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The use of evolutionary profiles to predict protein secondary structure, as well as other protein structural
features, has been standard practice since the 1990s. Using profiles in the input of such predictors, in
place or in addition to the sequence itself, leads to significantly more accurate predictions. While profiles
can enhance structural signals, their role remains somewhat surprising as proteins do not use profiles
when folding in vivo. Furthermore, the same sequence-based redundancy reduction protocols initially
derived to train and evaluate sequence-based predictors, have been applied to train and evaluate
profile-based predictors. This can lead to unfair comparisons since profiles may facilitate the bleeding
of information between training and test sets. Here we use the extensively studied problem of secondary
structure prediction to better evaluate the role of profiles and show that: (1) high levels of profile simi-
larity between training and test proteins are observed when using standard sequence-based redundancy
protocols; (2) the gain in accuracy for profile-based predictors, over sequence-based predictors, strongly
relies on these high levels of profile similarity between training and test proteins; and (3) the overall
accuracy of a profile-based predictor on a given protein dataset provides a biased measure when trying
to estimate the actual accuracy of the predictor, or when comparing it to other predictors. We show, how-
ever, that this bias can be mitigated by implementing a new protocol (EVALpro) which evaluates the
accuracy of profile-based predictors as a function of the profile similarity between training and test pro-
teins. Such a protocol not only allows for a fair comparison of the predictors on equally hard or easy
examples, but also reduces the impact of choosing a given similarity cutoff when selecting test proteins.
The EVALpro program is available in the SCRATCH suite ( www.scratch.proteomics.ics.uci.edu) and can be
downloaded at: www.download.igb.uci.edu/#evalpro.
� 2020 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction tion. For instance, an alternating pattern of buried and exposed
Protein structure prediction is usually decomposed into simpler
but still difficult tasks like the prediction of secondary structure,
relative solvent accessibility, domains, or contact/distance maps.
Despite the variety of methods proposed to tackle each of these
tasks, the use of evolutionary information, notably sequence pro-
files, in the input of the prediction methods has been a constant
since the 90s when it was shown to significantly improve predic-
tion accuracies [28]. It is not uncommon to report an improvement
of 10% or more when using profiles instead of sequences alone.

A key reason for why profiles improve accuracy is that they can
amplify structural signals against the noisy background of evolu-
residues in a profile, typically signals the presence of an alpha helix
on the surface of a protein [3]. The same pattern can be less visible
at the level of an individual sequence. However, this observation
alone does not provide a full explanation for their usefulness for
two main reasons. First, proteins do not use profile information
when folding in vivo. Thus, in principle, one may expect
sequence-based predictors to be able to achieve the same level of
accuracy as profile-based predictors; however, this has not been
observed in the past 30 years. Second, over the same time period,
the same sequence-based redundancy reduction protocols–
initially derived to train and evaluate sequence-based predictors–
have been applied to train and evaluate profile-based predictors.
However, if we visualize a profile as creating a sort of ‘‘ball” around
a sequence in protein space, then profiles increase the volume
occupied by both training and test sequences, increasing the
chance of an overlap, i.e. of information bleeding between training
and test sets (Fig. 1), thereby reducing the quality and fairness of
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Fig. 1. Illustration of various cases of protein space coverage obtained when using evolutionaryprofiles, derived from multiple sequence alignments (MSA). Figures generated
using UNIREF90 data from pairs of proteins sharing less than 25% sequence identity as described in Section 1.2. The area of the ellipsoids corresponds to the number of
homologs in the protein’s MSA, the distance is inversely related to the sequence identity of the train-test protein pairs, while the overlapping area corresponds to the fraction
of shared homologs in both train and test proteins. (A) corresponds to the case initially anticipated in the early 90s (Fig. 2 of Rost and Sander [28]). Cases observed in actual
data are categorized into (B), (C), (D), and (E), depending on the fraction of homologs in the train and test groups that are part of the intersection of all homologs, with a
threshold of 50%: (B) contains protein pairs sharing less than 50% of their homologs; (C) contains pairs where over 50% of the test set’s homologs are part of the intersection,
but less than 50% of the train set’s homologs are part of the intersection; (D) equivalent to (C) with inverted thresholds; (E) contains protein pairs sharing over 50% of their
homologs.
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the evaluation. Thus here we set out to study these subtle effects
and consider the possibility that the observed gain in accuracy
could be at least in part due to an evaluation bias - the bias that
results from having sequence-based redundancy reduction proto-
cols for evaluating profile-based predictors.

