:

CV2
p < 1, (2)

in order to ensure that protein abundance is sufficiently
high enough to avoid growth arrest. To what extent do
essential proteins obey this noise threshold?

What determines the strength of the noise? Usually,
noise is argued to be proportional to inverse protein
abundance (e.g. [3, 4, 10]):

CV2
p / µ�1

p , (3)

for low abundance proteins, motivated both by theoret-
ical and experimental results [10, 15] and in some cases
obeying a low-translation efficiency limit [15]:

CV2
p ⇡ µ�1

p . (4)

Can this model be used to make quantitative predictions
of the noise? E.g., is the scaling of Eq. 3 correct? Can the
coefficient of proportionality be predicted? Although
Eq. 3 appears to describe E. coli quite well [15], the situ-
ation in yeast is more complicated [16]. To analyze the
statistical significance of the deviation from the canoni-
cal noise model in yeast, we can fit an empirical model
to the noise [13, 14]:

CV2
p = b

µa
p
+ c. (5)

In the null hypothesis, a = 1 (canonical scaling), while
b and c are unknown parameters. c corresponds to the
noise floor. In the alternative hypothesis, all three co-
efficients are unknown. (A detailed description of the
statistical model is given in the Supplemental Material
Sec. A 5.)

The canonical model fails to fit the noise data for yeast
as reported by Newman et al. [12]: The null hypothesis
is rejected with p-value p = 6 ⇥ 10�36. The model fit to
the data is shown in Fig. 2. The estimated scaling expo-
nent for protein abundance in the alternative hypothesis
is a = 0.57 ± 0.02, and a detailed description of the sta-
tistical model and parameter fits is provided in Supple-
mentary Material Sec. A 5 d. As shown in Fig. 2, even
from a qualitative perspective, the scaling of the yeast
noise at low copy number is much closer to µ�1/2

p than
to canonical assumption µ�1

p (Eq. 3). In particular, above
the detection threshold, the noise is always larger than
the low-translation efficiency limit (Eq. 4).

Stochastic kinetic model for central dogma. To under-
stand the failure of the canonical assumptions, we re-
visit the underlying model. The telegraph model for the
central dogma describes multiple steps in the gene ex-
pression process: Transcription generates mRNA mes-
sages [17]. These messages are then translated to syn-
thesize the protein gene products [17]. Both mRNA and
protein are subject to degradation and dilution [18]. (See
Fig. 3A.) At the single cell level, each of these processes
are stochastic. We will model these processes with the
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FIG. 2. A non-canonical scaling is observed for gene-

expression noise in yeast. The protein expression noise (CV2
p)

for yeast scales like µ�1/2
p (purple) rather than the canon-

ical µ�1
p (orange) for low-abundance proteins. (Data from

Ref. [12].) An empirical noise model (Eq. 5, green) fit to the es-
sential genes gives an estimate of the protein-abundance scal-
ing of µ�0.57

p .

stochastic kinetic scheme [17]:

DNA
�m����! mRNA

�p����! Protein

�m

??y �p

??y

Ø Ø,

(6)

where �m is the transcription rate (s�1), �p is the transla-
tion rate (s�1), �m is the message degradation rate (s�1),
and �p is the protein effective degradation rate (s�1).
The message lifetime is ⌧m ⌘ ��1

m . For most protein
in the context of rapid growth, dilution is the dominant
mechanism of protein depletion and therefore �p is ap-
proximately the growth rate [15, 19, 20]: �p = T�1 ln 2,
where T is the doubling time. We will discuss a more
general scenario below.

Statistical model for protein abundance. To study
the stochastic dynamics of gene expression, we used a
stochastic Gillespie simulation [21, 22]. (See Supplemen-
tal Material Sec. A 1.) In particular, we were interested
in the explicit relation between the kinetic parameters
(�m, �m,�p, �p) and experimental observables.

