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Abstract: It has been demonstrated that ω-3 polyunsaturated fatty acids (ω-3 PUFA) may exert
a beneficial role as adjuvants in the prevention and treatment of many disorders, including
cardiovascular diseases and cancer. Particularly, several in vitro and in vivo preclinical studies have
shown the antitumor activity of ω-3 PUFA in different kinds of cancers, and several human studies
have shown thatω-3 PUFA are able to decrease the risk of a series of cardiovascular diseases. Several
mechanisms have been proposed to explain their pleiotropic beneficial effects. ω-3 PUFA have also
been shown to prevent harmful side-effects (including cardiotoxicity and heart failure) induced by
conventional and innovative anti-cancer drugs in both animals and patients. The available literature
regarding the possible protective effects ofω-3 PUFA against anthracycline-induced cardiotoxicity,
as well as the mechanisms involved, will be critically discussed herein. The study will analyze the
critical role of different levels of ω-3 PUFA intake in determining the results of the combinatory
studies with anthracyclines. Suggestions for future research will also be considered.
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1. Introduction

ω-3 polyunsaturated fatty acids (PUFA) are dietary factors acknowledged for their ability to
induce multiple beneficial effects [1–4]. The protection exerted by these fatty acids has been associated
to their ability to prevent pathologies affecting various tissues and organs, by modulating a variety of
cellular processes, molecular pathways and factors [5–8]. Initially, the cardiovascular (CV) area was
identified as the site where an increased intake ofω-3 could preferentially carry out their beneficial
action [3]. Only subsequently was it hypothesized that ω-3 PUFA could also protect against the
development and progression of several kinds of cancers. Among the mechanisms proposed for their
anticancer activity, some are similar to those involved in their CV protective effects, while others
are more specifically involved in cancer cell growth and survival [9–12]. Particular attention has
been focused on the possibility that these dietary factors may act as adjuvants of already existing
antineoplastic drugs, either by increasing the sensitivity of cancer cells towards these drugs or by
reducing their dangerous side-effects [13,14]. In the present review, a brief discussion will be firstly
outlined on the possibility to prevent both CV diseases and cancer through an increased intake of
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these fatty acids, and the mechanisms involved. In particular, their combinations with antineoplastic
agents will be considered. Moreover, the possibility that ω-3 PUFA may reduce the cardiotoxicity
induced by chemotherapy—particularly with anthracyclines (ATC)—will be critically analyzed. This is
a topic of great interest, being ATC still largely used in a variety of cancers, mainly in combination
with conventional or innovative drugs [15].

2. ω-3 PUFA and Cardiovascular (CV) Diseases

CV diseases (CVDs) are chronic non-communicable diseases responsible for the highest morbidity
and mortality worldwide and, according to the last report by the World Health Organization, they kill
17.7 million people each year [16]. Currently, diet and lifestyle are considered major risk factors for
CVD [17,18]. On the other hand, intervention on both factors may help in the prevention of these
diseases and their clinical events. In particular, it is acknowledged that dietaryω-3 PUFA are among
the nutritional factors which beneficially affect the frequency and severity of CVD [3,19]. α-Linolenic
acid (ALA 18:3ω-3), found in vegetables, is the precursor of the most effective long-chain PUFA
(LC-PUFA) eicosapentaenoic acid (EPA 20:5ω-3) and docosahexaenoic acid (DHA 22:6ω-3), present
at high levels in marine fatty fish and seafood [20–22]. A great number of studies have directly
associatedω-3 dietary consumption to a series of beneficial effects at CV level, such as: prevention of
arrhythmias [23], platelet aggregation [24], and arterial inflammatory responses [25]; normalization of
plasma triacylglycerol [26] and blood pressure [27]; and improvement of vascular relaxation [27] and
heart rate variability [28,29].

The specific mechanisms underlying the cardioprotective effects of ω-3 PUFA are not fully
understood. It is believed that the ability of these dietary fatty acids to exert pleiotropic effects in
cells and tissues is mainly related to the fact that they are incorporated in structural phospholipids
of cellular membranes [30,31], and alter their physicochemical properties, such as permeability,
deformability [32,33], and fluidity [3]. Consequently, cellular components and signaling pathways
may be affected [34]. For instance, the relative refractory period of myocyte voltage-gated sodium
channels may be prolonged, the voltage required for membrane depolarization increased, thus leading
to anti-arrhythmic effects [35]. Moreover, the ω-3 modulatory action on L-type calcium channels
may result in reduced cytosolic free Ca2+ and Ca2+ influx rate, which is believed to prevent the
cytosolic calcium overload taking place during the ischemic insult [36]. The anti-inflammatory
and anti-thrombotic effects of ω-3 PUFA have mainly been related to their metabolic conversion to
oxygenated derivatives, which are broadly named oxylipins, and are highly bioactive factors acting at
very low concentrations [37,38]. Following a stimulus, both the LC-ω-3 PUFA EPA and DHA or theω-6
PUFA arachidonic acid (AA), are released from cell membranes and converted to oxylipins with similar
structures, but often contrasting effects. There are three main pathways for these conversions, mediated
by the enzymes cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome P-450 (Cyt P450).
As the tissue level of LC-ω-3 PUFA increases, they compete with AA for COX-2 and LOX enzymatic
conversions, increasing the production of 3-series prostaglandins (PG), which are vasodilators and
platelet aggregation inhibitors [39], and that of thromboxane A3 (TXA3) and leukotriene B5 (LTB5)
which, compared to the analogous AA-derived compounds (PGE2 and LTB4), are weaker platelet
aggregators and less strong inducers of inflammation [40]. Lastly, ω-3 PUFA give rise to resolvins,
metabolic derivatives with powerful anti-inflammatory and pro-resolving effects [41]. At the CV level,
the increased formation of these specific LC-ω-3 PUFA products are thought to reduce atherosclerotic
plaque formation and induce their stabilization by decreasing the infiltration of inflammatory and
immune cells [42]. The ability ofω-3 PUFA to inhibit the secretion of very low density lipoproteins
(VLDL) from liver, as well as the conversions of VLDL to intermediate-density lipoprotein (IDL),
and low density lipoproteins (LDL) has been related to their hypotriglyceridemic effect [43]. On the
other hand, this effect has also been explained based on the ability of ω-3 fatty acids to increase
β-oxidation, thus leading to the reduction of the fatty acid substrate for triglyceride synthesis [44–46].
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3. ω-3 PUFA and Cancer