1.1. Three decades of profile-based predictors

The transition from sequence-based to profile-based predictors
occurred after a series of landmark studies in the 80s and 90s, on
one side revealing the relationship between sequence and struc-
ture [10,8,29], and on the other side providing fast alignment
methods to detect putative homologous proteins in large un-
annotated protein databases [30,20,1,2]. It became clear at this
point that a single protein sequence was sufficient to retrieve infor-
mation about the entire protein family and its evolution. Evolu-
tionary profiles, calculated from multiple sequence alignments
(MSA) of the putative homologous proteins and expressed in the
form of amino acid frequencies at each alignment position or
position-specific scoring matrices (PSSM), were rapidly selected
as a solution to represent and incorporate this newly available
information into prediction systems in place of the previously used
sequence-based features. The resulting gain in accuracy observed
in these studies was striking. For instance, sequence-based sec-
ondary structure predictors available in the early 90s with an esti-
mated accuracy between 60% and 65% [25] were rapidly replaced
by a new generation of profile-based predictors with an estimated
accuracy between 70% and 76% [28,19]. Since then, predictors have
kept improving thanks notably to more sophisticated prediction
methods and larger databases [34,18], but have remained in the
same generation of profile-based predictors. The ~10% gain in accu-
racy initially observed is still visible nowadays as recently showed
in Heffernan et al. [16] and Torrisi et al. [32]. Similar trends can be
observed for predictors beyond secondary structure to the point
that today most state-of-the-art predictors include evolutionary
profiles in their input representations.

1.2. Assessing predictors: redundancy versus evolutionary profiles

The general evaluation protocol used in the field to assess the
accuracy of profile-based predictors was proposed in Rost and San-
der [28]. With this protocol, training and test proteins are selected
from the Protein Data Bank (PDB, Gilliland et al. [12]), or from data-
bases directly derived from the PDB like SCOPe [6] or CATH [22],
via a redundancy reduction step performed at the sequence iden-
tity level using tools like PSI-BLAST [2], CD-HIT [13], or Pisces
[33]. This protocol was suggested based on the assumption that a
protein sequence sharing less than 25% identity with the protein
sequences used to train the predictor is a suitable independent test
protein to evaluate a profile-based predictor, an assumption clearly
visible from Fig. 2 of Rost and Sander [28] (depicted by case (A) in
Fig. 1 of this study). However, we have known for a long time that
it isn’t particularly unlikely that such a protein may belong to the
same family as some of the training proteins [29,4,27,31]. Such
cases would inevitably result in high levels of similarity between
the corresponding profiles despite the low level of sequence iden-
tity (cases (B) to (E) in Fig. 1), and may be the reason for much of
the gain in accuracy of profile-based predictors. Likewise, overall
differences in accuracy between predictors could result from there
being different proportions of cases (A) to (E) in Fig. 1 between
their training sets and the sets they are tested on. To create
Fig. 1, pairs of proteins are sampled from PDB-derived train and
test data sets (reduced to less than 25% sequence identity), while
MSA-derived profiles are generated using UNIREF90. To compute
the intersection of homologs that are shared between train and test
proteins, we ensured that only matches of the same regions of the
same homologs are considered, instead of naively counting homo-
logs with potentially disjoint matching regions.
1.3. A profile-induced evaluation bias?

