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Deep neural networks (DNNs) capture complex relationships among variables, however,
because they require copious samples, their potential has yet to be fully tapped for under-
standing relationships between gene expression and human phenotypes. Here we introduce
an analysis framework, namely MD-AD (Multi-task Deep learning for Alzheimer's Disease
neuropathology), which leverages an unexpected synergy between DNNs and multi-cohort
settings. In these settings, true joint analysis can be stymied using conventional statistical
methods, which require “harmonized” phenotypes and tend to capture cohort-level varia-
tions, obscuring subtler true disease signals. Instead, MD-AD incorporates related pheno-
types sparsely measured across cohorts, and learns interactions between genes and
phenotypes not discovered using linear models, identifying subtler signals than cohort-level
variations which can be uniquely recapitulated in animal models and across tissues. We show
that MD-AD exploits sex-specific relationships between microglial immune response and
neuropathology, providing a nuanced context for the association between inflammatory
genes and Alzheimer's Disease.
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Izheimer’s disease (AD), the sixth leading cause of death

in the United States, is a degenerative brain condition

with no known treatment to prevent, cure, or delay its
progression. Primary challenges to treating and preventing AD
include extensive heterogeneity in the clinicopathologic state of
older individuals! and limited knowledge about genetic and
molecular drivers and suppressors of AD-related (amyloid and
tau) proteinopathies and AD dementia?. Recent efforts to identify
molecular mechanisms underlying AD and its progression focus
on two complementary approaches. First, the assembly of large
genome-wide association studies (N>100K subjects) enabled
case/control analyses of genetic variants correlated with a clinical
diagnosis of AD. Interestingly, some identified variants have
implicated tau protein binding, amyloid precursor protein (APP)
metabolism, or immune pathways that play a role in their
aggregation and/or uptake3>. These results reinforce the need for
detailed investigations of the drivers of neuropathological varia-
tion across individuals. Second, moderate-scale postmortem
transcriptomic studies have investigated molecular correlates of a
richer set of phenotypic and neuropathological outcomes®2.
Early work in this domain examined pairwise correlations among
gene expression levels and AD-related traits!? or a diagnosis of
AD!1. More recent attempts have focused on learning statistical
dependencies among gene expression using AD expression data
collected from one cohort in order to infer gene regulatory
networks’ or co-expressed modules® associated with AD-related
phenotypes (see Methods for details). The relative scarcity of
brain gene expression data collected from each cohort has posed a
challenge to the use of complex models, such as deep neural
networks.

The collection of postmortem brain RNA-sequencing datasets,
assembled by the AMP-AD (Accelerating Medicines Partnership
Alzheimer’s Disease) consortium, provides a unique opportunity
to combine multiple datasets in an integrative analysis. Previous
work has applied existing co-expression methods to each dataset
and used consensus methods to identify consistent gene expres-
sion modules across datasets®. To our knowledge, there has not
yet been a unified approach to learn a single joint model that
incorporates multiple AMP-AD datasets, which would enable the
use of all samples to capture intricate interactions between gene
expression levels and neuropathological phenotypes. A unified
approach has been hindered by: (1) the need for “harmonized”
phenotypes consistently measured across datasets, and (2) the
limitation of current analysis methods that focus on linear rela-
tionships between variables (e.g., module analysis®), which cap-
ture only broad patterns in gene expression data. These often
correspond to cohort-level variations which consequently obscure
true disease signals!2. To circumvent this issue, one approach has
been to identify modules separately across brain regions and
cohorts before performing using a consensus approach to cluster
them®.

Here, we develop MD-AD (Multi-task Deep learning for Alz-
heimer’s Disease neuropathology), a unified framework for ana-
lyzing heterogeneous AD datasets to improve our understanding
of an expression basis for AD neuropathology (Fig. 1a-d). Unlike
previous approaches, MD-AD learns a single neural network by
jointly modeling multiple neuropathological measures of AD
(Fig. la), and hence it incorporates the largest collection of
postmortem brain RNA-sequencing datasets assembled to date.
The combined AMP-AD dataset contains 1758 samples dis-
tributed across nine brain regions, which are labeled with up to
six neuropathological outcomes that are sparsely available across
cohorts (Fig. le). This unified framework has key advantages over
separately trained models. First, MD-AD can accommodate
sparsely labeled data, which is a natural characteristic of datasets
aggregated through consortium efforts (Fig. le). Even if different

phenotypes only partially overlap in the measured samples, each
sample contributes to the training of both phenotype-specific and
shared layers (Fig. la). Predicting multiple outcome variables at
once biases shared network layers to capture relevant features of
all those outcome variables (here, neuropathological phenotypes)
at the same time!3. This is of critical importance in our appli-
cation: each neuropathological phenotype represents a different
noisy measurement of the same underlying true biological pro-
cess, and, as we demonstrate, joint training with these phenotypes
allows MD-AD to average out the noise to extract the true hidden
signal. In addition, the increased sample size from combining
cohorts (in our case, doubling the number of samples available
from any individual study) facilitates using deep learning models,
which are expressive and able to capture complex non-linear
interactions among features. By composing layers of functions,
deep neural networks collapse correlation patterns present in
input data at intermediate layers in a way that is useful for
prediction!%. In particular, multi-layer perceptrons (MLPs) have
been used to effectively perform disease classification and pre-
diction from gene expression datal>~17. However, training sepa-
rate MLPs for each neuropathological phenotype (Supplementary
Figure la) has limited scope: it can utilize only the samples
measured for a specific phenotype, and it cannot share infor-
mation across related phenotypes. We demonstrate that MD-
AD’s joint training approach improves prediction accuracy,
enabling its predictions to generalize across species and tissue
types (Fig. 1b).

An obvious drawback of deep neural networks is their black-
box nature, making it difficult to biologically interpret gene-
phenotype associations that have been learned by a model. We
present two ways to address this challenge. First, MD-AD adopts
a well-known feature attribution method!8, which quantifies how
much each input variable (here, gene expression level) contributes
to a prediction (here, a neuropathological phenotype) to identify
genes and pathways relevant to each neuropathological pheno-
type (Fig. 1d). Second, because MD-AD is a deep learning model,
we can interpret its intermediate layers as biologically relevant
high-level feature representation of gene expression levels and its
predictions as the amalgamation of AD-specific molecular mar-
kers. The last shared layer of MD-AD can be viewed as a
supervised embedding influenced by each neuropathological
phenotype used during training. Thus, by interpreting this layer’s
embedding, we gain an understanding of model components and
high-level dependencies between expression and neuropathology
(Fig. 1c). We identify globally important genes not previously
implicated in linear methods and then perform sex-specific
analyses to explore implicitly captured non-linear effects among
genes and their differing relationship with AD severity
predictions.

In sum, the MD-AD framework makes the following con-
tributions: (1) It is able to effectively impute accurate AD neu-
ropathological phenotype predictions from broad compendia of
heterogeneous brain gene expression data; (2) it produces learned
representations that are more robust than separately learned
models, improving generalizability to other datasets, species, and
even tissue types; (3) it provides an improved understanding of
interrelationships among molecular drivers of AD neuropathol-
ogy that is missed by linear methods; and (4) from a biological
standpoint, MD-AD highlights a sex-specific relationship
between microglial immune activation and neuropathology.

Results

MD-AD provides a unified framework to learn a single model
of multiple neuropathological phenotypes across multiple
cohort datasets. The MD-AD model takes as input brain gene
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Fig. 1 Overview of the MD-AD (Multi-task Deep learning for Alzheimer's Disease neuropathology) method and analyses. a Overview of the MD-AD
framework: MD-AD is trained to predict six neuropathology phenotypes simultaneously from brain gene expression samples. During model training,

samples do not need to have all available phenotypes; they influence only the layers for which they have labels (including shared layers). b lllustrates out-
of-sample datasets we used to validate MD-AD's predictions. ¢ lllustrates analyses used to validate the last shared layer of MD-AD. d By using model
interpretability methods, we highlight genes relevant to MD-AD's predictions. Further analyses reveal non-linear effects among genes and their relationship
with AD severity prediction. e Overview of data available from each cohort.

expression profiles and simultaneously predicts several AD-
related neuropathological phenotypes (Fig. 1a). In particular, the
model is trained on expression data from the Religious Orders
Study/Memory and Aging Project (ROSMAP)®1920  Adult
Changes in Thought (ACT)?!, and Mount Sinai Brain Bank
(MSBB)22 cohort studies, which together have 1758 gene
expression profiles for 925 distinct individuals (with no partici-
pant overlap between cohorts). These data are normalized for
study batch (Methods, Supplementary Figure 1d)?3. As shown in
Fig. 1a, the MD-AD model simultaneously predicts six AD-
related neuropathological phenotypes: three related to amyloid
plaques and three to tau tangles. The former include (1) AP
immunohistochemistry (IHC): amyloid-p protein density via
immunohistochemistry, (2) NPs: neuritic amyloid plaque counts
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from stained slides, and (3) CERAD score: a semi-quantitative
measure of neuritic plaque severity?4. The latter include (4) T
THC: abnormally phosphorylated t protein density via immu-
nohistochemistry, (5) tangles: neurofibrillary tangle counts from
silver-stained slides, and (6) Braak stage: a semi-quantitative
measure of neurofibrillary tangle pathology?®. Thus, MD-AD
generates six highly related predictions simultaneously and covers
each of the two main hallmarks of AD neuropathology (plaques
and tangles) at three levels of granularity. The three studies
measure partially overlapping subsets of the six neuropathological
phenotypes described above (Fig. le, Fig. la, Supplementary
Figure la and Supplementary Data 1-2), so across our combined
dataset some variables are sparsely labeled, although Braak and
CERAD are each measured in all studies (Fig. le). During
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training, the MD-AD model continually updates model para-
meters via backpropagation, but only for labeled phenotypes from
a given sample. Thus, for each phenotype for a given sample,
MD-AD updates parameters from associated separate layers
along with all shared layers. This lets us train a unified model
from all available samples despite having many missing labels.
Although in our application neuropathological phenotypes
overlapped across datasets, MD-AD could accommodate non-
overlapping phenotypes from different cohorts (as long as they
are believed to be closely related and share a common underlying
gene expression basis). Details of the MD-AD framework, mod-
eling assumptions, and hyperparameter tuning are provided in
Methods.