Several preclinical (in vitro and in vivo) studies and some human experimental studies have
demonstrated the ability ofω-3 PUFA to decrease cancer cell proliferation, to promote cancer cell death
and to inhibit neoangiogenesis in cancer [47–49]. Interestingly, these anticancer effects are induced by
ω-3 PUFA only in cancer cells and not in normal cells [50]. Among the main mechanisms involved in
theω-3 PUFA antineoplastic action, there is the modulation of cell proliferation and survival, that is
associated to their ability to affect the expression and/or function of genes, proteins (membrane
carriers and receptors, intracellular components of signaling pathways) and lipid mediators (oxylipins)
involved in these biological processes. One possibility that these compounds have in obtaining this
result is linked to their ability to modify the chemical structure and physical properties of those
specialized lipid microenvironments in plasma membranes (lipid rafts) [6,30,31,51,52], where multiple
factors involved in signaling are concentrated and interact each other. The alterations induced byω-3
PUFA in membranes can substantially modulate important signaling pathways for cancer development.
As a result, they can reduce the expression/activity of the nuclear transcription factor-κB (NF-κB)
in several kinds of cancer cells, thus inducing apoptosis [53–56]. ω-3 PUFA can also inhibit cancer
cell growth by altering the levels of several factors involved in the progression of the cell cycle,
such as cyclins, cyclin-dependent kinases and retinoblastoma protein [31]. Another mechanism
through which ω-3 PUFA are thought to act is due to their chemical structure and susceptibility
to peroxidation. It has been suggested that the incorporation of these PUFA in membranes and
mitochondrial phospholipids can sensitize tumor cells to oxygen reactive species (ROS) [57,58].
Moreover, it is known that lipid peroxidation products may directly inhibit DNA synthesis, cell
growth, and induce tumor cell death [59–61].

Furthermore, there is general agreement on the fact that the powerful anticancer effects exerted
by ω-3 PUFA may be partly related to their metabolic conversion to oxylipins. These derivatives
have been shown to influence key events in processes involved in the development of cancer, such as
cell proliferation, survival and inflammation. We have already considered that, overall, some of the
oxylipins derived from EPA and DHA metabolism exert less powerful pro-inflammatory actions
than the analogous products originating from AA (i.e., PG), and that other LC-ω-3 PUFA specific
products (i.e., resolvins) prevent inflammation and induce its resolution [41]. These anti-inflammatory
properties are worth underlining, since inflammation has been considered to play a central role in
the development of several cancers. Moreover, while AA-derived oxylipins usually promote cancer
cell proliferation, those derived from ω-3 exert a clear anti-proliferative role [62]. The formation of
AA-derived products is usually controlled, but excessive concentrations are produced in pathological
conditions, such as cancer. By competing with AA for both the incorporation in membranes and
oxidative metabolism, EPA and DHA have the potential to induce a decrease of the AA-derived
products, and, thus, to reduce the molecular responses associated with AA metabolism [31,50].

4. Potential Adjuvant Role ofω-3 PUFA in Combination with Antineoplastic Drugs

The combined treatment of ω-3 PUFA with other already used anticancer chemotherapeutics
represents the more possible application of these nutrients in cancer therapy [13]. To date, the potential
adjuvant role ofω-3 PUFA has been investigated in combination with a series of conventional drugs
in a wide range of cancers (for a comprehensive review, see [13]). The ability of these fatty acids
to reduce the toxic side-effects of these drugs has been largely proven [63–65], and several results
have also concurred to demonstrate their chemosensitizing effects, as well as their ability to prevent
drug-resistance [66–68]. In a recent review that comprehensively analyzed all the results of the existing
combinatory studies, we concluded that most of them supported a potential adjuvant-role for ω-3
PUFA [13]. The findings achieved in the two last years have further substantiated the results analyzed
in our review. The new information was obtained either by using different cancer cell models, or by
studying new molecular and cellular mechanisms for the previously investigated combinations, such as
DHA combined with 5-fluorouracyl [69], or cisplatin [70], or docetaxel [71]. Overall, the suppression
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of cell survival pathways and induction of cell death are among the most important mechanisms to
explain the chemosensitizing effects of these fatty acids in a variety of cancers [13]. The suppression
of cancer cell stemness has also been recently reported [68], and multiple results have suggested
that oxidative stress-induced cytotoxicity plays a central role [13,48,68], particularly if the drugs
used in combination with ω-3 PUFA were themselves inducers of oxidative stress (such as ATC,
or disulfiram) [68].