Consistent with previous reports [3, 9], we find that
the distribution of protein number per cell (at cell birth)
was described by a gamma distribution: Np ⇠ �(✓�, k�),
where Np is the protein number at cell birth and � is the
gamma distribution which is parameterized by a scale
parameter ✓� and a shape parameter k�. (See Supple-
mentary Material Sec. A 1.) The relation between the
four kinetic parameters and these two statistical param-
eters has already been reported, and have clear biologi-
cal interpretations [9]: The scale parameter:

✓� = " ln 2, (7)

is proportional to the translation efficiency:

" ⌘ �p

�m
, (8)

where �p is the translation rate and �m is the message
degradation rate. " is understood as the mean number of
proteins translated from each message transcribed. The
shape parameter k� can also be expressed in terms of the
kinetic parameters [9]:

k� = �m

�p
; (9)

however, we will find it more convenient to express the
scale parameter in terms of the cell-cycle message num-
ber:

µm ⌘ �mT = k� ln 2, (10)

which can be interpreted as the mean number of mes-
sages transcribed per cell cycle. Forthwith, we will ab-
breviate this quantity message number in the interest of
brevity.

In terms of two gamma parameters, the mean and the
squared coefficient of variation are:

µp = k�✓� = µm" (11)
CV2

p = 1
k�

= ln 2
µm

, (12)

where the noise depends on the message number (µm),
not the mean protein number (µp). (Eq. 12 only applies
when " � 0 [3, 9].) Are these theoretical results consis-
tent with the canonical model (Eq. 3)? We can rewrite
the noise in terms of the protein abundance and transla-
tion efficiency:

CV2
p = " ln 2

µp
, (13)

which implies that the canonical model only applies
when the translation efficiency (") is independent of ex-
pression (µp).

Measuring the message number. The prediction for the
noise (Eq. 12) depends on the message number (µm).
However, mRNA abundance is typically characterized
by a closely related, but distinct quantity: Quantita-
tive RNA-Seq and methods that visualize fluorescently-
labeled mRNA molecules typically measure the number
of messages per cell [6]. We will call the mean of this
number the cellular message number µm/c. In the kinetic
model, these different message abundances are related:

µm = T
⌧m

µm/c, (14)

by the message recycling ratio, T/⌧m, which can be in-
terpreted as the average number of times messages are
recycled during the cell cycle. To estimate the message
number, we will scale the observed cellular message
number µm/c by the message recycling ratio, using the
mean message lifetime. Fig. 3C illustrates the difference
between the message number and the cellular message
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FIG. 3. Panel A: Kinetic model for the central dogma. The telegraph model is a stochastic kinetic model for protein synthesis,
described by four gene-specific rate constants: the transcription rate (�m), the message degradation rate (�m), the translation
rate (�p), and the dilution rate (�p). Panel B: Statistical model for the central dogma. The predicted distribution in protein
abundance is described by a gamma distribution, which is parameterized by two unitless constants: the shape parameter µm,
the mean number of messages transcribed per cell cycle, and the scale parameter ", the mean number of proteins translated
per message. Panel C: Message number. The message number (µm) is defined as the mean total number of messages (dark blue)
transcribed per cell cycle. Here, four total messages are transcribed and translated to protein (light blue); however, due to message
degradation, at time t0, only one message is present in the cell. Cellular message number (µm/c) is defined as the mean number
of messages per cell at time t.

Total number of Average

Model
organism

Growth
condition

Doubling
time:

Message
lifetime:

Message
recycling

ratio:

messages
/cell:

messages
/cell-cycle:

proteins: translation
efficiency:

translation
rate:

T ⌧m T/⌧m N tot
m/c N tot

m N tot
p " �p (h�1)

Escherichia
coli

LB 30 min 2.5 min 12 7.8⇥ 103 9.4⇥ 104 3⇥ 106 32 770

(E. coli) M9 90 min 2.5 min 36 2.4⇥ 103 8.6⇥ 104 3⇥ 106 35 833
Sacchromyces
cerevisiae
(Yeast–
haploid)

YEPD 90 min 22 min 4 2.9⇥ 104 1.2⇥ 105 5⇥ 107 420 1100

Homo
sapiens
(Human)

Tissue 24 h 14 h 1.7 3.6⇥ 105 6.2⇥ 105 2⇥ 109 3.2⇥ 103 230

TABLE I. Central dogma parameters for three model organisms. Columns three through seven hold representative values for
measured central-dogma parameters for the model organisms described in the paper. The sources of the numbers and estimates
are described in the Supplemental Material Sec. A 2.

number. The mean lifetimes, message recycling ratios,
as well as the total message number for three model or-
ganisms are shown in Tab. I.