MD-AD accurately predicts neuropathology from gene
expression, and its predictions are generalizable to external
datasets. In the first pass at model evaluation, we trained MD-AD
using standard five-fold cross-validation (CV), and assessed the
average 1-R%cy error (mean squared error divided by the phe-
notype’s variance in the test set) on the held-out test samples
(Fig. 2a). Our hyperparameter tuning and evaluation procedures
are described in detail in the Methods and Supplementary
Figure le. We compared MD-AD with two simpler baseline
models: a regularized linear model (ridge regression) and a single
output deep neural network (MLP). These alternative results
helped us assess two significant components of the MD-AD
model: (1) its non-linear modeling of the relationship between
gene expression and neuropathological phenotypes, and (2) its
joint modeling of multiple related neuropathological phenotypes.
In general, MLP models outperformed linear models, highlighting
the advantage of deep learning over a linear approach. Further-
more, compared with the MLP models, MD-AD reduced the
prediction error by 7% for CERAD score, 13% for Braak stage, 7%
for NPs, 25% for tangles, 10% for AP IHC, and 14% for T IHC
(Fig. 2a). Interestingly, MD-AD showed its largest performance
gain for the tangles variable, which also had the most missing
labels (Fig. 1e), highlighting a specific advantage of joint learning
for sparsely labeled data. We additionally experimented with
some alternative approaches (e.g., different training/test splits,
covariate-corrected data) and found that performance results
were robust to these changes (Methods).

Because our model was trained and evaluated on ACT, MSBB,
and ROSMAP datasets, we assessed whether residual (uncor-
rected) batch effects affected performance. To do so, we
performed additional validation experiments by leaving out
specific datasets during training and then evaluating their
performance for MD-AD trained on the other datasets (Fig. 2b,
Supplementary Figure 2a). We evaluated the prediction error for
ROSMAP alone since it was the only dataset with all six
phenotype labels; further, by evaluating a single dataset’s
performance, we can identify the influence of adding “external”
data. We make several observations from this analysis. First, as
one may expect, larger training samples always helped to reduce
prediction error on test samples from the unseen study
(ROSMAP), and especially so when datasets from multiple
cohorts were included in the training (i.e, ACT and MSBB)
(circular markers in Fig. 2b). Second, when considering the effects
of augmenting ROSMAP data with other datasets during training
(diamond markers in Fig. 2b), we observed that errors initially
increased when adding a new dataset but tended to decline as
more datasets were included in the training. This may result from
small differences in labeling conventions across studies or batch
effects in gene expression data. However, we find that the benefits
of additional heterogeneous samples ultimately outweigh poten-
tial batch effects in prediction performance. Third, we observed

that adding new samples improved performance for a neuro-
pathological phenotype even when the phenotype in question was
not measured in the new samples (see gray footprints around
markers in Fig. 2b). The same analysis repeated with the other
two cohorts as test sets revealed similar findings (Methods,
Supplementary Figure 3). This suggests that the shared
representation learned by MD-AD (which is improved by access
to additional sparsely labeled samples) captures the underlying
biological signal common across noisy neuropathological pheno-
type measurements.

Next, as the ultimate test of MD-AD out-of-sample predic-
tions, we assessed performance on three independent studies
never seen by the model: Mount Sinai Brain Bank Microarray
(MSBB-M; N =1047; 565 AD cases and 482 controls), Harvard
Brain Tissue Resource Center (HBTRC; N = 338; 246 AD cases
and 92 controls)’, and Mayo Clinic Brain Bank (N = 157; 81 AD
cases and 76 controls)26. Because these datasets provide a sparse
set of neuropathological labels, we evaluated whether MD-AD
predictions were consistent with the (binary) neuropathological
diagnosis of AD by calculating “MD-AD neuropathology scores”
for each sample (by averaging ranked predictions across the six
neuropathological phenotypes).

As shown in Fig. 2¢, we observed a highly significant difference
in predicted neuropathology scores between AD cases and
controls (two-sided ¢ test: t=22.98, p<0.001), and these
differences were more pronounced for MD-AD compared with
the other baseline models (results split by dataset are shown in
Supplementary Figure 4a). More convincingly, when split by age
group (Fig. 2c right panel), we consistently observed a significant
increase in predicted neuropathology for AD vs control samples,
but the difference was largest in individuals under 75 (between
groups p values are shown in Supplementary Figure 4b. The
same analysis comparing APOE &4 carriers to non-carriers
revealed a similar pattern, shown in Supplementary Figure 5).
This is consistent with the observation that aging individuals
who are cognitively non-impaired often have substantial
neuropathology?!. Together, these results indicate that MD-AD
can identify generalizable gene expression patterns that are
predictive of AD-related neuropathology across varied age ranges,
and thus it is unlikely that these patterns merely capture
normal aging.

Complex transcriptomic predictors of neuropathology are
conserved across species. We next evaluated how well MD-AD’s
learned expression patterns predictive of neuropathology recapi-
tulated neuropathology in mouse models. We applied MD-AD
trained on human data to make predictions based on 30 brains
(hippocampal and cortical) gene expression samples from
TASTPM mice that harbored a double transgenic mutation in
APP and PSENI and compared the predictions to those for 76
samples from wild-type mice?’-28. We focused on TASTPM mice
since they were found to robustly exhibit early signs of amyloid
aggregation and plaque formation. As above, to simplify MD-AD
predictions, we then predicted all six neuropathological pheno-
types via MD-AD and generated an aggregate “neuropathology
score” per mouse sample (as described in Methods).

As shown in Fig. 2d, MD-AD predicted significantly higher
neuropathology scores for the homozygous cross TASTPM than
wild-type mice (two-sided ¢ test: t =3.45, p<0.001). The MLP
baseline method also produced significant differences between
homozygous and wild-type mice, but less effectively (t=3.01,
p <0.01). Furthermore, there was a stronger trend for higher
predictions in the heterozygous TASTPM cross samples (N = 32)
than wild-type mice for MD-AD (t=1.38, p=0.17) compared
with MLP baselines (p = 0.38). The linear baseline model failed to
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Fig. 2 MD-AD prediction performance for within-sample test data and out-of-sample (external validation) data. a Average test set 1-R2¢y (prediction
error metric calculated by dividing the mean squared error by the label's variance) for phenotype predictions across five test splits (values from each run as
dots). MLP: multiple layer perceptron. Linear: linear model using L2 regularization (two-sided paired t test comparing alternative methods with MD-AD, p
values: *<0.05, **<0.01, ***<0.007; n = 5 runs of each method). b Average 1-R?¢\, for ROSMAP test set samples when training on subsets of the available
datasets in the training set. ¢ For samples from three external validation datasets, we obtain neuropathology scores for each sample from each model. Left:
box plots displaying the distribution of predicted neuropathology scores from each method. T test highlight between-group differences for each method
(two-sided independent t test, ***p < 0.001). Right: box plots displaying the distribution of MD-AD's predicted neuropathology scores split by age group
and diagnosis (see Supplementary Figure 4b for sample sizes broken down by age and diagnosis and significance of pair-wise differences). Test statistics
were calculated based on 565 AD cases and 482 controls. All box plots in this figure indicate median (center line), upper and lower quartiles (box limits),
1.5 x interquartile range from quartiles (whiskers), and outliers (points). d Left: box plots displaying the distribution of predicted neuropathology scores
from each method for wild type and TASTPM (both heterozygous and homozygous) mice. T tests highlight between-group differences for each method
(two-sided t test, p values: *<0.05, **<0.01, ***<0.001). Right: box plots displaying the distribution of MD-AD's predicted neuropathology scores for mice
split by age and strain (See Supplementary Figure 4c for sample sizes and significance of pair-wise differences). Test statistics were calculated based on 72
wild type, 32 heterozygous TASTPM, and 30 homozygous TASTPM mice (same box plot elements as described in part b).

make accurate predictions. None of the models produced
significantly different neuropathology scores between other
strains (i.e.,, TPM, TAS10, Tau) and wild-type mice, consistent
with lower neuropathological burden in these models (Supple-
mentary Figure 4e). Notably, when we stratified the samples by
age, we found that MD-AD tended to predict higher neuro-
pathology in older mice (regardless of strain), but in particular, it
made higher neuropathology predictions for homozygous than
heterozygous crosses followed by wild-type mice (many of these
groups differed significantly from one another, as shown in

Supplementary Figure 4c). Overall, these results indicate that
MD-AD learns a generalizable expression pattern associated with
neuropathology that is conserved across species.