Some recent papers have also investigated the ability of ω-3 to sensitize cells to the action of
new-generation single-targeted drugs. For instance, the combined treatment with LC-ω-3 PUFA
and bortezomib synergistically induced apoptosis and increased the sensitivity of human myeloma
cells to this drug [72]. DHA combined with trastuzumab, a specific inhibitor of the HER2 receptor,
increased the efficacy of this drug in inhibiting the growth of Her2/neu positive breast cancer cells,
by synergistically reducing the expression of the phosphorylated form of extracellular signal–regulated
kinase (p-) and protein kinase B (p-AKT) [73]. Moreover, the combined treatment of DHA with
everolimus or barasertib synergistically promoted ROS-dependent cytotoxicity in Jurkat acute
lymphoblastic leukemia cells [65].

Human studies investigating the activity ofω-3 PUFA, such as chemosensitizers or suppressors
of drug-resistance, are still scarce. In a phase II trial, Bougnoux et al. [74] reported that treatment
with DHA, in combination with ATC-based chemotherapy, could improve the time to progression
and overall survival in metastatic breast cancer patients, in particular of those able to incorporate
high levels of DHA in plasma phospholipids. Accordingly, in patients with advanced non-small cell
lung cancer [75], the addition of fish oil (FO) to standard chemotherapy with carboplatin/vinorelbine
or carboplatin/gemcitabine proved to have the potential to enhance the efficacy of these treatments
(increase in one-year survival index, response rate and clinical benefit). On the contrary, many human
studies have reported that ω-3 PUFA may reduce some of the chemotherapy-induced harmful
side-effects, including drug-induced cardiotoxicity (specifically ATC-induced, see Section 5),
thus improving chemotherapy tolerance and prognosis [13,76,77].

5. Can Anthracyclines (ATC)-Induced Cardiotoxicity Be Prevented byω-3 PUFA?

Almost all the results related to the potential ofω-3 PUFA in preventing cardiac events induced
by chemotherapy refer to the treatments with the ATC antibiotics [78–83]. The possibility to
prevent ATC-induced cardiotoxicity is a field of great interest, since this class of drugs is still the
most extensively used in a variety of human solid and hematological cancers (e.g., breast cancer,
sarcoma, lymphoma and pediatric leukemia) in combination with other categories of conventional
chemotherapeutic agents or new-generation targeted drugs [15]. From a chemical point of view,
these drugs are planar molecules consisting of a rigid hydrophobic tetracycline ring to which a
daunosamine sugar is attached through a glycosidic bond. These compounds were introduced as
chemiotherapic drugs for the first time in the 1960s [84]. Doxorubicin (DOX) and daunorubicin (DNR)
are the two naturally occurring anthracyclines, derived from the bacterium Streptomyces peucetius [85].
Due to their high efficacy, a great number of synthetic analogs have been synthetized [86]. Among these,
epirubicin (EPI), which is widely used for the treatment of both carcinomas and sarcomas [87],
is synthesized through an epimerization reaction of one hydroxyl group of DOX. One important
characteristic of EPI is that, even showing a very similar antitumor activity compared to DOX, it is
more glucuronitated and, therefore, better excreted through bile and urine, allowing a safe use at higher
doses with respect to DOX [88]. The use of these drugs may often induce acquired resistance [89]
and a series of harmful side effects, including mucositis, nausea, vomiting, stomatitis and, mainly,
high cardiotoxicity.

To identify the mechanisms of ATC-induced cardiotoxicity, a variety of cellular and molecular
pathways have been explored over the last three decades. The precise knowledge of these mechanisms
represents an essential prerequisite to identify possible strategies and treatments to inhibit the
development of cardiotoxicity. However, despite the great effort, there is still a lack of agreement
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on which alteration(s) may be the most directly responsible for ATC-induced cardiotoxicity [15].
Given the complexity of this topic, it is not possible to analyze in detail herein all the mechanisms
involved in ATC-induced cardiotoxicity. Recently, excellent reviews [15,90] have been published on
this topic, and we will hereinafter provide only a brief outline of the mechanisms so far identified (next
paragraph). ω-3 PUFA appear as ideal candidates in preventing the development of cardiac events
induced by ATC chemotherapy, since these fatty acids are known to induce benefits at a cardiovascular
level by positively modulating some of the cellular processes and molecular pathways that, conversely,
are harmfully altered by ATC and other chemotherapeutic agents.