Construction of an empirical model for protein num-

ber. To model the noise as a function of protein abun-
dance (µp), we will determine the empirical relation
between mean protein levels and message abundance
by fitting to Eq. 11. Note that the objective here is
only to estimate µm from µp, not to model the process
mechanistically (e.g. [23].) The message numbers are
estimated from RNA-Seq measurements, scaled as de-
scribed above (Eq. 14). The protein abundance numbers

come from fluorescence and mass-spectrometry based
assays [12, 24], with overall normalization chosen to
match reported total cellular protein content. (See Sup-
plemental Material Sec. A 3 d.) The resulting fit gener-
ates our empirical translation model for yeast:

µp = 8.0 µ2.1
m , (15)

where both means are in units of molecules. (An error
analysis for both model parameters is described in Sup-
plementary Material Sec. A 4 b.) The data and model are
shown in Fig. 5A.

Prediction of the noise scaling with abundance. Now
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FIG. 4. Panel A: An empirical model for protein number µp

in yeast. The canonical noise model assumes constant trans-
lation efficiency, which would imply that protein number is
proportional to the message number (orange); however, the
empirical fit (green) shows that protein number scales close to
the square of message number (purple): µp / µ2

m. The protein
abundance has a cutoff near 101 due to the autofluorescence
cutoff [12]. Panel B: The statistical noise model predicts the

observed noise. The statistical noise model (Eq. 12) and em-
pirical model for protein number (Eq. 15) make a parameter-
free prediction of the noise (green). This prediction both
closely matches the observed scaling (/ µ�1/2

p , purple) relative
to the canonical scaling (/ µ�1

p , orange) and quantitatively es-
timates magnitude (vertical offset). This prediction does not
include the contribution of noise floor, relevant for describing
high-expression proteins.

that we have fit an empirical model that relates µp and
µm, we return to the problem of predicting the yeast
noise. We apply the relation (Eq. 15) to Eq. 12 to make
a parameter-free prediction of the noise as a function of
protein abundance:

CV2
p = 1.9 µ�0.48

p . (16)

An error analysis for both model parameters is de-
scribed in Supplementary Material Sec. A 4 e. Our noise
model (Eq. 16) makes both a qualitative and quantita-
tive prediction: (i) From a qualitative perspective, the

model suggests that the µp exponent should be roughly
1
2 for yeast, rather than the canonically assumed scal-
ing exponent of 1. (ii) From a quantitative perspective,
the model also predicts the coefficient of proportionality
if the empirical relation between protein and message
abundances is known (Eq. 15).

Observed noise in yeast matches the predictions of

the empirical model. Newman et al. have character-
ized protein noise by flow cytometry of strains express-
ing fluorescent fusions expressed from their endoge-
nous promoters [12]. The comparison of this data to
the prediction of the statistical expression model (Eq. 16)
are shown in Fig. 5. From a qualitative perspective, the
predicted scaling exponent of �0.48 comes very close
to capturing the scaling of the noise, as determined by
the direct fitting of the empirical noise model (Eq. 5 and
Fig. 2). From a quantitative perspective, the predicted
coefficient of Eq. 16 also fits the observed noise.

From both the statistical analysis (Eq. 5) and visual
inspection (Fig. 5C), it is clear that the noise in yeast
does not obey the canonical model (Eq. 3). However,
the noise in E. coli does obey the canonical model for
low copy messages [15]. (See Fig. 5C.) Why does the
noise scale differently in the two organisms? The key
difference is that the empirical relation between the pro-
tein and message numbers are different. In E. coli, µp /
µ1
m [25]. Our analysis therefore predicts the canonical

model (Eq. 3) should hold for E. coli, but not for yeast,
as illustrated schematically in Fig. 5. (Additional dis-
cussion can be found in the Supplementary Material
Sec. A 5 f.).