Deep transcriptomic signatures of neuropathology are pre-
dictive of AD dementia. Hidden layers of a deep neural network
capture the embedding of input examples in the derived feature
space, yielding a “hidden” representation that is predictive of the
outcome(s) of interest. In this case, the last shared layer of MD-
AD (Fig. 1la, ¢) captures a latent (lower) dimensional
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representation of gene expression that is predictive of multiple
types of neuropathology related to AD. To derive the biological
basis of MD-AD predictions, we first visualized this embedding
space in 2D using the t-SNE algorithm (Fig. 3a)% (to improve
stability, we used a consensus approach over many re-trainings of
the MD-AD model, Supplementary Figure 6a). We observed that
the representation in this space was impressively coherent with
respect to all six neuropathological variables: individuals with
similar overall neuropathology severities had similar MD-AD
consensus representations for their gene expression profiles, and
this observation was true for external test samples not used for
model training (Fig. 3d, e, Supplementary Figure 4d). This was
remarkable because representations derived by unsupervised
dimensionality reduction (e.g., K-means or principal component
analysis (PCA)) failed to capture the components of gene
expression relevant to neuropathology, and mainly captured
effects relatable to batch or brain region differences, whereas
those derived by standard single-output MLP tended to overfit to
each neuropathology variable and were incoherent across neu-
ropathological measurements (Fig. 3c and Supplementary
Figure 7).

Next, we evaluated whether the MD-AD embedding can go
beyond neuropathology to also capture the molecular manifesta-
tion of AD dementia. In particular, we considered three “higher-
level” clinical phenotypes: AD dementia (a clinical diagnosis of
AD), assessment of cognitive function, and assessment of AD
duration. We then correlated the latent representation captured
by the hidden nodes in the last shared layer with each of these
three higher-level phenotypes. As shown in Fig. 3b, we found that
MD-AD consistently produced nodes that were significantly
correlated with high-level AD phenotypes; using paired ¢ tests,
these correlations often outperformed nodes from our MLPs and
always outperformed unsupervised methods and module-based
approaches (p <0.05 after false discovery rate (FDR) correction
over nodes). This indicates that MD-AD creates embeddings that
most consistently capture the relationship between gene expres-
sion and general AD severity. Together, these results show that by
jointly predicting several neuropathological phenotypes, the MD-
AD framework produces a low dimensional representation of
gene expression data that robustly captures a generalizable
signature of AD beyond individual neuropathological phenotypes
alone. Detailed annotations for MD-AD embedding nodes are
provided in Supplementary Data 3 and Supplementary
Figure 6b-d.

MD-AD reveals an interrelationship between sex and immune
genes predictive of AD neuropathology. We next sought to
interpret MD-AD’s learned parameters to identify the set of genes
(and their relationships) that underlie its impressive predictive
performance. Integrated Gradients (IG)!8, one of the most widely
used interpretability methods developed for deep neural net-
works, estimates the importance of input features on a model’s
predicted output for a particular input sample (See Methods for
details). Here, we applied the IG algorithm on the fully trained
model in an ensemble fashion to ensure robustness (Methods,
Supplementary Figure 8), producing an “importance score” for
each gene (Supplementary Data 4). For a global view, we first
performed functional enrichment analysis (GSEA3%31) using
these importance scores (aggregated across samples) and found
that relevant genes for the MD-AD model were enriched for
several pathways, including the metabolism of RNA and proteins,
immune system, cell-to-cell communication, and signal trans-
duction (Fig. 4b). Figure 4a shows the top 50 genes and their
pathway annotations where the particular relevance of immune
function is even more prominent.

We next assessed to what extent the learned gene importance
varied between a linear model and a non-linear model like MD-
AD. With a simple linear correlation-based gene ranking
(Methods), we found that the top 50 genes were less likely to
be annotated to REACTOME pathways (Supplementary Fig-
ure 9a). When we directly compared the top 1% of genes from
MD-AD versus a correlation-based approach in Fig. 4c, we
observed that many genes belonging to metabolism, immune
system, and signal transduction pathways were highly ranked for
MD-AD but not for correlation-ranking. In contrast,
transcription-related genes were more frequently highly ranked
for correlation-based rankings compared with MD-AD’s rank-
ings. Overall, gene importance scores generated via correlations
alone were enriched for more REACTOME pathways (Supple-
mentary Figure 9b), whereas MD-AD offered a more specific set
of processes for further investigation (Fig. 5b). We saw similar
results when performing the same analyses with KEGG pathways
(Supplementary Figure 10)32.

The non-linear relationships identified by MD-AD can
implicitly capture interaction effects with other covariates
observable from expression data (e.g., sex, age, medication intake,
etc.). Leveraging the fact that, if our model captures a non-linear
effect, then two samples with the same expression level for a
single gene could receive different IG (“importance”) scores by
MD-AD (e.g., Fig. 5d; in contrast, a linear model would have no
vertical dispersion), we assessed whether a covariate like sex could
explain the discrepancy between expression levels and IG scores.
(Sex is a major risk factor in AD and has prominent gene
expression signatures33). In particular, to identify sex-interacting
genes relevant to AD, we modeled each gene’s per-sample IG
score as a linear combination of the gene’s expression, the
individual’s sex, and the interaction between them. Of the 14,591
genes in our dataset, 6465 showed differential MD-AD impor-
tance between sexes in an interaction model (p < 0.05 after FDR
correction), demonstrating that sex-specific expression effects in
AD may be widespread. When focusing on the top 100 genes with
the highest MD-AD scores, we consistently observed high degrees
of interaction between sex and immune system genes (as well as
reproduction and hemostasis-related genes) (Fig. 5a, b; we saw
similar patterns for KEGG pathways in Supplementary Figure 11b,
¢). To confirm that genes are not sex-differential by chance, we
show the distribution of sex-differential genes compared with the
same analysis conducted with shuffled sex labels (Supplementary
Figure 11a).

We next explored specific examples of genes with high MD-AD
rankings and strong interactions with sex (i.e., the six genes from
the top 100 MD-AD list with the strongest interaction p values;
Fig. 5c, d): KNSTRN, C4B, CMTM4, TREM2, P2RY1l, and
SERPINA3. For each of these genes, we observed high expression
values associated with higher neuropathology predictions but
some stratification across sexes: high expression in females led to
especially high neuropathology predictions for KNSTRN and
P2RY11, while the opposite was true for the other four genes. Our
finding that immune genes display sex-differential contributions
to MD-AD scores appears to be consistent with conclusions from
recent studies about sex differences in neuroinflammatory activity
and the role these differences may play in neurodegenerative
disorders*.

We note that some of our top sex-interacting genes may play
important roles in immune response, particularly in microglia.
TREM2, which is genetically implicated in AD, interacts with
CD33 (another AD susceptibility gene)3>, is an important
contributor in the clearance of toxic Amyloid-f by microglia in
mice®, and is correlated with AB deposition in the human
brain3?, Similarly, KNSTRN is known to be upregulated in mouse
microglial cells’ early response to neurodegeneration3’. These
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Fig. 3 Comparing MD-AD's supervised embedding to other embedding methods. a For each colored box, Left: two-dimensional t-SNE embedding of MD-

AD'’s last shared layer colored by neuropathological phenotype indicated in the title of the box, Right: —logo(p value) of correlations (averaged across

five folds) between “best” node from each embedding method and the neuropathological phenotype across 5 test folds. The “best” node was identified as
the most significantly correlated in the training set, but bar height indicates the Pearson correlation —log;o(p-value) of the node with the phenotype in their
corresponding test sets after FDR correction across nodes (averaged results over five runs; individual points show —log10(p value) from each run). Bar
graph columns (left to right): two unsupervised embeddings (green; K-Means and PCA), three module-based embeddings (orange; Modules #17, Modules
#26, and Modules #39), six singly trained MLPs (blue), and MD-AD (red). Results from each method were compared with MD-AD using two-sided paired
t tests (p values indicated below each bar: *<0.05, **<0.01, ***<0.001). b Highest correlation —log;o(p values) (averaged across five folds) found between

each embedding method and high-level AD variables: dementia (diagnosis prior to death), dementia duration (approximate time between dementia

diagnosis and death; available for ACT and ROSMAP), and last available cognition score (controlling for age, sex and education; available for ROSMAP
only). All p values listed are shown after FDR correction over the nodes within each method. Bar height indicates the mean over five folds, and points show

individual values from each run. ¢ Two-dimensional t-SNE embedding of alternative embedding methods (described in a), colored by CERAD scores

associated with each sample. d Two-dimensional t-SNE embeddings of MD-AD embeddings for training and external datasets. Each point represents a
sample colored by dataset (left), AD status for external samples (middle), and MD-AD's predicted neuropathology score (right). e Two-dimensional t-SNE

embeddings of MD-AD embeddings for external human and mouse samples.

NATURE COMMUNICATIONS | (2021)12:5369 | https://doi.org/10.1038/s41467-021-25680-7 | www.nature.com/naturecommunications