To better understand the mechanism by which evolutionary
profiles contribute to a predictor’s accuracy, we first designed
and implemented a simple evaluation protocol to assess the accu-
racy of a predictor as a function of maximal profile similarity
between training and test proteins. The similarity is calculated
using a sliding window of fixed length, comparing any given seg-
ment of the test set to all possible sliding window positions in
the training set, and choosing the most similar one. We then
applied this protocol to six state-of-the-art profile-based sec-
ondary structure predictors using both their respective training
and test datasets, whenever available, and a separate test dataset
specifically prepared for these predictors. The results of this first
set of experiments confirm our initial suspicions, notably: (1) high
levels of profile similarity between training and test examples can
be observed despite the low level of sequence identity between the
corresponding proteins; (2) the accuracy of the predictors is
strongly correlated to the level of profile similarity; and (3) high
levels of profile similarity are necessary for the predictors to per-
form significantly better than sequence-based predictors. We then
confirm that the redundancy between training and test datasets
introduced by the use of evolutionary profiles is the consequence
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of a larger than initially anticipated coverage of the protein space
by these profiles (illustrated in Fig. 1). We finally show these con-
clusions are not specific to secondary structure predictors by
showing that comparable results are obtained when using other
kinds of predictors. Taken together, these results suggest that the
use of evolutionary profiles introduces evaluation biases within
the current protocols, and that the level and distribution of profile
similarity between training and test sets should be explicitly con-
sidered when evaluating and comparing different predictors.
2. Methods

2.1. Profile similarity measure

Measuring the similarity between evolutionary profiles is a
problem usually addressed in the context of identifying homolo-
gous regions of proteins based on their respective evolutionary
profiles. For instance, HHblits [26] detects homologous sequences
by performing numerous pairwise alignments of profile HMMs.
While remarkably efficient at identifying homologous protein
regions, these approaches are more complex and costly to imple-
ment than needed in this study. Indeed, the similarity we wanted
here is a numerical similarity between the training and test exam-
ples of a predictor, independent from the biology, fast to compute
on any pair of profiles, and with no need to consider possible inser-
tions in the profiles. We also wanted this measure to be calculated
between short protein regions of fixed length in order to address
the likely variations of profile similarity along the protein
sequences and to limit this measure to a very rough approximation
of the information used by the predictors to make a prediction for a
given sequence position. We experimented with different window
lengths, and a detailed analysis of the effect of varying the window
length is given in the Supplementary materials. In the end, we
selected a window length of 30 amino acids which provides a good
tradeoff between the actual window sizes used by the predictors
and the significance of the measure for the selected length. This
simplified the problem to measuring the similarity between two
30x20 numerical matrices that we further simplified by flattening
the matrices into vectors of dimension 600 without any loss of gen-
erality since the matrix structure is not exploited by any of the pre-
dictors considered in this study. We selected the cosine similarity
measure between the vectors of dimension 600 in our experiments
for its desirable properties including notably its low complexity,
amplitude independence, and ½0;1� boundaries for positive spaces
(½�1;1� otherwise). For any profile window A of length 30 in a test
protein, we therefore define the similarity of A with the training
dataset as the maximum cosine similarity value calculated
between A and all profile windows of length 30 in the correspond-
ing training dataset.
2.2. Profile-based secondary structure predictors and corresponding
training/test datasets

We selected six widely used protein secondary structure pre-
dictors such that (1) evolutionary profiles constitute the largest
part of their input features and (2) the training and test datasets
used in the corresponding studies were prepared using a 25%
sequence identity threshold. Namely, we used:

� SSpro [24,7,21]
� JPred [9,11]
� PSIPRED [19,5]
� SPIDER [15,17]
� Porter [23,32]
� SPOT-1D [14]
For each predictor, we also collected the corresponding training
and test datasets whenever made available by the authors and
retrieved the protein databases used by these predictors to gener-
ate the profiles. A summary of the software releases, datasets, and
profile generationmethods used in this study is provided in Table 1.
Note however that:

� SSpro and Porter were evaluated without using their template-
based prediction modules to remove the evaluation bias they
would introduce.

� The datasets used for the latest release of PSIPRED were not
retained by the authors so we extracted a fairly large represen-
tative training set from the PDB snapshot matching with the
release date of the predictor using Pisces [33] with default
settings.

� SSpro was originally evaluated using a cross-validation proce-
dure on a large protein dataset. We therefore considered this
dataset as being only the training set of the predictor in this
study.

� Porter’s test set is suitable for an independent evaluation of
SSpro as all the proteins in this dataset were released after
June 2017 and share less than 25% sequence identity with
any protein in the training set of SSpro. We also used it to test
PSIPRED in our experiments despite the high redundancy
levels with the PSIPRED training set mentioned above, and vis-
ible in Fig. 2.