Implications of growth robustness for translation. Be-
fore continuing with the noise analysis, we to focus on
the significance of the empirical relationship between
the protein and message numbers (Eq. 15). How can the
cell counteract noise-induced reductions in robustness?
Eq. 11 implies that gene expression can be thought of as
a two-stage amplifier [17]: The first stage corresponds
to transcription with a gain of message number µm, and
the second stage corresponds to translation with a gain
in translation efficiency ". (See Fig. 5AB.) The noise is
completely determined by the first stage of amplifica-
tion, provided that " � 0 [3, 9]. Genes with low tran-
scription levels are the noisiest. For these genes, the cell
can achieve the same mean gene expression (µp) with
lower noise by increasing the gain of the first stage (in-
creasing message number) and decreasing the gain of
the second stage (the translation efficiency) by the same
factor. This is most clearly understood by reducing " at
fixed µp in Eq. 13. Highly transcribed genes have low
noise and can therefore tolerate higher translation effi-
ciency in the interest of economy (decreasing the total
number of messages) [5]. Growth robustness therefore
predicts that the translation efficiency should grow with
transcription level.

Translation efficiency increases with expression level

in yeast. The translation efficiency (Eq. 8) can be deter-
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FIG. 5. Understanding the distinct central dogma strate-

gies using the amplifier analogy. Panel A: Yeast. High ex-
pression (µp) is typically achieved by coordinated small in-
creases in both transcription (µm) and translation ("), relative
to low-expression genes. Panel B: E. coli. High expression
(µp) is typically achieved by a large increase in transcription
(µm) only, relative to low-expression genes. Translation (") is
uncorrelated. Panel C: Distinct noise scaling with gene ex-

pression. Due to the coordinated changes in both transcrip-
tion and translation in yeast, noise scaling is weaker than in
E. coli, where only transcription changes. The noise of high-
expression E. coli genes is determined by the noise floor.

mined from the empirical translation model (Eq. 15):

" = 8.0 µ1.1
m , (17)

as a function of message number. (An error analysis for
both model parameters is described in Supplementary
Material Sec. A 4 d.) In yeast, the translation efficiency
clearly has a strong dependence on message number
µm, and grows with the expression level, exactly as pre-
dicted by robustness arguments. We note the contrast to
the translation efficiency in E. coli, which is roughly con-
stant [25]. (See Supplementary Material Sec. A 5 f.) We
will speculate about the rationale for these differences in
the discussion below.

Implications of growth robustness for transcription. In
addition to the prediction of translation efficiency de-

pending on transcription, a second qualitative predic-
tion of growth robustness is that essential gene expres-
sion should have a noise ceiling, or maximum noise
level (Eq. 2), where noise above this level would be too
great for robust growth. The fit between the statistical
model and the observed noise has an important implica-
tion beyond confirming the predictions of the telegraph
and statistical models for noise: The identification of the
message number, µm, as the key determinant of noise al-
lows us to use this quantity as a proxy for noise in quan-
titative transcriptome analysis.

To identify a putative transcriptional floor, we now
broaden our consideration beyond yeast to characterize
the central dogma in two other model organisms: the
bacterium Escherichia coli and Homo sapiens (human). We
will also analyze three different transcriptional statis-
tics for each gene: transcription rate (�m), cellular mes-
sage number (µm/c), and message number (µm). Anal-
ysis of these organisms explores orders-of-magnitude
differences in characteristics of the central dogma, in-
cluding total message number, protein number, dou-
bling time, message lifetime, and number of essential
genes. (See Tab. I.) In particular, as a consequence of
these differences, the three statistics describing tran-
scription: transcription rate, cellular message number
and message number are all distinct. Genes with match-
ing message numbers in two different organisms will
not have matching transcription rates or cellular mes-
sage numbers. We hypothesize that cells must express
essential genes above some threshold message number
for robust growth; however, we expect to see that non-
essential genes can be expressed at much lower levels
since growth is not strictly dependent on their expres-
sion. The signature of a noise-robustness mechanism
would be the absence of essential genes for low message
numbers.