www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-25680-7

3 0
a % % 5 b Enrichment: -log10(p-value)
o o
Sse € 3 S g £ @ 0 1 2 3 4 >4
< S8sesgkE S & =~ E & mRNA decay by 5' to 3' exoribonuclease [
Z cS % £35 g s St ZES B Nonsense-Mediated Decay (NMD) =
5 8 E 35D B c S 8o E2o. .3 NMD independent of the Exon Junction Complex
cc262clBes6s £E9. 5835273 rRNA processing in the nucleus and cytosol | EG—<—G—_E_—
22028308 88E 8£58a3g28E rRNA processing
2858883883082 e53c85282 Respiratory electron transport [
EEZ_-:Eggggﬂ’Sago_<ssma.9
c3ET3 5858885553253 288 R-HSA-163200 \
SZE0020WFIFO0OQ0Z0<KO00QWZ0aT> Complex | biogenesis |
LTF + Jii] i Selenoamino acid metabolism | |
GFAP + ] ] Branched-chain amino acid catabolism |
PLCE1 + Abacavir metabolism |
FPR3 + ] Phosphate bond hydrolysis by NUDT proteins |
C4B + B R-HSA-198933 {mum
KRT86 - ] Activation of C3 and C5 [y
DCHS2 - PD-1 signaling [
ZNF98 + Complement cascade [
NPNT + Calcineurin activates NFAT [l
SLC28A2 + Cell junction organization | |
RERG - Cell-cell communication { |
ALDHZ2 - Cell-cell junction organization | |
EFHB + Cell-extracellular matrix interactions |
KNSTRN + Attenuation phase r
ICAM3 - ] Metallothioneins bind metals
1ZUMO4 - Receptor-mediated mitophagy F
RB1CC1 - ] ] Eukaryotic Translation Initiation |
HIST1H3D + HE ErE EnE R-HSA-1799339 | |
SLC22A1 + R-HSA-72662 |
TREM2 + B ] Class A/1 (Rhodopsin-like receptors) h
KATNAL2 - GPCR ligand binding [IEEEEG_G____—
MSR1 + Signaling by GPCR [N
SPX + Peptide ligand-bindingreceptors [
SLC29A4 - Signaling by Rho GTPases (N
PRSS35 - G alpha (i) signalling events
KLRC2 - B Na+/Cl- dependent neurotransmitter transporters |
CAPG + Nitric oxide stimulates guanylate cyclase
RAC2 - izl | N | cGMP effects
NLRP2 + R-HSA-8936459 |
HRASLS5 + R-HSA-8939243 |
ARSE + Developmental biology
PAXIP1 + ] Regulation of expression of SLITs and ROBOs
MMP25 - ] Signaling by ROBO receptors I
GDPD2 + Influenza Infection I
APOC1 + Muscle contraction |
THNSL2 - HDACs deacetylate histones |
MTMRS8 -
SLC34A3 +
SLC37A2 +
STK32B -
SIGLEC1 + =i Il Metabolism of RNA Transport of small molecules
HAS2 - Metabolism M Hemostasis
SERPINA3 + W | M Immune System Transcription
PADI2 + a Cell-Cell communication [l Developmental bio.
i L Il Cell responses: external stimuli Disease
fgg[@g: | Metabolism of proteins [ Muscle contraction
SPATA20 - M Signal Transduction Chromatin organization
TUBB4A - H EPE B B ]
MS4A7 +
C Metabolism Immune System Hemostasis Signal Transduction
; 31 genes; Ratio: 2.20 33 genes; Ratio: 1.57 18 genes; Ratio: 1.25 39 genes; Ratio: 1.22
« 9 =—————— —— — =
§2 75
©»E 5 ==
[os] ~
0 0
Developmental biology Transport of small molecules Metabolism of proteins Gene expression (Transcription)
17 genes; Ratio: 1.12 17 genes; Ratio: 1.00 24 genes; Ratio: 0.79 15 genes; Ratio: 0.36
£ =———— = — —— ——————
82 - - 75
28 - 5
2e
88
0 0
MD-AD Corrs MD-AD Corrs MD-AD Corrs MD-AD Corrs
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findings indicate that MD-AD may capture patterns related to
sex-differential microglia activity. To explore this idea further, we
obtain lists of upregulated genes from nine clusters of single-cell
microglial transcriptomes3®, and compare them to our MD-AD
gene rankings. As expected, many top MD-AD genes are
upregulated in multiple microglial clusters (Fig. 6a); correlation-
based methods ranked these microglial genes less highly
(Supplementary Figure 11d). Furthermore, genes upregulated in
clusters related to stress, immune function, and proliferation
tended to be sex-differential in their gene importance (Fig. 6b),
further strengthening the finding that sex differences in immune

response and inflammation may be an important factor in the
molecular basis of age-related neuropathology.

To more broadly identify possible cell type-specific effects of
MD-AD’s important genes, we tested for the enrichment of 41
different cell type clusters (across six cell types) found by single-
cell transcriptomic analysis of ADS. Here, we found an
enrichment of two different microglia clusters, as well as
astrocytes and inhibitory neuron clusters (Fig. 6¢). Hence, MD-
AD’s predictions of neuropathology rely on broader transcrip-
tomic events beyond microglia genes, suggesting heterogeneity in
the underlying molecular biology that is predictive of accumula-
tion of AD-related neuropathology.
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compute the significance of the overlap between microglial cluster genes and sex-differential genes among: left: all genes, and right: the top 100 MD-AD
genes only. ¢ Gene set enrichment —log10(p value) across the final MD-AD gene ranking for cell type signatures®.

Complex transcriptomic predictors learned by MD-AD are
conserved across tissues. Although MD-AD was developed for
brain gene expression data, we next asked whether the learned
transcriptomic signatures generalize to blood. To this end, we
applied our brain-trained MD-AD model to gene expression
datasets from two batches of the AddNeuroMed cohort, which we
called Bloodl and Blood2 (n = 711; NCBI GEO database acces-
sions GSE63060 and GSE63061, respectively; summarized in
Supplementary Data 5)3%40. As shown in Fig. 7a, MD-AD pre-
dicted significantly higher neuropathology scores for individuals
with both mild cognitive impairment (MCI) (two-sided ¢ test:
t=7.34, p<0.001) and AD dementia (two-sided ¢ test: t = 5.87,
p<0.01) compared with cognitively normal controls (CTL).
Consistent with external brain samples shown in Figs. 2d and 2f,
MD-AD predictions tended to increase with age for cognitively
normal individuals, while they were consistently significantly
higher for MCI and AD individuals compared to controls for
individuals under 80 years old (Fig. 7b, Supplementary Fig-
ure 12b). Importantly, we noted that a linear model failed to make
meaningful predictions (Fig. 7a and Supplementary Figure 12a),
suggesting that complex models like MD-AD have better per-
formance in extracting the true underlying signal transferrable
between tissues than linear models.

Next, we evaluated whether the patterns captured by the MD-
AD model were consistent across training brain gene expression
samples and blood. To this end, we again visualized MD-AD’s
learned embedding using the t-SNE algorithm (Fig. 7c). We noted
a clear difference in expression patterns between blood and brain
samples (as seen by the clustering of blood samples in Fig. 7c);
however, MD-AD nevertheless produced an embedding for blood
data that stratified blood samples along predicted neuropatholo-
gical phenotypes in a manner highly consistent with the blood
donor’s cognitive status (Fig. 7c; Supplementary Figure 12c).
Together, these analyses indicate that jointly learning the
relationship among brain gene expression and several neuro-
pathological phenotypes may allow for learned representations
that span tissues. This in turn can open avenues for early

identification of individuals at risk, and provide clues into tissue-
agnostic molecular mechanisms underlying AD dementia.

Discussion

We introduce MD-AD, a deep neural network approach for
jointly modeling the relationship between brain gene expression
and multiple sparsely labeled neuropathological phenotypes in a
multi-cohort setting. By exploiting the synergy between deep
learning and a multi-cohort, multi-task setting, we demonstrated
that MD-AD can capture complex, non-linear feature repre-
sentations that are not learned using conventional expression data
analysis methods. Specifically, we observed that multi-task
learning improves prediction performance over single-task
models. Adding data from different cohorts improves perfor-
mance for various neuropathological phenotypes, even those that
lacked labels. When we extended our method to other datasets, it
captured AD-related biological signals, showing that MD-AD can
transfer effectively to out-of-cohort, out-of-species (mouse), and
even out-of-tissue (blood) datasets.

As a neural network framework, MD-AD’s last shared layer
embedding reveals high-level features of gene expression that are
predictive of neuropathology according to the intermediate
components of the model. As expected, owing to multi-task
supervision, our embedding nodes tend to relate to AD-associated
neuropathology far more effectively than do standard unsu-
pervised approaches and earlier reported (unsupervised) module-
based approaches. Compared with single task-supervised neural
networks, MD-AD’s joint training consistently provided a more
stable and coherent AD-related embedding. By exploring the
molecular pathways relevant to each node, we identified relevant
gene sets contributing to these high-level AD-related features of
gene expression.

Finally, we leveraged the complex relationships learned by
MD-AD to refine our understanding of the molecular drivers of
AD neuropathology. By interpreting genes relevant to our mod-
el’s predictions, we uncovered that MD-AD relied on many genes
not found in earlier linear-based methods, including several
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immune genes. These findings expand the general narrative
established by human genetic studies of AD and now a proteomic
study of AD;*! in particular, we see enrichment for complement
pathway genes (Fig. 4), which likely connect with the role of the
complement receptor 1 (CRI) gene, which harbors an AD sus-
ceptibility variant whose functional consequences remain poorly
understood but do include an influence on the accumulation of
neuritic plaque pathology*2-4>. Thus, MD-AD results converge
with human genetic results to emphasize the role of complement
in AD; interestingly complement protein C4B emerges as one of
the top pathology-related genes that display a strong interaction
with sex, with men showing a much stronger association than
women (Fig. 5c). This is similar to the behavior of TREM2,
another well-validated AD susceptibility gene (Fig. 5¢); however,
its relation to amyloid pathology in ROSMAP data was previously
reported as being modest3>. MD-AD was able to uncover its more
prominent role in transcriptional data, which is obscured by its
sex-dependent nature. Likewise, women reported to have higher
expression of a signature of aged microglia in these data34, and
two modules of co-expressed cortical genes enriched for micro-
glial genes and associated with amyloid (module m114) or tau
(module m5) pathology are also influenced by sex*¢. However,
the role of neither group of genes is explained by sex; this indi-
cates that the role of sex in the impact of the immune system in
AD is complex. MD-AD was able to uncover this complexity
more effectively, as is illustrated in Fig. 5c where some genes have
greater effects in men and others in women. Thus, it is not the
case that role of the immune system is polarized in one of the two
sexes; rather, some pathways and perhaps certain cell subsets may
have a larger role in women while others are dysfunctional in
men. This could explain why the role of immune genes is more
prominent in our analyses: reports from simpler linear models
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often included immune pathways®747:48 but other pathways
usually figured more prominently in these earlier RNA-based
network models. A meta-analysis of RNA studies (which include
the ROSMAP data) highlighted the larger number of sex-
influenced genes among the AD-associated gene modules and
noted that microglial cells appear to be enriched for both male
and female-specific expression effects. We note that like any other
machine learning-based model applied to observational data, we
are unable to directly infer causality in our framework, as both
gene expression and neuropathology data used for MD-AD were
collected from postmortem brains. Nevertheless, with our list of
results and our careful evaluation of sex effects we now have an
important road map with which to guide our exploration of the
role of microglia in AD in a sex-informed manner. This per-
spective will be critical not only for mechanistic studies whose
results could be obscured by sex effects but also, more impor-
tantly, by guiding the study design of clinical trials as highly
targeted therapeutic agents emerge to modulate the immune
system in AD.