5.1. Mechanisms of ATC-Induced Toxicity

ATC induce cardiotoxicity with acute, sub-acute or chronic clinical manifestations, and the
incidence of chronic cardiac pathologies (mainly cardiomyopathy and congestive heart failure) has
been directly related to the amount of drugs accumulated in the heart [91]. Conventionally, the main
pathogenic role has been attributed to the oxidative stress generated by an increased production of
intracellular ROS, that has been thought to be initiated by the redox cycling of ATC and amplified
by the formation of free radicals catalyzed by iron chelated by ATC and, subsequently, accumulated
in the heart [91,92]. Moreover, the moderately scarce antioxidant defenses of the myocardium have
also been thought to be per se a sufficient reason in explaining the high susceptibility of this tissue to
ATC-induced-cytotoxicity [15]. In addition, ATC, and DOX in particular, mainly accumulate in the
mitochondria, which are mostly concentrated in the myocardium [93,94]. However, the oxidative stress
hypothesis has been challenged by the outcomes of clinical studies showing that antioxidants failed
to provide protection against ATC-induced cardiotoxicity [95,96]. Nevertheless, other mechanisms
have also been hypothesized. For instance, it has been suggested that cardiotoxicity may also be
related to oxidative-independent myocardial cell damage and death associated to the overload of
iron in the free form, since DOX can target proteins that specifically bind, transport or regulate the
binding and transport of iron [91]. In line with this, it has been shown that the supplementation of rats
in vivo with iron produced cardiac free iron accumulation and intensified the cardiotoxic effects of
these drugs [97]. On the contrary, iron chelation can prevent ATC-induced cardiotoxicity. Similarly,
the iron chelator dexrazoxane has been used to prevent heart pathologies secondary to chemotherapy,
not without controversies due to its toxicity and possible carcinogenicity [15]. Other iron chelators
have failed to demonstrate the same effectiveness [98,99]. This may be because dexrazoxane has shown
to possess additional effects, being able to also inhibit topoisomerase 2β (Top2β) [100], an enzyme
that traps DNA and DOX to form a DNA cleavage complex which is able to trigger apoptosis [101].
Several alternative oxidative (i.e., alteration of activity of endothelial nitric oxide synthase (eNOS)
and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase) and non-oxidative molecular
pathways of ATC-cardiotoxicity have also been suggested, although their detailed description is far
beyond the scope of this review [15]. However, it is worth mentioning some mechanisms recently
proposed, since ω-3 PUFA can often affect them in an opposite way compared to ATC. Particularly
relevant in this context is the inflammatory hypothesis, which considers the activation of the innate
immunity and the release of inflammatory cytokines central in the development and progression of the
ATC-induced cardiotoxicity [102–104]. Similarly, it is worth pointing out the modulatory activity of
ATC on the expression of several miRNA involved in the epigenetic regulation of different pathways
of apoptosis, since ω-3 fatty acids have also been shown to modulate the epigenetic regulation of gene
expression [7,105,106].

Furthermore, it is worth noting the emerging hypothesis [90] suggesting a central role for the
ATC-induced dysregulation of the autophagic response, since the ability ofω-3 PUFA in regulating
the autophagic processes has also been reported [107]. An impaired autophagic process results in an
unbalanced cellular proteostasis with an excessive protein load that may ultimately induce cell death.
However, although multiple results have shown that DOX deeply affects the autophagic process in
the heart, and that, by reversing the DOX effects on autophagy, the cardiac cell damage and death
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are also reduced, there is still great uncertainty as to whether the DOX-mediated cardiotoxicity may
be related to an increase or a decrease in autophagy [90,108,109]. According to the recent analysis
of the literature by Bartlett et al. [90], the controversies in this field may be related to the targets
examined in the autophagic machinery, and more attention should be focused on the explanation
of the “autophagic flux”. An impaired autophagic flux, i.e., a decreased lysosomal degradation of
autophagosomes [109,110], could be central in DOX-related cardiotoxicity, and its restoration could
reduce the heart damage related to the use of this drug.

Lastly, an important aspect of this subject, recently highlighted by Cappetta et al. [111] is that
cardiomyocytes have extensively been considered the main cellular targets of ATC chemotherapy,
and cardiomyopathy following the therapy has exclusively been ascribed to their death. However,
the vulnerability of other cell types (i.e., cardiac cells: cardiac progenitor cells, cardiac fibroblasts,
vascular cells; non cardiac cells, such as bone marrow cells and endothelial progenitor cells) to DOX has
also been recently described, and involved in the DOX-mediated cardiotoxicity [111]. Thus, these cell
types should also be taken into account for further research on ATC-induced cardiotoxicity.

5.2. Available Evidence for ω-3 Prevention of ATC-Mediated Cardiotoxicity

Only a small number of preclinical studies have hitherto investigated the effect ofω-3 PUFA on
the ATC-induced cardiotoxicity, and their results are quite inconsistent. Among the in vivo animal
studies analyzed (Table 1), only two [112,113] reported functional alterations in the hearts from
animals orally supplemented with ω-3 PUFA and subject to DOX treatments. On the other hand,
two studies [114,115] did not find any effect on cardiac morphology/functions, one [81] reported mixed
effects (i.e., both no effects on some parameters and positive effects on others), and the remaining
studies supported potential preventive effects of these fatty acids [78,79,116,117]. Moreover, one in vivo
study [118] (Table 1) did not investigate the functional/morphological effect on the heart, but reported
the preventive effects that these fatty acids induced at biochemical and molecular levels in this
area. Such beneficial effects were also reported by all the four in vitro studies [80,82,83,119] (Table 2)
conducted in cardiomyocytes treated withω-3 PUFA and DOX.