No organism-independent threshold is observed for

transcription rate or cellular message number. His-
tograms of the per-gene transcription rate and cellular
message number are shown in Fig. 6 for E. coli, yeast,
and human. Consistent with existing reports, essential
genes have higher expression than non-essential genes
on average; however, there does not appear to be any
consistent threshold in E. coli (even between growth con-
ditions), yeast, or human transcription, either as char-
acterized by the transcription rate (�m) or the cellular
message number (µm/c). For instance, the per gene rate
of transcription is much lower in human cells than E. coli
under rapid growth conditions, with yeast falling in be-
tween.

An organism-independent threshold is observed for

message number for essential genes. In contrast to the
other two transcriptional statistics, there is a consistent
lower limit, or floor, on message number (µm) of some-
where between 1 and 10 messages per cell cycle for es-
sential genes. (See Fig. 7.) Non-essential genes can be
expressed at a much lower level. This floor is consistent
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Estimated minimum essential gene

Model organism Maximum essential
gene noise:

messages
/cell-cycle:

messages /cell: transcription rate: proteins:

maxCV2
p µmin

m µmin
m/c �min

m (h�1) µmin
p

E. coli (LB) 0.7 1 0.08 2 30
(M9) 0.7 1 0.03 0.7 30

Yeast 0.7 1 0.2 0.7 400
Human 0.7 1 0.6 0.04 3000

TABLE II. Estimates of threshold levels for the central dogma in three model organisms. Estimates for the lower thresholds of
transcription statistics as inferred from our analysis based on the one-message-per-cell-cycle rule.

Human Yeast
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FIG. 6. Transcription in three model organisms. We charac-
terized different gene transcriptional statistics in three model
organisms. In E. coli, two growth conditions were analyzed.
Panel A: The distribution of gene transcription rate. The
transcription rate varies by two orders-of-magnitude between
organisms. Panel B: The distribution of gene cellular mes-

sage number. There is also a two-order-of-magnitude varia-
tion between cellular message numbers.

not only between E. coli, growing under two different
conditions, but also between the three highly-divergent
organisms: E. coli, yeast and human. We will conserva-
tively define the minimum message number as

µmin
m ⌘ 1, (18)

and summarize this observation as the one-message-per-
cell-cycle rule for essential gene expression.

In addition to the common floor for essential genes,

there is a common gene expression distribution shape
shared between organisms dependent on the message
numbers, especially for low-expression essential genes.
This is observed in spite of the significantly larger num-
ber of essential genes in human relative to E. coli. (See
Fig. 7.) Interestingly, there is also a similarity between
the non-essential gene distributions for E. coli and hu-
man, but not for yeast, which appears to have a much
lower fraction of genes expressed at the lowest message
numbers.

What genes fall below-threshold? We have hypothe-
sized that essential genes should be expressed above a
threshold value for robustness. It is therefore interest-
ing to consider the function of genes that fall below this
proposed threshold. Do functions of these genes give us
any insight into essential processes that do not require
robust gene expression?

Since our own preferred model system is E. coli, we
focus here. Our essential gene classification was based
on the construction of the Keio knockout library [26]. By
this classification, 10 essential genes were below thresh-
old. (See Supplementary Material Tab. IV.) Our first step
was to determine what fraction of these genes were also
classified as essential using transposon-based mutagen-
esis [27, 28]. Of the 10 initial candidates, only one gene,
ymfK, was consistently classified as an essential gene in
all three studies, and we estimate that its message num-
ber is just below the threshold (µm = 0.4). ymfK is
located in the lambdoid prophage element e14 and is
annotated as a CI-like repressor which regulates lysis-
lysogeny decision [29]. In � phase, the CI repressor re-
presses lytic genes to maintain the lysogenic state. A
conserved function for ymfK is consistent with it being
classified as essential, since its regulation would prevent
cell lysis. However, since ymfK is a prophage gene, not a
host gene, it is not clear that its expression should opti-
mize host fitness, potentially at the expense of phage fit-
ness. In summary, closer inspection of below-threshold
essential genes supports the threshold hypothesis.