This is but one of the narratives that have emerged from our
initial deployment of the MD-AD approach in the aging brain. As
new cohorts are characterized, sample sizes expand and new data
such as single-nucleus RNA-sequencing profiles emerge, our
approach will help to facilitate data integration and to uncover
insights that would not otherwise emerge. Beyond enabling good
predictions, our report may actually highlight a more important
contribution of MD-AD in resolving key elements of the data
structure in the nodes that we defined: these are more than simple
aggregates of factors with predictive power. They are beginning to
uncover complex interactions, such as the impact of sex, which is
involved in both men and women, but in different ways, making
it difficult to appreciate the role of certain immune pathways in
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simpler statistical models. Beyond producing accurate and gen-
eralizable neuropathology predictions and improving our biolo-
gical understanding of AD pathogenesis, MD-AD provides a
framework for integrating and analyzing gene expression data
from separate cohorts and identifies common underlying rela-
tionships among gene expression and phenotypes of interest,
which may be expanded as new data emerge.

Methods

Data processing. For developing the MD-AD model, we used RNA-Seq and
neuropathology datasets available through the AMP-AD Knowledge Portal: (1)
ACT?!, (2) MSBB22, and (3) ROSMAP®19:20, Details of sample collection and
sequencing methods have been described previously ®19-22. We pooled together
brain gene expression data from the temporal cortex, parietal cortex, hippocampus,
and forebrain white matter from ACT, Brodmann areas 10, 22, 36, and 40 from
MSBB, and the dorsolateral prefrontal cortex from ROSMAP. To reduce con-
founded relationships, we excluded samples from individuals who had neuro-
pathological diagnoses other than AD. Taken together, the studies provide 1758
gene expression samples.

In all three studies, extensive quality control measures were taken during the
original processing of the data, as described by the papers introducing
transcriptomic datasets for ACT2!, MSBB22, and ROSMAP® cohorts. All samples
that passed quality control checks in these individual studies were included in our
study. If Ensemble gene IDs were provided, we mapped them to gene symbols to
keep consistent gene identifiers across datasets. In order to compile gene expression
samples across the three cohorts, we retain expression levels for genes that are
present in all datasets. Within each dataset, we exclude genes with null values for
over two-thirds of samples. For ACT and ROSMAP, gene expression
measurements were provided in normalized FPKM units, so we log-transformed
the RNA-Seq datasets to obtain gene expression datasets that were roughly
normally distributed (whereas MSBB gene expression data were already
normalized). Then, for all datasets, we normalized values such that each gene’s
expression measures varied between 0 and 1. We then combined the gene
expression datasets and kept all 14,591 genes that are present across all three
datasets. Of these genes, 96.3% are autosomal (3.5% on only the X chromosome,
0.1% on only the Y chromosome, and 0.1% on both X and Y chromosomes).
Finally, we performed batch effect correction with ComBat to reduce systematic
differences across studies (Supplementary Figure 1c)23.

Next, for each gene expression sample, we incorporated the available
corresponding neuropathology labels: (1) Ap IHC: amyloid-p protein density via
immunohistochemistry, (2) plaques: neuritic amyloid plaque counts from stained
slides, and (3) CERAD score: a semi-quantitative measure of neuritic plaque
severity?4, (4) T IHC: abnormally phosphorylated t protein density via
immunohistochemistry, (5) tangles: neurofibrillary tangle counts from silver-
stained slides, and (6) Braak stage: a semi-quantitative measure of neurofibrillary
tangle pathology?®. Detailed descriptions for each neuropathological phenotype
within each dataset are provided in Supplementary Data 1. Because Braak stage and
CERAD score are global measurements of neuropathological damage, if an
individual had multiple available gene expression measurements from different
regions, each sample was labeled with the same Braak and CERAD values.
However, AB-IHC and t-IHC were provided for several brain regions for both
ROSMAP and ACT studies. Therefore, each expression sample was labeled with
the AB-IHC and t-THC measurements for the same or nearest region. Because the
available plaques label provided by MSBB was averaged over several brain regions,
we similarly used ROSMAP’s average plaques and tangles labels (aggregated from
several regions) for consistency with MSBB’s metrics. We provide demographic
and neuropathology information about individuals in each cohort in
Supplementary Data 2. Finally, for consistency across datasets, we first normalized
all neuropathological variables to vary between 0 and 1 before combing datasets.

Computational methods: review of previous approaches. Post-mortem tran-
scriptomic studies have investigated molecular and neuropathological outcomes in
AD. Early work in this domain examined simple correlations among gene
expression and AD symptoms'? or compared gene expression levels across AD
patients versus controls'l. More recently, systematic network-based analyses have
contributed to the understanding of AD biology. In particular, Zhang et al.”
constructed molecular networks based on bulk gene expression dataseparately for
individuals with and without AD and identified modules with remodeling effects in
the AD network. Mostafavi et al.® used co-expressed genes in the aging human
frontal cortex to build a single molecular network and identified modules related to
AD neuropathological and cognitive endophenotypes. Using single-cell RNA-
sequencing data, Mathys et al.3 clustered cells within brain cell types to identify and
characterize AD-related cellular subpopulations. Each of these approaches has been
applied to single cohorts. Until recently, unified and robust modeling of AD
neuropathology based on brain gene expression has been hindered by relative
scarcity and regional heterogeneity of brain gene expression datasets. One possible
solution is to combine multiple datasets to gain statistical power. The collection of

postmortem brain RNA-sequencing datasets, assembled by the AMP-AD con-
sortium, provides new opportunities to combine multiple datasets. However, such
heterogeneous datasets pose challenges to many methods, which must account for
inter-study differences. In a recent attempt, Logsdon et al.” used a meta-analysis
approach to identify co-expressed modules separately for seven brain regions
across three datasets, then subsequently applied consensus methods to identify
modules that were conserved across multiple regions and studies. As of now, we’re
not aware of any methods that directly model all data in a unified way.

Modeling assumptions. For modeling gene expression and neuropathology data,
we make several assumptions.

Common assumptions of machine learning models. First, regarding the stability of
our models, we assume that a single training of each model is representative of all
training instances. In order to buffer the potential failure of the assumption, we
used to select hyperparameters across different splits of our data across MD-AD,
singly trained MLPs, and linear models. Further, our final model is trained 100
times to generate ensemble predictions and interpretations, as described in future
sections. Second, we assume that our samples are “sufficiently” independently and
identically distributed (i.i.d.) such that a model trained on these samples should
generalize well to new samples from the population of interest. Third, we assume
that the true data distribution is smooth such that samples with very similar gene
expression values should display similar neuropathology.

Additional assumptions of MD-AD. Deep learning relies on the assumption that the
data is generated by a composition of (learnable) features in a hierarchical manner.
This allows neural networks with multiple layers to collapse correlation patterns in
the input space to generate intermediate embeddings in a way that is useful for
prediction!4. Unlike linear models, our deep learning framework does not assume
that there’s a linear relationship between the predictors and outcomes, nor does it
require normally distributed predictors, or low multicollinearity. Although deep
learning relies on relatively few assumptions, in practice, some of these assump-
tions do not fully hold. In particular, our samples are certainly not ii.d., as some
samples are derived from the same brain. Thus, external validation is invaluable for
evaluating the effectiveness of our framework in new settings with no information
leakage. The observation that MD-AD transfers well to separate datasets (and even
species and tissues) implies that our framework is effective regardless of whether
these assumptions were fully upheld. Finally, multi-task modeling frameworks
hinge on the assumption that there are shared common information across neu-
ropathological phenotypes!3. In combining multiple datasets with different sparsity
patterns, we additionally assume that this common representation is consistent
across cohorts and is generalizable to new datasets. This assumption appears to
hold, as demonstrated by the improved test performance of the multi-task network
over singly trained MLPs, and improved ability to generalize well to external
datasets.

The MD-AD model. MD-AD, is a unified framework for analyzing heterogeneous
AD datasets to improve our understanding of the expression basis for AD neu-
ropathology (Fig. 1). Unlike previous approaches, MD-AD learns a single neural
network by jointly modeling multiple neuropathological measures of AD severity
phenotypes, and hence can incorporate data collected from multiple datasets. This
unified framework has key advantages over separately trained models. First, MD-
AD allows sparsely labeled data, which is a natural characteristic of datasets
aggregated through consortium efforts (Fig. le). Even if different phenotypes only
partially overlap in the measured samples, each sample contributes to the training
of both phenotype-specific and shared layers. Predicting multiple phenotypes at
once biases shared network layers to capture relevant features of these AD phe-
notypes at the same time. This is of critical importance: each phenotype represents
a different type of noisy measurement of the same underlying true biological
process, and as we demonstrate by joint training MD-AD is able to average out the
noise to extract the true hidden signal. In addition, the increased sample size
enables MD-AD to capture complex non-linear interactions between genes and
phenotypes. In contrast, MLPs offer another powerful approach for directly cap-
turing complex relations between gene expression and a neuropathological phe-
notype. However, training separate MLPs for each phenotype (Supplementary
Figure la) has limited scope: it can utilize only the samples measured for a specific
phenotype, and it cannot share information across related phenotypes. We
demonstrate that these advantages improve MD-AD prediction accuracy, enabling
predictions to generalize across species and tissue types (Fig. 1b). As illustrated in
Fig. la, the MD-AD network jointly predicts six neuropathological phenotypes
from gene expression input data via shared hidden layers followed by task-specific
hidden layers.