The great variability in the experimental conditions used in the animal studies may explain the
inconsistency of their outcomes. For instance, various cumulative doses and ways of administration
of ATC have been used which can result in different concentrations of this drug at the cardiac
level. Generally, these drugs are administered to humans through intravenous (IV) injections via
a central line or a peripheral venous line. In three of the works analyzed, ATC were administered
intravenously [81], or “intracoronary” [113,120], whereas most of the studies were performed by
injecting the drug intraperitoneally (IP) [78,79,114,117], and the remaining reports did not specify the
route of administration. The intracoronary DOX administration was performed in an ovine model,
where these vessels are large and easily reached. Possibly, this way of inoculation was used to stress
the experimental conditions, in order to obtain higher cardiac DOX concentrations and, consequently,
better detect alterations in the heart morphology and functions. Interestingly, one of these studies
(Table 1), performed in the ovine model [113], reported a negative effect (in terms of dilation of the
left ventricle and greater decline in ejection fraction) of an oral supplementation (19 weeks) with
23 mL of Omega 18/12 fish oil (FO) (Melrose Health, Mitcham, Victoria, Australia, containing 30%
EPA + DHA) given before, simultaneously, and after the DOX treatment (cumulative DOX dose:
3–4 mg/kg body weight). However, the same group of authors [120] had previously used the same
ovine model, and had found protective effects at the atrial level (suppression of left atrial dilation
and interstitial fibrosis, as well as decreased alteration in atrial conduction) (Table 1). In this case,
the sheep were supplemented daily with 10 mL of the same FO, and injected with comparable amounts
of DOX (cumulative DOX dose: 3.6 mg/kg body weight). Thus, it is not clear if the contrasting
effects between the two works could be ascribed to the different cardiac regions and parameters
examined or to the different supplementation timing of a quantitatively comparable (3 g/day)
EPA + DHA supplementation. The only other work reporting negative health effects from ω-3



Int. J. Mol. Sci. 2017, 18, 2689 7 of 20

PUFA (increased mortality and worst cardiac performance, i.e., reduction of left ventricular fractional
shortening, LVFS) was conducted by Matsui et al. [112] in rats (Table 1). In this case, the animals
were dietary supplemented with 10% menhaden oil (MO, Sigma, St. Louis, MO, USA, containing
approximately 20–30% EPA + DHA, for seven weeks in total). This supplementation provided the
rats with approximately 2.0–3.0 g EPA + DHA/kg body weight/day (see [121] for calculations).
The animals received three weeks of MO treatment, and were then injected with DOX (cumulative
dose: 15 mg/kg body weight, injection and timing not specified). On the contrary, in the two studies
conducted by Germain et al. [114,115], where ω-3 supplementations were found neutral for heart
health, rats were treated daily with epirubicin (EPI, cumulative dose: 9–15 mg/kg), and their diet was
enriched with 15% sardine oil (SO, Polaris Biotechnique, Columbus, OH, USA, containing about 30%
EPA + DHA, and corresponding to a dose of about 4.5 g EPA + DHA/kg body weight) or with 15%
algal-derived triglyceride DHASCO oil (containing about 40% DHA and corresponding to a dose of
about 6.0 g DHA/kg body weight) [115] (Table 1). These authors also added anti-or pro-oxidants to
the diets, but never found changes at the cardiac levels, either at the lowest dose or the highest dose of
ω-3 [115]. It should be emphasized that, compared to the work by Matsui et al. [112], in which ω-3
induced harmful cardiac effects in rats treated with DOX, in the studies by Germain et al. [114,115],
higher doses of EPA + DHA were administered to the rats (4.5–6 g/kg body weight vs. 2–3 g/kg body
weight). This is quite unusual, since, ifω-3 had the potential to increase the ATC-induced cardiotoxicity,
we would expect to observe greater alterations at the cardiac level by treating the animals with higher
doses of these fatty acids. However, it should be underlined that Germain et al. [114] did not use DOX,
but EPI, which, at comparable cumulative doses, is less cardiotoxic than DOX [122]. It is also interesting
to notice that the neutral effects obtained by Germain et al. [114,115] were interpreted by the authors
as a favorable result, since their studies were aimed at assessing whetherω-3 PUFA would exacerbate
the CV effect induced by these drugs, in addition to chemo-sensitizing breast cancer to ATC therapy.

The beneficial effects on functional parameters at the cardiac level observed by Teng et al. [78]
(Table 1) were obtained by supplementing rats with 6 g FO/kg body weight by gastric gavage. The type
of FO was not specified, but, if it had a EPA + DHA content of approximately 20–30%, as it is generally
observed in the FO mostly used in animal studies (menhaden oil or MaxEPA, see [121]), the rats would
have received a daily dose of about 1.5 g EPA + DHA, that is about a half of that ingested by the rats
showing cardiotoxic effects in the work by Matsui et al. [112]. Moreover, it should be pointed out
that these authors [112] supplemented ω-3 PUFA incorporated in the diet and not, as in this work,
by gastric gavage [78] that, presumably, allows a more precise intake and a higher bioavailability of
these fatty acids in the serum and tissues. Perhaps, also the longer period of ω-3 supplementation
(eight weeks vs. four weeks) used in this case [78] allowed to obtain healthy cardiac effects, although
this treatment was performed after the DOX treatment (IP injection) and not before it, as in the
study by in Matsui et al. [112] (where the type of DOX injection was not specified). More recently,
Uygur et al. [79] (Table 1) also obtained protective effects at the cardiac levels (in terms of improved
cardiac histological parameters and reduced apoptotic index) by administering the rats by gavage
0.4 g/kg body weight of EFA capsules (New Life EFA S-1200, Eurocaps Limited, Dukestown, Tredegar,
UK, containing 60% EPA + DHA), corresponding to a dose of ω-3 (0.240 g/kg body weight) even
lower than that of Teng et al. [78]. Similar to the study by Matsui et al. [112], in this case, this very
low dose was given for four weeks before the treatment with DOX, that, however, was administered
at a cumulative dose twice what Matsui et al. [112] had administered the animals (30 mg/kg vs.
15 mg/kg). Overall, the works analyzed to date suggest that, providingω-3 at relatively lower doses
(lower than about 2.0 g/kg body weight in rats) in the presence of ATC treatments, may induce
more favorable cardiac effects. Moreover, they suggest that, even extremely low doses ofω-3 may be
efficient, provided that the treatment is performed before ATC, even if the drug is administered at high
cumulative doses.
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Table 1. Effect of in vivoω-3 PUFA treatments on ATC-induced cardiotoxicity in animal models.