Maximum noise for essential genes. The motivation for
hypothesizing a minimum threshold for message num-
ber was noise-robustness, or the existence of a hypoth-
esized noise ceiling above which essential gene expres-
sion is too noisy to allow robust cellular proliferation.
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FIG. 7. Panel A: Transcription in three model organisms. The distribution of gene message number. All organisms have
roughly similar distributions of message number for essential genes, which are not observed for message numbers below a couple
per cell cycle. However, non-essential genes can be expressed at much lower levels. Panel B: Nonessential genes tolerate higher

noise levels than essential genes. The floor of message number is consistent with a noise ceiling of CV2
p = 0.7 for essential genes

(green). Nonessential genes (red) are observed with lower transcription levels. Panel C: Conserved transcriptional program for

essential genes. The message number per gene (number of messages transcribed per cell cycle) is roughly identical in E. coli,
yeast, and human. We show this schematically.

With the one-message-per-cell-cycle rule, µmin
m ⌘ 1, we can

estimate the essential gene noise ceiling using Eq. 12:

CV2
p  0.7, (19)

for essential genes. Since noise depends only on the
message number, we expect to observe the same limit in
all organisms if the message number floor is conserved.
Estimating the floor on central-dogma parameters. If
message number floor is conserved, a limit can be es-
timated for the floor value on other transcriptional pa-
rameters. Using Eq. 14, we can estimate the floor on
the cellular message number (as measured in RNA-Seq
measurements):

µmin
m/c =

⌧m
T , (20)

for essential genes. Similarly, we can use Eq. 9 to esti-
mate the minimum transcription rate:

�min
m = 1

T , (21)

for essential genes. Again, this result has an intuitive in-
terpretation as the one-message-per-cell-cycle rule. Fi-
nally, we can estimate a floor on essential protein abun-
dance, assuming a constant translation efficiency using
Eq. 11:

µmin
p = ", (22)

for essential genes, where " is the translation efficiency
(which we will assume is well approximated by the
mean in the context of the estimate). All four floor es-
timates for each model organism are shown in Tab. II.

DISCUSSION

Noise by the numbers. Although there has already
been significant discussion of the scaling of biological

noise with protein abundance [3, 9, 10, 12, 15], our study
is arguably the first to test the predictions of the tele-
graph and statistical noise models against absolute mea-
surements of protein and message abundances. This ap-
proach is particularly important for the message num-
ber (µm), which determines the magnitude of the noise
in protein expression, and facilitates direct comparisons
of noise between organisms as well as identifying the
common distributions of message number for genes,
that are conserved from bacteria to human.

Noise scaling in E. coli versus yeast. A key piece of
evidence for the significance of the message number
was the observation of the non-canonical scaling of the
yeast noise with protein abundance (Fig. 5); however,
the canonical model (Eq. 3) does accurately describe
the noise in E. coli (see Fig. 11). Why does the noise
scale differently? In E. coli, the translation efficiency is
only weakly correlated with the gene expression [25],
and therefore the canonical model is a reasonable ap-
proximation (Supplementary Material Sec. A 5 d). How-
ever, we also argued that translation efficiency should
grow with expression level. Why is this not observed in
E. coli? Due to the high noise floor in E. coli, nearly all es-
sential genes are expressed at a sufficiently high expres-
sion level such that the noise is dominated by the noise
floor [15]. As a consequence, increasing the message
number, while decreasing translation efficiency, does
not decrease the noise even as it increases the metabolic
load as a result of increased transcription. (A closely
related point has recently been made in Bacillus subtilis
[30], where Deloupy et al. report that the noise cannot be
tuned by adjusting the message number due to the noise
floor.) Our expectation is therefore that other bacterial
cells will look similar to E. coli: They will have a higher
noise floor and a similar scaling of noise with protein
abundance.
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In contrast, due to the lower noise floor, we expect
eukaryotic cells to optimize the central dogma pro-
cesses like yeast and as a result will have a similar non-
canonical scaling of noise with protein abundance. Al-
though this non-canonical scaling is clear from the abun-
dance data (Fig. 5B), there is an important qualification
to emphasize: the mechanism that gives rise to the non-
canonical scaling is due to the correlation between trans-
lation efficiency and transcription. Regulatory changes
that effect only transcription (i.e. increase µm) and not
translation (") should obey the canonical noise model
(Eq. 3). This scenario may help explain why Bar-Even et
al. claim to observe canonical noise scaling in yeast [10],
studying a subset of genes under a range of conditions
resulting in differential expression levels. The failure of
the canonical noise model (Eq. 3) at the proteome level
in yeast (Eq. 16) is a consequence of genome-wide op-
timization of the relative transcription and translation
rates.