2.3. Sequence-based secondary structure predictor

In order to get a baseline accuracy for sequence-based predic-
tions of the secondary structure in our experiments, and to com-
pare the performances between sequence-based and profile-
based predictions, we used the most recent predictor we found
in that category: SPIDER3_single [16]. Other sequence-based pre-
dictors were considered during our study but were all systemati-
cally outperformed by SPIDER3_single so only comparisons with
this predictor’s accuracy are reported here.

2.4. Independent test protein dataset

We extracted from the PDB an independent test set of pro-
teins for the seven predictors listed in Sections 2.2 and 2.3 so
that all predictors could be evaluated on the same set of pro-
teins with less than 25% sequence identity with any of the pro-
teins used to train all the predictors, i.e. following the
evaluation protocol currently used in the field. PDB entries
deposited after February 2017, with less than 25% sequence
identity with any of the proteins in the seven training datasets
(sequence identity was estimated using PSI-BLAST), and not vio-
lating any of the predictor-specific restrictions on the protein
sequences (minimal and maximal sequence lengths, no non-
standard or unknown amino acids) were selected. The process
resulted in 409 such proteins. We name the corresponding pro-
tein dataset PDB409.

2.5. Profile similarity based evaluation protocol

We implemented the protocol described below to assess the
accuracy of a profile-based predictor as a function of the similarity
level calculated between the profiles of its training and test
proteins.

1. Evolutionary profiles are extracted for each training and test
protein following the methods reported in Table 1, i.e. using
the same tools and protein databases as the ones originally used
to train each predictor.



Table 1
Description of the profile-based predictors used in this study. The reported release date for each predictor corresponds to the date the models were trained whenever available, to
the release date of the software otherwise. The reported date for each dataset is such that all proteins in the corresponding training set had their structure available prior to that
date. The protein database release reported in the last column is the release currently used by the online version of the predictors whenever the information was available, a close
match with the predictor’s release date otherwise.

Predictors Datasets Profiles

Name & Release Date Date Training Test Method Type Database Release

SSpro, ACCpro 5.1 10/2013 08/2013 5,772 – PSI-Blast Frequency UniRef50 06/2015
JPred 4 12/2014 07/2014 1,348 149 PSI-Blast PSSM UniRef90 07/2014
PSIPRED 4.02 03/2016 03/2016 10,739 – PSI-Blast PSSM UniRef90 05/2016
SPIDER 3 10/2016 06/2014 4,590 1,199 PSI-Blast PSSM UniRef90 05/2016

HHblits Frequency UniProt20 02/2016
Porter, PaleAle 5 03/2018 12/2014 15,753 3,154 PSI-Blast Frequency UniRef90 05/2016

HHblits Frequency UniProt20 02/2016
SPOT-1D 08/2018 02/2017 10,029 1,213 PSI-Blast PSSM UniRef90 04/2018

HHblits Frequency UniClust30 10/2017

Fig. 2. Evaluation results for the six profile-based secondary structure predictors considered in this study on their own test datasets (Porter’s test set for SSpro and PSIPRED)
following the protocol described in Section 2.5. The legend for each plot is as follows: (a) the x-axis represents the profile similarity level calculated as indicated in Section 2.1,
(b the y-axis represents the estimated predictor accuracy, (c) the GPR-learned functions interpolating the numerous observations at each profile similarity level are drawn
using continuous black curves with 95% confidence intervals drawn around the curve in grey color, (d) the predictor’s average accuracy on the entire test dataset is depicted
using discontinuous horizontal black lines, and (e) the relative frequency of profile fragments observed at each profile similarity level is depicted by plain grey areas in the
lower parts of the plots; note that it is re-scaled to reach 50% at its peak (indicated with a dash) for improved visibility, and in some cases almost all fragments concentrate at a
cosine similarity of 1.0, as in the case of PSIPRED.
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2. Predicted secondary structures are obtained for each test pro-
tein by running the corresponding predictor with the same pro-
tein database as the one used to generate the profiles in the
previous step.