Training and evaluating MD-AD

Pre-processing with PCA. In order to have efficient and robust training and to
reduce overfitting, we apply a PCA transformation to the data and use the resulting
top 500 principal components—a 500-dimensional representation of our 14,591
gene expression values—as the input to the MD-AD and all baseline models. This
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approach is consistent with the use of PCA for pre-processing in other studies that
have employed deep learning in gene expression analyses**~>1. Our choice to use
500 PCs is supported by some preliminary analyses of AD-related signals captured
by various PCs. First, as shown in Supplementary Figure 1b, the cumulative var-
iance explained by 500 PCs is 92%, indicating that reducing our input features by a
factor of about 30 still retains most of the variation in the data. However, we note
that by using only 500 PCs, we may lose some information that may be especially
predictive of AD neuropathology. To investigate this potential issue, we sought to
predict average neuropathology scores from different sets of PCs using a linear
model, and compare predictive performance to the full set of genes. We use CV to
tune the alpha parameter and, based on the same training/testing splits used in our
main analyses (described below), find that by the time we include up to 500 PCs,
we have reached similar predictive performance between a model trained on PCs
versus the raw gene expression features (Supplementary Figure 1d). This suggests
that the linear transformation provided by the first 500 PCs retains features of gene
expression data that are almost as linearly predictive of AD neuropathology as the
full dataset using all genes.

Construction of models. For comparison to MD-AD, we generate six analogous
MLP networks with un-shared representations, and six linear models containing no
hidden layers, to serve as baseline models (see Supplementary Figure la). All
models were built using Tensorflow and Keras packages, and were constructed as
consistently as possible, with the same inputs. The MLP baseline model was
identical to the MD-AD model except with only a single branch of task-specific
layers. Similarly, the linear baseline models were identical to the MLP baselines but
with all hidden layers removed. Each model was trained on a single Nvidia GeForce
GTX 980 Ti GPU. Although training time may vary across machines, we found
that training the MD-AD model on the full dataset took about 350 seconds on
average.

Hyperparameters. After some preliminary experiments with single- and multi-task
neural networks, we decided to train all networks with ReLU activations and drop-
out units (with drop-out rates of 0.1) and trained each model for 200 epochs with
batch sizes of 20 using adam optimization. These settings were selected because
they led to relatively stable and effective predictions. We tended to see some
variation in performance based on kernel regularization, and hyperparameters of
the optimization method, so for hyperparameter tuning (described below), we
performed grid search over the following hyperparameters: kernel regularization
parameter (1le-3 vs le-5), gradient clip norm (0.1 vs 0.01) for the adam optimizer,
and the learning rate (le-3 vs le-4).

Cross-validation (CV) and model tuning. For our model training and evaluation, we
use a modified Cross-validation (CV) and testing scheme as illustrated in Sup-
plementary Figure le, in which we perform five separate rounds of model tuning
with CV followed by evaluation in a test set. For a single round, one-fifth of all
samples are assigned to a held-out test set. Then using the remaining 4/5ths of the
samples, we perform five-fold CV to select hyperparameters with the best pre-
diction performance. We then train the selected model using the full training set
(4/5ths of the original data) and then report performance on the held-out test set.
In order to evaluate the robustness of our evaluation metrics under different splits,
we initially split the full dataset into five separate groups and repeated the above
process five total times, where each one-fifth of the data acted as a held-out test set
once. We note that across these iterations, different training sets selected different
configurations of hyperparameters, and for each train/test round, we trained the
full training set on the specific configuration selected by CV in that training set.
Thus, our test set evaluations (e.g., in Fig. 2a) reflect average test performance for
the selected models in each round.

For MD-AD, we additionally explored several alternative options for
architectures with different amounts of shared and task-specific layers
(Supplementary Figure 2b, c). We selected the final architecture (shown in Fig. 1a)
because we wanted to have multiple hidden layers in both the shared portion and
task-specific portion of the network to allow for non-linear interactions to be
learned in both the shared representation and in the task-specific branches.
However, when we evaluated alternatives to this approach (using the same selected
hyperparameters for our original MD-AD model), we found that alternatives to
this approach tended to perform similarly or worse (Supplementary Figure 2b, c).

Evaluation metrics. As described above, for each round of train/test splits, we use
five-fold CV to make modeling choices for the MD-AD model and baselines before
training each model with the full training set and reporting and reporting test 1-
Ry error (mean squared error divided by the phenotype’s variance in the vali-
dation set; averaged over all five test splits). We evaluate model performance in two
ways: (1) standard train and test sets, and (2) ROSMAP test performance for
different subsets of the available datasets.

First, separately for each of our five CV training sets, we calculate the final test
MSE on the corresponding hold-out set. To test whether these effects are
significant, for each baseline method, we performed one-sided paired ¢ tests to
determine whether there is a significant difference between the baseline method’s
error and MD-AD’s across the five test folds (Fig. 2a).

Next, in order to evaluate the contributions of each dataset to prediction
performance, we performed the above procedure with different subsets of available
datasets. Because ROSMAP is the only dataset with all available neuropathological
phenotypes, we evaluate performance specifically on ROSMAP. In Fig. 2b, we show
ROSMAP test samples’ MSE performance when trained on all subsets of ACT,
MSBB, and ROSMAP training samples (following the same CV procedure
described above). We additionally repeated the same analysis using MSBB and
ACT test samples and computed their prediction performance for available
phenotypes (Supplementary Figure 3a). In order to evaluate how to transfer
performance (i.e., training and evaluating with samples from disjoint cohorts) was
impacted by the addition of samples, we performed an additional analysis where we
trained with ACT samples and varying fractions of MSBB samples to see how
additional MSBB samples impacted ROSMAP test performance (and also evaluated
the reverse, training on ROSMAP and MSBB and testing with ACT samples)
(Supplementary Figure 3b). Interestingly, we saw that ROSMAP test performance
improves with the addition of MSBB samples during training with ACT, whereas
ACT samples generally do not improve with the addition of MSBB samples during
training with ROSMAP. This may imply that there are more pronounced
distributional differences for the ACT cohort when compared with other cohorts,
or that improvements are more apparent when the training set is much smaller (as
is the case when training with only ACT samples).

Final model selection. Finally, after our in-depth CV and testing scheme were used
to evaluate our methods internally, we constructed “final models” for external
validation and model interpretation. First, we selected a single set of hyperpara-
meters for each model by ranking each configuration’s prediction performance for
each round and then choosing the configuration with the highest average rank. The
selected hyperparameters for each “final model” are provided in Supplementary
Data 6. We trained “final models” for MD-AD and baselines by each using a single
set of hyperparameters on the full dataset.

Evaluating models with covariate-corrected data. Gene expression-related covariates
may influence gene expressions in a systematic way, and thus should be critically
considered. Indeed, there does seem to be a small but significant correlation
between neuropathology scores and both postmortem interval (PMI; r = —0.16,
p=1e-9) and RNA integrity number (RIN; r = —0.09, p = 0.002), which are both
features which may influence measured gene expression. In our study, we chose to
leave our expression profiles uncorrected for all covariates, and instead allow MD-
AD to learn from the available gene expression patterns so that we can subse-
quently assess how these covariates interact within our final models.

Although Supplementary Figure 6¢ shows that PMI and RIN had modest
residual correlations with nodes in the consensus MD-AD network, and thus likely
do not appear to be driving forces in our model, we performed an additional
analysis to ensure that gene expression-related covariates were not an important
factor in our prediction performance results presented via our CV evaluations. To
that end, we use the following method to correct our gene expression data for
sequencing-related covariates: we linearly regressed PMI and RIN from our
expression inputs by modeling the expression of each gene as a linear regression
with PMI and RIN. We then saved the residuals of the predicted expression value
as our corrected expression values. We then performed the same model training
and evaluation procedures as described above using the corrected gene expression
values as inputs, and found that these results were quite similar to our original
results with uncorrected gene expression values (Supplementary Figure 13a, b).
Together, these findings indicate that covariates related to gene expression
measurement procedures do not seem to have a large impact on our final results,
nor does the MD-AD heavily rely on these covariates, and for that reason, our
main results are all based on gene expression data without covariate-correction.

Evaluating models with fully independent CV splits. All internal validation results
were presented for the same CV and testing splits. We note that in generating these
original splits, we randomly assigned all samples within each cohort. However,
because ACT and MSBB datasets provide multiple samples (collected from dif-
ferent brain regions) from each individual, there are many individuals in our
dataset with samples (of different brain regions) in both training and test splits. In
order to ensure that performance improvements seen for MD-AD versus MLP or
linear baselines were not due to our splitting choice, we repeated our CV experi-
ments using a new method of splitting samples. Instead of splitting samples
completely randomly as was done to generate our main internal test results (i.e., in
Supplementary Figure le), we instead split individuals randomly for each dataset to
ensure that no samples from the same individual could be split across training and
validation sets.