Essential versus non-essential genes. What genes are
defined as essential is highly context specific [31]. It is
therefore important to consider whether the compari-
son between these two classes of genes is informative
in the context of our analysis. We believe the exam-
ple of lac operon in E. coli is particularly informative in
this respect. The genes lacZYA are conditionally essen-
tial: they are required when lactose is the carbon source;
however, these genes are repressed when glucose is the
carbon source. Our expectation is that these condition-
ally essential genes will obey the one-message-per-cell-
cycle rule when these genes are required; however, they
need not obey this rule when the genes are repressed.
By analyzing essential genes, we are limiting the anal-
ysis to transcriptionally-active genes, whereas the non-
essential category contains both transcriptionally-active
and silenced genes.

Protein degradation and transcriptional bursting. Two
important mechanisms can act to significantly increase
the noise above the levels we predict: protein degrada-
tion and transcriptional bursting. Although the dom-
inant mechanism of protein depletion is dilution in
E. coli, protein degradation plays an important role in
many organisms, especially in eukaryotic cells [32, 33].
If protein degradation depletes proteins faster than di-
lution, the shape parameter decreases below our esti-
mate (Eq. 9), increasing the noise. Likewise, the exis-
tence of transcriptional bursting, in which the chromatin
switches between transcriptionally active and quiescent
periods, can also act to increase the noise [1, 7, 34]. Since
the presence of both these mechanisms increases the
noise beyond what is predicted by the message number,
they do not affect our estimate of the minimum thresh-
old for µm.

The biological implications of noise. What are the bi-
ological implications of gene expression noise? Many
important proposals have been made, including bet-
hedging strategies, the necessity of feedback in gene

regulatory networks, etc [1]. Our analysis suggests
that noise influences the optimal function of the central
dogma process generically. Hausser et al. have already
discussed some aspects of this problem and use this
approach to place coarse limits on transcription versus
translation rates [5]. The transcriptional floor for essen-
tial genes that we have proposed places much stronger
limits on the function of the central dogma.

Although we describe our observations as a floor, a
more nuanced description of the phenomenon is a com-
mon distribution of gene message numbers, peaked at
roughly 15 messages per cell cycle and cutting off close
to one message per cell cycle. Does this correspond to a
hard limit? We expect that this does not since there are a
small fraction of genes, classified as essential, just below
this limit; however, it does appear that virtually all es-
sential genes have optimal expression levels above this
threshold. The common distribution of message num-
ber clearly suggests that noise considerations shape the
function of the central dogma for virtually all genes. Ex-
ploring this hypothesis will require quantitative models
that explicitly realize the high cost of noise-induced low
essential-protein abundance. We will present such an
analysis elsewhere.

Adapting the central dogma to increased cell size and

complexity. Although core components of the cen-
tral dogma machinery are highly-conserved, there has
been significant complexification of both the transcrip-
tional and translational processes in eukaryotic cells
[35]. Given this increased regulatory complexity, it is
unclear how the central dogma processes should be
adapted in larger and more complex cells. An important
clue to this adaptation comes from E. coli proliferating
with different growth rates. Although there are very sig-
nificant differences between the cellular message num-
ber as well as the overall transcription rate under the
two growth conditions, there is very little difference in
message number. In short, roughly the same number of
messages are made during the cell cycle, but they are
made more slowly under slow growth conditions.

How does this picture generalize in eukaryotic cells?
Although both the total number of messages and the
number of essential and non-essential genes are larger in
both yeast and human cells, the distribution of the mes-
sage number per gene is essentially the same as E. coli
(Fig. 7). The conservation of the message number be-
tween organisms is consistent with all of these organ-
isms being optimized with respect to the same trade-off
between economy and robustness to noise.

Data availability. We include a source data file which
includes the estimated message numbers as well as es-
sential/nonessential classifications for each organism.
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