3. Prediction accuracy and profile similarity level with the pro-
teins in the training dataset are calculated for each possible
fragment of length 30 in the test proteins using a sliding win-
dow approach. Profile similarity levels are calculated as
described in Section 2.1. For the three predictors using two dif-
ferent profiles in input, we consider each profile separately and
report the results for both types of profiles.

4. We use the implementation of the Gaussian Process Regression
(GPR) method publicly available in the scikit-learn python
library to interpolate the numerous pairs (profile similarity



G. Urban et al. / Computational and Structural Biotechnology Journal 18 (2020) 2281–2289 2285
level, accuracy) obtained during the previous step. The resulting
functions are used to estimate and plot the predictor’s accuracy
at each profile similarity level.

3. Results

The results obtained following this protocol are reported indi-
vidually for each the six profile-based secondary structure predic-
tors in Fig. 2 when evaluating the predictors using their own test
sets and in Fig. 3 when evaluating them using the PDB409 dataset.
A combined view for each set of results and a comparison with the
accuracy of the top-performing sequence-based predictor
(SPIDER3_single) on the same test datasets are provided respec-
tively in Figs. 4 and 5. Note that the high occurrence of high-
similarity protein fragments for PSIPRED in Fig. 2 is due to the
unavailability of its training set, forcing us to use a surrogate data-
set. Given the resulting atypical plot for PSIPRED in Fig. 2, we con-
clude that the availability of the actual training set is important for
obtaining meaningful results. For the other predictors we observe a
clear positive correlation of train-test dataset similarity with
higher predictor accuracy. In addition, we also observe that more
recent predictors perform better than older ones, which can be
due to larger training sets and better profile features due to a larger
number of homologs.

3.1. Origin of the redundancy observed when using profiles

The results obtained following the protocol described in Sec-
tion 2.5 and reported in Figs. 2 and 3 clearly show that high fre-
quencies of test profile windows very similar or identical to the
training profile windows can be observed in several cases despite
the very low level of sequence identity between the proteins. A
quick observation of the corresponding MSAs revealed large inter-
sections between the members of each MSA, providing a natural
explanation for the high profile similarity values obtained on these
examples. The various cases we observed (illustrated in Fig. 1) sug-
gest that the protein space covered by the members of an MSAmay
be much larger than initially anticipated in the 90s (depicted by
case (A) in Fig. 1) and could be a major factor influencing the over-
all accuracy of the profile-based predictors developed during the
last decades.

We test this assumption by evaluating both a profile-based pre-
dictor on sequences and a sequence-based predictor on profiles.
The usual process is to only test a predictor on the same type of
features that it was trained on. In Table 2 the sequence- and
profiles-based predictors are both tested on the one-hot-coded
sequence test set, as well as the profile-based test set. One reason
for why meaningful results can be expected is that sequence and
profile representations are similar: one-hot-coded amino acid
sequences are equivalent to profiles in the extreme case of zero
identified homologs, while regular profile features can be seen as
’augmented’ one-hot-codes, with added values in place of zeros.

On the one hand, this experiment aims to check if the high accu-
racy of a profile-based predictor is strongly dependent on the large
intersections mentioned above by observing the change in accu-
racy resulting from removing these intersections. On the other
side, the experiment aims to check if the low accuracy of
sequence-based predictors is improved by adding such intersec-
tions. We trained the two predictors using the same encoding for
both sequences and profiles so that the two types of input data
could be used to evaluate the predictors. Sequences were repre-
sented as frequency profiles containing only 0 and 1 values as com-
monly done by sequence-based predictors. No extra features were
used in these experiments. The dataset and methods used to train
the two predictors are not detailed here but are identical for each
predictor and closely follow the protocols used in Torrisi et al. [32].
The PDB409 dataset described in Section 2.4 is used to evaluate the
trained models both on sequences and profiles generated using
HHblits. The accuracy of each model on both types of input data
is reported in Table 2.

3.2. Profile-based prediction of other structural features

As mentioned in the introduction, the use of evolutionary pro-
files to predict structural features of a protein is not limited to
the secondary structure prediction problem. We performed the
same analysis on different kinds of predictors to make sure that
the main results of this study are not specific to the profile-based
prediction of the secondary structure. All these experiments led
to highly similar results and conclusions so we decided to report
only some of these results for the three prediction problems listed
below.