Experimental Model ATC Treatment ω-3 PUFA Treatment
Treatment

Combined with
ω-3 PUFA

Control Condition
(Alternative to ω-3 PUFA
or/and ATC Treatments)

ω-3 PUFA-Induced
Morphological/Functional Effects at

CV Level

ω-3 PUFA-Induced
Biochemical and
Molecular Effects

Ref.

Rats bearing
NMNU-induced

mammary tumors

EPI (3 mg/kg/week; IP) for
3 weeks Diet containing 15% SO (6 weeks)

±LP inducers * in
drinking water or

± vitamin E
(100 IU/kg diet)

none

NO EFFECTS
SO ± LP inducers * or SO ± vit E: no
variation in EPI-induced increase in

LVEDP in almost 10% of rats in all groups

n.d. [114]

Hearts isolated from rats
supplemented withω-3

PUFA and perfused ex vivo
with EPI

EPI heart perfusion ex vivo:
0.2 mg/min/10 min

1.0 mL (300 mg) EPA or DHA
ethylesters suspended in 0.5%

carboxymethylcellulose by gavage
(1st week); 1.5 mL (450 mg)

(2nd week)

none

1.0 mL (1st week) or 1.5 mL
(2nd week) olive oil

(alternative to EPA or
DHA treatments)

PROTECTIVE EFFECTS
Heart from EPA- or DHA-treated rats

perfused with EPI: lower aortic pressure
(index of coronary resistance) than in olive

oil-treated hearts

No difference in the heart
release of LDH among groups
during and after EPI infusion

[116]

Sprague-Dawley rats
DOX (cumulative dose):

15 mg/kg after 4 weeks of
FO treatments

Diet containing 10% MO (4 weeks
prior and 3 weeks

after DOX treatment)
none

0.28 M dextrose solution
(alternative

to DOX treatment)

HARMFUL EFFECTS
FO diet:

-highest mortality;
-further reduction in cardiac LVFS

FO diet: increase in myocardial
LP and decrease in vit E level [112]

Sprague–Dawley rats

After oil treatments: EPI
(weekly, cumulative doses):

9 mg/kg (exp. 1)
15 mg/kg (exp. 2)

Diet containing 15% SO or
DHASCO oil (% not reported)

(at least 3 weeks before
EPI treatment)

±LP inducers in
drinking water or

vitamin E
(100 IU/kg diet)

Palm oil (alternative to
DHASCO oil treatment)

NO EFFECTS
SO or DHASCO oils (± anti- or

pro-oxidants): no changes in EPI-induced:
-mortality;

-alterations of LVEDP and LVSP and left
ventricular systolic pressure;

-histological damages

n.d. [115]

Male Sprague-Dawley rats IP DOX injection
(2 mg/kg/week) (8 weeks)

FO § (0.6% of body weight) daily,
by gavage (for 8 weeks,
after DOX treatment)

none 0.9% normal saline
(alternative to FO)

PROTECTIVE EFFECTS
FO supplementation:

-Lower LVEDD and LVESD
-Higher LVEF and LVFS

n.d. [78]

Merino wether sheep
Intracoronary DOX infusions
(1.0 mg/kg, every other week)

(for 3–4 weeks)

Oral supplementation: 1.8 g EPA +
1.2 g DHA/day ◦ (1 week prior and

13–15 weeks after the
last DOX infusion)

none

No supplementations, sham
operated;

(Alternative toω-3
and DOX treatments)

Olive oil (10 mL)

PROTECTIVE EFFECTS
EPA + DHA supplementation, suppression

of DOX-induced:
-left atrial dilation and interstitial fibrosis;

-alterations in atrial conduction

n.d. [120]

Merino wether sheep
Intracoronary DOX infusion

(1.2 mg/kg, every other week)
(for 3 weeks)

Oral supplementation: ω 18/12 FO
(23 mL) (3 times/week for 3 weeks

prior and 16 weeks during and
post DOX treatment

none
Oral supplementation with
23 mL olive oil (alternative

to FO)

HARMFUL EFFECTS
FO supplementation: left ventricular

dilatation; greater decline in
ejection fraction

More frequent elevation of
serum troponin-T

after DOX treatment inω-3
treated sheep

[113]

Female
Sprague-Dawley rats

IV EPI injection (0.8 mg/kg
once a week) (for 6 weeks)

Oral supplementation DHASCO oil
80 g/kg diet (45% DHA) for

12–13 weeks prior and 6 weeks
during EPI treatment

none Palm oil-based diet n.d.