We performed the same CV and hyperparameter selection process as was done
for our original dataset splits, and our resulting prediction performance and last
shared layer evaluations are shown in Supplementary Figure 13c, d. In these
experiments, we find that MD-AD (as well as the baseline methods) provides very
similar prediction performance when trained and evaluated on fully separated
training and test sets, suggesting that our original results did not seem to hinge on
the similarity of samples between the training and test set. We similarly find that
MD-AD continues to produce embeddings that capture both neuropathology
phenotypes and higher-level AD variables more consistently than alternative
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approaches. Finally, we note that the hyperparameters selected using the new splits
are similar to the original final model selected from our original splits with the
exception of a single hyperparameter (kernel regularization of 0.001 for our
original splits, compared with 0.00001 for the new splits). However, we find that in
our analyses with the new splits, a model trained on our originally selected set of
hyperparameters has a very similar performance to the newly selected set of
hyperparameters. Together, these results indicate that our choice to split samples
randomly produced very findings to the alternative of splitting samples pseudo-
randomly by individual.

External validation: out-of-cohort human brain samples. In order to evaluate
MD-AD’s ability to generalize to out-of-sample data, we assessed performance on
three datasets: Mount Sinai Brain Bank Microarray (MSBB-M; N = 1047), Harvard
Brain Tissue Resource Center (HBTRC; N = 338), and Mayo Clinic Brain Bank
(N =157). These datasets were collected from AMP-AD (with the exception of
HBTRC that was collected from GEO: GSE44772) but were left out of the original
MD-AD training because they were microarray samples or lacked many neuro-
pathology labels.

After normalizing gene expression samples from external datasets in the same
way as described for the ACT, MSBB RNA Seq, and ROSMAP datasets, we then
adjust the expression values to have similar distributions to our batch corrected
training datasets. We evaluated the MD-AD model on our new processed data to
obtain predictions for all six phenotypes. Because these three external datasets
provide a sparse set of neuropathological labels, we do not have access to labels for
many of the six MD-AD labels. Instead, we evaluated whether MD-AD’s
predictions were consistent with the (binary) neuropathological diagnosis of AD,
by aggregating MD-AD’s various neuropathology predictions into one
“neuropathology score”. The “neuropathology score” was produced by first
calculating percentiles across samples (within each dataset) for each
neuropathological phenotype, then averaging over the six phenotypes.

Figure 2c shows that MD-AD provides the largest differences in neuropathology
scores between individuals with and without neuropathological diagnoses of AD.
We further compared neuropathology scores between AD and non-AD individuals
split by age group (the significance between groups shown in Supplementary
Figure 4b).

A similar analysis was carried out comparing carriers of the APOE &4 allele with
non-carriers (instead of AD vs control individuals). Results shown in
Supplementary Figure 5a—c revealed similar patterns, including improved
discrimination between groups for MD-AD compared with MLP and linear
baselines, and more pronounced differences in predicted neuropathology for
younger APOE &4 carriers versus non-carriers. However, when comparing
predicted neuropathology between APOE ¢4 carriers versus non-carriers within the
same cognitive diagnosis, we do not see a difference in predicted neuropathology
for AD-afflicted APOE ¢4 carriers and non-carriers (Supplementary Figure 5d, e).

External validation: mouse samples. To evaluate how well expression patterns
predictive of neuropathology learned by MD-AD recapitulates neuropathology in
mouse models. To that end, we obtained gene expression data from Matarin et al.2”
for 15 TASTPM mice that harbor a double transgenic mutation in APP and
PSEN1, as well as 37 wild-type mice. For each mouse, brain gene expression was
measured from two samples collected from the cortex and hippocampus, doubling
the total sample size. Data were quantile-normalized and log-transformed. For this
experiment, we mapped mouse to human genes (via gene symbols) for a total of
7057 intersecting genes between our training dataset and the mouse expression
data, which were again normalized to follow the same distributions as our MD-AD
training data. We re-trained our MD-AD model on only these 7057 genes for all
MD-AD samples and then generated “neuropathology scores” for the mouse
samples exactly as described in the previous section. As with external validation
experiments described above, we compare MD-AD with MLPs and linear models
in separating neuropathology scores between TASTPM and wild-type mice

(Fig. 2e). We also show differences in neuropathology scores between different age
groups (Fig. 2d, Supplementary Figure 4c).

Validation of supervised embedding. The output of an intermediate layer of a
neural network can be viewed as the lower dimensional embedding of the input
features. In this paper, we focus on the last shared layer of the MD-AD network
because it is a supervised embedding of gene expression data that is influenced by
all six training phenotypes. We evaluate the embedding compared with those
generated by both singly trained MLPs as well as unsupervised methods (i.e.,
K-means and PCA) in two ways: (1) high-level visualization with t-SNE, and (2)
evaluating the correspondence between individual nodes and AD-related features.

Visualizations with t-SNE. For each of the MD-AD, MLP, and unsupervised
models, we train the models on the full combined dataset. For the deep learning
models, we then generate “supervised” embeddings by obtaining the output of the
last shared layer (or analogous layer of the MLP model). For the unsupervised
methods, K-Means and PCA, we generate an embedding of 100 dimensions to be
consistent with the MD-AD and MLP models. After generating these embeddings
for all samples, we then compress them into two dimensions via the t-SNE

algorithm?®. T-SNE Visualizations of MD-AD’s supervised embedding are shown
in Fig. 3a (left side for each phenotype), and the figure is replicated six times, with
each plot showing samples colored by neuropathological phenotype severity for
each of the six phenotypes. For comparison, t-SNE visualizations for the singly
trained MLPs and unsupervised methods are shown in Fig. 3¢ (colored by CERAD
Score only) and colored by other characteristics and covariates of interest in
Supplementary Figure 7.

Node-phenotype correlations. To test whether MD-AD’s embedding generalizes
more to AD phenotypes than the alternative methods, we compare the nodes that
best capture each phenotype among MD-AD, MLPs, and unsupervised methods.
We perform the following analysis with the same five training and test splits
described earlier: for each of the six phenotypes used in MD-AD’s training, we
identify the node in MD-AD’s last shared layer whose output is most significantly
correlated with that phenotype in the training set. We then report the —log10(p
value) (after FDR correction over nodes) for the correlation between that node’s
output and the training phenotype in the test set, averaged across the train/test
splits. (Fig. 3a, right side for each phenotype).

We also perform a similar analysis with higher-level AD phenotypes not used
during model training: dementia diagnosis (binary variable available in all
datasets), last available cognition score (controlling for age, sex, and education;
only available for the ROSMAP dataset), and AD duration (i.e., the time between
dementia diagnosis and death; available for the ACT and ROSMAP datasets). For
this analysis, we report the highest —logl0(p value) after FDR correction between
nodes and the high-level phenotypes, average over the five test sets (Fig. 3b).

Model interpretation with Integrated Gradients (IG). Although deep learning
models have shown promise in biological and health applications, they have been
limited by the difficulty of explaining their predictions. Fortunately, the develop-
ment of interpretability methods for “black box” models such as deep neural
networks have helped researchers derive understanding from complex models>2. In
particular, IG is a method for assigning sample-specific importance scores for
inputs of a model on the output based on the gradients of neurons’ weights across
the network. As described in detail by Sundararajan et al.18, the IG score calculated
for a specific sample is generated for each input dimension on each output
dimension by accumulating gradients along the path from the input to output.
Thus, applying IG to MD-AD allows us to achieve sample-specific gene importance
for each neuropathological phenotype predicted by MD-AD. In addition, by
treating the last shared layer as the “output” of the MD-AD model (i.e., by tem-
porarily removing all subsequent layers), IG is also able to identify gene-level
importances for nodes in MD-AD’s last shared layer. As described next, we use IG
applied both to the phenotype predictions and last shared layer nodes to interpret
MD-AD’s learned representations.

Obtaining IG scores. We note that for each MD-AD model (of the 100 re-trainings),
we apply the IG algorithm for each sample, which generates sample-specific IG
scores for genes on each output. Thus, for each MD-AD model, we generate a (#
samples x # genes x # output nodes) matrix providing sample-level gene impor-
tances for output nodes. Using the standard approach for a single MD-AD model
provides sample-specific importances for each gene on each output phenotype. We
additionally generate a modified MD-AD network with all layers beyond the last
shared layer removed to obtain sample-specific IG scores for genes on all nodes in
the last shared layer. Thus, for each of the 100 MD-AD models, we have a (#
samples x # genes X # output phenotypes) matrix of gene importance for neuro-
pathology predictions, as well as a (# samples x # genes x # last shared layer nodes)
matrix of gene attributions for the last shared layer of the network. As described in
the following section, we derive insights from the consensus MD-AD model by
aggregating these IG values in various ways.

Aggregating gene importance scores for nodes. For both the output nodes (six
neuropathological phenotype predictions) and the last shared layer nodes, we have
(# samples x # genes x # nodes) IG matrices for each MD-AD run as described
above. Now, we describe how we are able to aggregate across samples (and ulti-
mately runs) to obtain a final gene ranking for each (output or last shared layer)
node. First, for each MD-AD run, we generate a gene ranking for each of these
nodes using a weighted average. Our weighted average uses the following weights:
+1 for samples from individuals with high Braak and CERAD scores, —1 for
samples from individuals with low Braak and CERAD scores, and 0 otherwise.
Thus, the genes with the highest aggregated IG scores are those for which high IG
scores coincide with high node outputs. This approach is used for both ranking
genes’ relevance to neuropathology in the MD-AD framework, and for annotating
the last shared layer nodes, as described in the next sections.

Constructing and annotating MD-AD consensus nodes. Because deep neural
networks have non-convex loss functions, randomness in our training procedure
produces networks with different weights from run to run. In order to capture
robust nodes and highly relevant genes, we repeat our training procedure 100
times, in order to simulate a “consensus network”. As shown in Supplementary
Figure 8a, we construct “MD-AD consensus nodes” by clustering nodes from many
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runs: (1) we train 100 MD-AD networks, (2) we obtain the last shared layer node
outputs for all samples and normalize them (0-mean, unit variance), (3) we
combine all nodes across all runs and then cluster them using k-means (where the
dimensions used to calculate similarity are samples) with k = 50, (4) we summarize
each cluster of nodes by their medoid. Thus, for each sample, the MD-AD con-
sensus embedding is made up of 50 nodes, which are medoids of clusters generated
from 100 re-trainings.