� Secondary Structure (8-class)
� Relative Solvent Accessibility (2-class)
� Torsion Angles (14-class)

We selected three predictors for each prediction problem among
the ones already used during the previous experiments as most
of these predictors are also trained to predict other structural fea-
tures than the secondary structure 3-class, occasionally distributed
under a different name. Datasets and profile generation methods
reported in Table 1 are also valid for the corresponding predictors
evaluated in this experiment. Evaluation results are reported in
Fig. 6 and were obtained by evaluating each predictor on its own
test dataset similarly to the results reported in Fig. 2.
4. Discussion

Studying the accuracy of profile-based predictors as a function
of the profile similarity between training and test datasets provides
interesting results at three different levels. First, it reveals the
mechanism by which evolutionary profiles increase the prediction
accuracy. Second, it reveals that their use introduces a fairly signif-
icant evaluation bias with the protocols used in the field. And
finally, as profile-similarity is predictive of the accuracy of individ-
ual secondary structure predictors, it can be used to create a com-
posite predictor that combines predictions from multiple
predictors at the protein fragment level in an informed way.

The first two aspects are discussed in more detail below.

4.1. How profiles improve prediction accuracy

The common belief that evolutionary profiles are more informa-
tive for structural feature prediction, compared to single
sequences, must be qualified in light of the results obtained in this
study. All the predictors evaluated in our experiments show a clear
correlation between their prediction accuracy and the level of pro-
file similarity. While the predictors that we compared were
released between 2013 and 2018, and were thus trained on very
different training sets, we still observe a high degree of similarly
between their performance graphs in Figs. 4 and 5. As one would
expect, the most recent predictors outperform the oldest ones
due to larger training sets, larger protein databases, and higher
overall profile similarity. All predictors perform overall poorly on
low profile similarity fragments with, in some cases, a level of
accuracy which is even below the level achieved by pure
sequence-based predictors. And all predictors improve steadily as
the profile similarity level increases. A proper evaluation of a pre-
dictor should use test proteins that are unrelated to the training
proteins. We have seen that this is not systematically the case with



Fig. 3. Evaluation results for the six profile-based secondary structure predictors considered in this study on the PDB409 test dataset using the same representation as Fig. 2.
The legend for each plot is as follows: (a) the x-axis represents the profile similarity level calculated as indicated in Section 2.1, (b) the y-axis represents the estimated
predictor accuracy, (c) the GPR-learned functions interpolating the numerous observations at each profile similarity level are drawn using continuous black curves with 95%
confidence intervals drawn around the curve in grey color, (d) the predictor’s average accuracy on the entire test dataset is depicted using discontinuous horizontal black
lines, and (e) the relative frequency of profile fragments observed at each profile similarity level is depicted by plain grey areas in the lower parts of the plots; note that it is re-
scaled to reach 50% at its peak (indicated with a dash) for improved visibility.

Fig. 4. Superimposed GPR graphs from Fig. 3 for all profile-based secondary
structure predictors that are part of this study and tested on their own test datasets.
Details such as predictor names are omitted for visibility purposes, as this figure’s
objective is to compare overall trends. The average accuracy of SPIDER3_single is
shown by a dashed line for comparison.

Fig. 5. Superimposed GPR graphs from Fig. 3 for all profile-based secondary
structure predictors that are part of this study and tested on the PDB409 dataset.
Details such as predictor names are omitted for visibility purposes, as this figure’s
objective is to compare overall trends. The average accuracy of SPIDER3_single is
shown by a dashed line for comparison.
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Table 2
Observed accuracy of the profile-based and sequence-
based predictors evaluated on the PDB409 dataset as
described in Section 3.1. Shown are the accuracies of two
predictors, both tested on a sequence- and profiles-based
test dataset.