In cardiac tissue: no changes in
LP and total antioxidant

activity; increased antioxidant
enzyme (GPx, SOD) activity

[118]



Int. J. Mol. Sci. 2017, 18, 2689 9 of 20

Table 1. Cont.

Experimental Model ATC Treatment ω-3 PUFA Treatment
Treatment

Combined with
ω-3 PUFA

Control Condition
(Alternative to ω-3 PUFA
or/and ATC Treatments)

ω-3 PUFA-Induced
Morphological/Functional Effects at

CV Level

ω-3 PUFA-Induced
Biochemical and
Molecular Effects

Ref.

Male Sprague-Dawley rats
DOX (2.5 mg/kg, IP) (from

the 4th day, every other day)
(for 7 times)

Pretreatment with ALA (500 µg/kg
body weight) by gavage (3 days);
from the 4th day: every other day

(for 7 days)

none

Oral supplementation with
normal saline throughout

the experiments (alternative
to ALA

and DOX treatments)

PROTECTIVE EFFECTS
ALA supplementation, suppression

of DOX-induced:
-cardiac histopathological alterations,

-reduction of LVEDV, SV, and EF,
-increase in HW/BW,

-cardiomyocyte apoptosis

ALA prevented DOX-induced:
-in serum: increase in BNP,
CK-MB, LDH, cTnI levels;

-in cardiac tissue: LP increase
and antioxidant enzymes **

decrease;
-caspase-3 activation and
changed BAX and BCL2

expression;
-p-AKT and p-ERK decreased

expression

[117]

Sprague-Dawley rats
Single IP DOX dose

(30 mg/kg, after 30 dayω-3
PUFA treatment)

Pretreatment withω-3 PUFA
capsules (New Life EFA S-1200

(400 mg/kg/d, by gavage) (30 days
before DOX injections)

none
0.4 mL/kg saline by gavage

(alternative toω-3 PUFA
and DOX treatments)

PROTECTIVE EFFECTS
PUFA treatment:

-improved cardiac histological appearance;
-reduction of apoptotic index

(Tunel-positive cardiomyocytes)

Decrease in MDA levels;
increase in SOD and GPx

activities
[79]

Female Fisher 344 rats
bearing syngeneic MatBIII
mammary adenocarcinoma

xenograft

DOX (1 mg/kg, IV) starting
as tumor mass =1.2 cm3 (for
6 days and then weekly for

6 weeks)

Parenteral solution (tail vein)
containing 0.19 g/kg EPA +

0.18 g/kg DHA) every other day
(6 days before DOX treatment until

day 50)

±Parenteral
solution

containing
glutamine

(0.35 g/kg) ± EPA
+ DHA

Parenteral saline
(alternative toω-3

PUFA, DOX)

MIXED EFFECTS
EPA + DHA solution:

-No modifications in DOX-induced:
increase in LVEDD, LVESD and apoptosis;

-Partially improved LV dilation and
function (no statistical significance);

-Reversion of glutamine positive
cardiovascular effects

EPA + DHA parenteral solution
prevents DOX-induced

elevation of plasma cTnI levels;
No effect on DOX-induced lipid

peroxidation and enzymatic
and non-enzymatic

antioxidants in cardiac tissue

[81]

AKT, protein kinase B; ATC, Anthracyclines; BAX, bcl-2-like protein 4, BCL-2, B-cell lymphoma 2; BNP, brain natriuretic peptide; CAT, catalase; CK-MB, creatine kinase-MB; cTnI, cardiac
troponin I; CV, cardiovascular; DHASCO oil, algal-derived triglyceride containing 40% DHA; DOX, Doxorubicin; EF, ejection fraction; EPI, Epirubicin; ERK, extracellular signal–regulated
kinase; FO: Fish oil; GPx, Glutathione peroxidase; HW/BW, heart weight/body weight; IP: Intraperitoneal; IV, Intravenous; LP, lipid peroxidation; LDH, lactate dehydrogenase; LVEDD,
left ventricular end-diastolic dimension; LVEDP: left ventricular end diastolic pressure; LVEF: left ventricular ejection fraction; LVESD, left ventricular end-systolic dimension; LVFS: left
ventricular fractional shortening; LVSP, left ventricular systolic pressure; MDA, malondialdehyde; MO: menhaden oil; NMNU: N-methyl nitrosourea; n.d.: not determined; SO: sardine oil;
SOD, Superoxide dismutase; SV: stroke volume; vit. E, vitamin E. *: LP inducers: 20 mg/day dehydroascorbate + 0.2 mg/day menadione. §: FO, Fish oil not specified; **: SOD, GPx and
CAT; ◦: equivalent to a daily intake of 10 mL FO, i.e., 3 g long-chainω-PUFA.
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Table 2. Effect ofω-3 PUFA treatments on ATC-induced alterations in cardiomyocytes in vitro.

Experimental Model ATC Treatment ω-3 PUFA Treatment Additional
Treatments Control Condition

ω-3 PUFA Effect
on DOX-Induced Cardiac

Cell Viability

Effects of ω-3 PUFA in
Combination with DOX at

Biochemical and Molecular Levels
Ref.