In Supplementary Figure 6b, we provide a visual overview of the MD-AD
consensus embedding generated as described above. To provide a simple view of
clusters, we select a subset of samples for which we have clear high or low
pathology, excluding ambiguous cases. We include (1) individuals with Braak stage
of at least five and CERAD scores at least three (i.e., “moderate”), or (2) individuals
with Braak stage of 3 or lower and a CERAD score of 1 (i.e., “absent”) who are at
least 85 years old and have no dementia. Case 1 captures all individuals with
pathologic AD diagnoses (with and without dementia), whereas case 2 captures all
individuals considered “resistant” to AD due to their old age but lack of cognitive
or neurological decline (consistent with previous literature, e.g., Latimer et al.?3).
To annotate each node in the consensus embedding, we display their correlations
with various phenotypes and covariates, as well as their enrichment for
REACTOME pathways.

Correlations. For each variable (neuropathological phenotypes, high-level AD
phenotypes, and covariates), we compute the correlation —log10(p value) between
the variable and each consensus node output. In Supplementary Figure 6¢, a high
—logl10(p value) indicates that a node captures (or is highly linearly related to) a
variable.

Pathway enrichment. Beyond relationships between nodes and various phenotypes,
we annotated nodes with which gene sets are relevant to their outputs. First, in
order to identify relevant genes to each consensus node, we use IG scores. As
described in the “Model interpretation with Integrated Gradients” section above,
for each run, we aggregate IG scores across samples to obtain a weighted average of
gene importance scores for each last shared layer node. Because our consensus last
shared layer nodes are actually individual nodes sourced from various runs of MD-
AD, we simply combine the aggregated IG scores from the relevant nodes across
these runs. For each MD-AD consensus node, this method, therefore, provides us
with a ranking over all genes by their importance. We then test for enrichment of
REACTOME pathways®* in these gene rankings via GSEA3%3! to identify whether
certain pathways seem to be involved in the activation of these nodes. Enriched
pathways for the MD-AD consensus nodes are shown in Supplementary Figure 6d.
Supplementary Data 3 provides detailed annotations for each node.

Identifying MD-AD's top genes. In order to identify genes that drive MD-AD
predictions, we used IG!® to provide importance estimates of each gene on the
predicted outcomes. In order to improve model stability, we calculate gene rank-
ings based on 100 re-trainings. As described in the “Model interpretation with
Integrated Gradients” section above, after each run of training, we take our trained
model and apply IG for each sample to get the importance of each gene on each
neuropathological phenotype prediction. We next aggregate our IG scores into
gene rankings by calculating the ranks of each gene (for each phenotype) in each
run and then averaging across runs to obtain consensus gene ranks. For each
phenotype (see Supplementary Figure 8 for illustration). Thus, the gene with the
highest consensus IG score (i.e., score close to 1) is the gene with the highest
average rank across runs (most positively associated with the neuropathological
phenotype), and the gene with the lowest consensus IG score (i.e., score close to 0)
is the gene with the lowest average rank across runs (most negatively associated
with neuropathology). Although we generate these consensus rankings separately
for each phenotype, we again average across the six phenotypes to obtain our final
MD-AD consensus IG scores. We note that 100 re-trainings are more than enough
to converge to a stable gene ranking (Supplementary Figure 8c). The top genes for
MD-AD are shown in Fig. 4a, and enriched REACTOME pathways in the top-
ranked MD-AD genes (via GSEA) are shown in Fig. 4b. The full gene ranking,
generated separately for each neuropathological phenotype, is provided in Sup-
plementary Data 4.

For comparison with a linear gene ranking method, we also generate
correlation-based gene rankings as follows: we calculate the correlation coefficients
between each gene’s expression level and each neuropathological phenotype (across
all samples in our dataset), and then percentile rank the genes by their average
correlation coefficients across all six phenotypes (with 0 for the most negatively
correlated and 1 for the most positively correlated gene with high pathology). Our
final correlation-based gene ranking is the average over the phenotype-specific
rankings. Comparisons between REACTOME categories represented in the top
MD-AD vs correlation-based rankings are shown in Fig. 4c.

Calculating non-linear effects for MD-AD genes. As a deep learning method,
MD-AD has the capacity to identify non-linear relationships among genes’
expression levels and neuropathological phenotypes. These non-linear relation-
ships may reveal an implicit capture of interaction effects with other covariates
observable from expression data. Thus, we sought to investigate the presence of

interactions between sample-level covariates and specific genes in their contribu-
tions to the MD-AD predictions.

Generating sample-level gene importances scores. To simplify our analyses, we
generate consensus IG scores for each gene within each sample as follows: for each
sample and gene, we average over the gene’s IG weights across both neuropatho-
logical phenotypes and runs in order to obtain its average importance for general
neuropathology across all runs.

Measuring interaction effects. To monitor the presence of interaction effects in gene
importance scores, we modeled the consensus per-sample IG scores as a linear
combination of a gene’s expression level, a covariate of interest, and the interaction
of the two. Specifically, score,; = aexpr,; + bfeat; + cexpr,; feat; + d, where
scoreg; is the consensus IG value for gene g and sample i, expr,; is the sample 7’s
expression level for gene g, and feat; is sample i’s value for the covariate. Based on
this representation, we consider there to be an interaction effect between a gene
and feature on its importance in the MD-AD model if the learned ¢ coefficient is
statistically significant (p < 0.05, after FDR correction over all genes). We primarily
focus on identifying interaction effects with sex (feat; =1 if sample i comes from a
male, 0 otherwise), and rank interactions between genes and sex for MD-AD based
on the —logl0(p value) of the interaction term.

Gene set enrichment. We evaluated whether sex-differential genes were enriched for
the following gene sets: (1) REACTOME pathways®* and (2) microglial cluster
gene signatures from a recent single-cell RNA-seq analysis of microglial cells from
autopsied aging brains8. To evaluate whether the list of sex-differential MD-AD
genes is enriched for gene sets of interest, we use Fisher’s exact tests to evaluate the
significance of the overlap between all sex-differential genes and members of each
gene set. Next, to evaluate whether the top MD-AD sex-differential genes are
enriched for the same gene sets, we perform Fisher’s exact tests again, but this time
only consider the top 100 MD-AD genes in the calculations.

External validation: blood gene expression. To evaluate the ability of MD-AD to
transfer to blood gene expression data, we downloaded publically available
AddNeuroMed cohort data from GEO (GSE63060 and GSE63061, which we refer
to as Blood1 and Blood2, respectively). Details about the AddNeuroMed samples
are provided in Supplementary Data 5. As with the other validation datasets, each
blood dataset was normalized such that each gene’s expression values have the
same mean and variance as the processed MD-AD expression data. Because each
blood dataset had a different set of available genes, for each dataset, we re-trained
MD-AD consensus models for brain samples with only the genes available between
them and blood samples (12,104 and 11,392 genes for Bloodl and Blood2,
respectively). Because these blood samples came from living participants, we do not
have access to the many neuropathology variables available across the brain
samples. Instead, we assess whether MD-AD’s predictions align with individuals’
cognitive diagnosis of CTL, MCI, or dementia.

We evaluate the effectiveness of the MD-AD model by comparing predicted
MD-AD pathology scores between CTL and MCI individuals, and between CTL
individuals and individuals with dementia via two-sided ¢ tests (together, and split
by age). To evaluate the MD-AD embedding for blood samples, separately for each
blood dataset, we obtain the last shared layer embeddings of both the MD-AD
brain expression samples and blood samples from the first round of training.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

No new data are generated in this study. All datasets used were either publically available
or available subject to data-use terms and conditions as described below. Most human
brain gene expression and phenotype datasets were obtained via the AD Knowledge
Portal Synapse platform (doi: 10.7303/syn2580853). Access to these datasets may only be
obtained after registering for a Synapse.org account, agreeing to acknowledge data used
in any publications, and submitting a data-use certificate (separately as needed for each
dataset). Our study uses the following datasets (with listed Synapse IDs; URLs): ACT
(syn5759376), ROSMAP (syn3219045; https://doi.org/10.1038/s41593-018-0154-9),
MSBB (RNA Sequencing: syn3159438, Microarray: syn3157699), Mayo Clinic Brain
Bank (syn5550404; https://doi.org/10.1038/sdata.2016.89). All other human brain, mouse
brain, and human blood datasets were downloaded from the Gene Expression Omnibus
(GEO). The following datasets are publically available for download (with listed accession
codes; URLs): HBTRC (GSE44772; https://doi.org/10.1016/j.cell.2013.03.030), human
blood gene expression and phenotype data from the AddNeuroMed cohort (GSE63060;
and GSE63061), Mouse brain gene expression samples, and associated phenotypes
(GSE64398). Our study reports pathway enrichment for our results with respect to
publically available gene sets. These include REACTOME and KEGG pathways available
from MSigDB (c2 pathways v7.0; http://www.gsea-msigdb.org/gsea/msigdb/genesets.jsp?
collection=C2). We also compared our results with gene signatures from Olah et al®®.
(Supplementary Data 5 in their publication) and Mathys et al®. (Supplementary Table 6
in their publication). Source data are provided with this paper.
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Code availability

All code for our study, including code to train the MD-AD model and to generate all
figures included in the manuscript, are available at https://github.com/suinleelab/MD-
AD (archived at https://doi.org/10.5281/zenodo.5043447).
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