Tested on sequences

Trained from sequences 72.3%
Trained from profiles 68.6%

Tested on profiles

Trained from sequences 74.5%
Trained from profiles 81.5%
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current protocols where variable levels of redundancy are
observed as a result of profiles being calculated from alignments
of homologous sequences that contain identical subsets. The
results reported in Table 2 show that profile-based predictors are
unable to sustain their performances without this redundancy.
This result is also visible when performing the opposite experi-
ment, i.e. adding some redundancy between the training and test
sequences of a sequence-based predictor, by replacing test
sequences with profiles, which ends up boosting the predictor’s
accuracy. Taken together, these results show that the � 10% accu-
racy difference between profile-based and sequence-based predic-
tors is in part due to large quantities of highly similar or identical
profiles in the training and test datasets, a regime where machine
learning methods are naturally expected to be more accurate.
Fig. 6. Evaluation results for profile-based predictors of structural features other than the
as in Fig. 2. GPR interpolations of the predictors’ accuracies as a function of profile fragme
Relative profile fragment frequencies are indicated as a grey area, scaled to reach 50% a
4.2. Consequences for current evaluation protocols

The results obtained in this study are also evidence that the cur-
rent evaluation protocols used by the community are not adequate
to: (1) reliably assess the accuracy of a profile-based predictor; and
(2) compare profile-based predictors. Indeed, results reported in
Figs. 2, 3, and 6 show that the mean accuracy of a profile-based
predictor will strongly depend on the abundance of profile frag-
ments highly similar between training and test sets. From the same
results, one can also see that this abundance is not constant at all
when using a 25% sequence identity threshold to reduce the redun-
dancy between training and test datasets, leading to important
variations of the estimated accuracy of a predictor from a test set
to another (up to 6.1% between the results reported in Fig. 2 and
3 for instance). Even comparing the predictors on identical datasets
would not solve this issue as the abundance of high similarity pro-
file fragments is also dependent on other factors such as: the
method used to generate the profiles; the protein database used
to find homologous proteins; and even the type of profiles used
in input of the predictors. An evaluation protocol assessing the
accuracy of a profile-based predictor as a function of the similarity
level between training and test profiles, such as the one imple-
mented in this study, can actually solve this issue since predictors
can then be compared at each profile similarity level. Such a proto-
col not only allows for a fair comparison of the predictors on
equally hard or easy examples, but also reduces the impact of
choosing a given similarity cutoff when selecting test proteins
and is simple enough to not require a lot of computation time. If
secondary structure 3-class on their own test dataset using the same representation
nt similarity are shown as continuous lines surrounded by 95% confidence intervals.
t their peak for improved visibility.
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a protocol, such as the one described here, is used to assess and
compare predictors, the need to separate training and test sets
using a strict, but arbitrary, sequence identity threshold becomes
redundant, leading to the possibility of adopting larger training
sets and designing predictors that have a higher accuracy over a
larger portion of the protein space.
4.3. Software availability

An implementation of the evaluation protocol proposed in this
study, named EVALpro, is available for download, with a full
documentation, from the SCRATCH suite [7] at http://scratch.
proteomics.ics.uci.edu, or more directly at: www.download.igb.
uci.edu/#evalpro. It can be used to either reproduce the analysis
presented here or, more generally, to evaluate other profile-
based predictors and training/test sets.
5. Conclusion

By probing the mechanisms behind the increase in average
accuracy of profile-based predictors versus sequence-based predic-
tors, we have identified an important bias in the way profile-based
protein structure predictors have been designed and evaluated in
the past 30 years. This increase largely relies on the presence and
degree of redundancy between profiles in the training and test sets.
As a result, this redundancy produces evaluation biases when cur-
rent evaluation protocols are used. Despite these results, and
somewhat paradoxically, the usefulness of including evolutionary
profiles in the predictors’ inputs remains unchanged. This is for
the same reasons, and with the same limitations, as using
template-based prediction methods when templates are available
in structural databases. In both cases, a significant improvement
in accuracy can be expected; but this improvement occurs only
when certain conditions of overlap are met. The continued growth
of protein databases benefits profile-based predictors by increasing
the number of situations where these favorable overlap conditions
occur. Nevertheless, at the opposite end, our work clearly shows
that the evaluation protocols used in the field need to be revised
to account for the biases associated with these overlaps. In partic-
ular, we have shown that measuring average accuracy alone on a
protein data set is not particularly meaningful or reliable. Instead,
one should measure accuracy as a function of profile similarity.
Such a protocol provides a means for evaluating profile-based pre-
dictors, and compare them with each other and with sequence-
based predictors, in a fairer way.
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