Isolated adult rat
cardiomyocytes

perfused with CaCl2
Krebs solution

100 µM DOX (after 20 min
DHA treatment)

Pre-treatment with 10 µM
DHA (20 min) none No treatment with DHA

± treatment with DOX n.d.
PROTECTIVE

DHA pretreatment: Inhibition
of DOX-induced (Ca2+)i increase

[119]

H9C2 cardiomyoblast
cell line

1 µM DOX in DMEM-10%
FBS (24 h) after 24 h

EPA/DHA treatment

Pre-treatment with
100 µM EPA or 50 µM

DHA in DMEM-0.1% BSA
(24 h)

none
No treatment withω-3

PUFA ± treatment
with DOX

n.d.

PROTECTIVE
EPA or DHA pretreatment:

prevention of DOX-induced:
-decrease in UCP2 levels

-increase in ROS production
-MMP decrease

[80]

H9C2 cardiomyoblast
cell line

5 µM DOX in DMEM-10%
FBS (4 h)

Co-treatment with 10 µM
DHA-FFA (4 h) none No treatment with DHA

± treatment with DOX Increased viability

PROTECTIVE
DHA co-treatment:

suppression of DOX-induced:
-ROS production;

-expression of TNF-α, IL-6, MCP-1,
iNOS, and IL-1β;

-phosphorylation of IκB-αand
NF-κB/P65

[82]

H9C2 cardiomyoblast
cell line

20 mM DOX in
DMEM-10% FBS (1 h)

After DOX treatment:
1.25 mg/mL SO-loaded
Va-g-Ch microparticles

(SO-M)

none No treatments n.d. *

PROTECTIVE
SO-M treatment:

suppression of DOX-induced:
-caspase-3 activation;

-increased expression of NF-κB

[83]

ATC, Antracyclines; BSA, bovine serum albumin; DHA-FFA, DHA bound free fatty acid; DMEM, Dulbecco modified minimum essential medium; DOX, doxorubicin; IL, interleukin;
MCP-1, monocyte chemoattractant protein 1; MMP, mitochondrial membrane potential; n.d., not determined; SO, sardine oil; SO-M, sardine oil-loaded microparticles; TNF-α, tumor
necrosis factor α; UCP2: uncoupling protein 2; Va-g-Ch: vanillic acid-grafted chitosan; * Higher cardiomyocyte viability, lower oxygen reactive species (ROS) production, and MMP near to
normal level, evaluated only with SO-M treatment alone, compared to DOX-treatment alone.
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Healthy cardiac effects were also obtained in other works using models that differed for many
aspects from those so far analyzed. In one of them, Xue et al. [81] (Table 1) administered EPA
and DHA (0.19 g/kg body weight EPA and 0.18 g/kg body weight DHA) every other day in a
parenteral solution via tail vein of anesthetized rats bearing syngeneic mammary adenocarcinoma
xenografts. This treatment was performed one week before and seven weeks after the DOX treatment
with a cumulative dose of 6 mg/kg. Despite the difficulty in comparing this model to the
others so far analyzed, it is interesting since it reflects the possible supplementations with ω-3 in
oncological patients undergoing ATC therapy. In this case, mixed effects were obtained regarding
the parenteral infusion with EPA and DHA. Neutral effects were observed for some parameters,
such as the DOX-induced increase in the left ventricular end-diastolic and end-systolic dimensions
(LVEDD and LVESD), DOX-induced lipid peroxidation, antioxidant factors and apoptosis in the
myocardium. Among the positive effects, there were the prevention of the DOX-induced increase in the
plasma cardiac troponin I (cTNI) levels, and a trend for better preserved left ventricular function (left
ventricular fractional shortening, LVES, and left ventricular ejection fraction, LVEF) and morphology
(suppressing DOX-induced LV dilation). The in vivo work by Schjøtt et al. [116] is difficult to compare
with other in vivo studies. It was performed by supplementing (for two weeks) rats by gavage with
very low daily doses of EPA or DHA-ethyl esters (EPA or DHA, approximately 0.03–0.045 g/kg
body weight, suspended in carboxymethylcellulose), and their effect was evaluated on the hearts
isolated and perfused with ex vivo DOX. Although the experimental conditions were so peculiar,
it is particularly worth noting that extremely low doses of EPA or DHA resulted to be protective
(by decreasing the aortic pressure) on the hearts challenged ex vivo with DOX. In another in vivo
work, Yu et al. [117] (Table 1) investigated the effect of α-linolenic acid (ALA, 18:3ω-3), the essential
fatty acid precursor of EPA and DHA. Although ALA is known to be scarcely converted in vivo
into the longer chain PUFA, EPA and DHA [123], it should be taken into account that experiments
performed in rats have demonstrated that different tissues possess different abilities to endogenously
synthesize long-chainω-3 PUFA from ALA. In particular, the heart is one of the sites displaying the
highest level of endogenous synthesis of long-chain ω-3 PUFA from ALA [118]. A very low dose
of ALA (0.05 g/kg body weight) was administered by gavage to rats three days before and a week
after the DOX treatment (cumulative dose: 17.5 mg/kg) [117]. The ALA treatment prevented the
alterations induced by DOX on numerous morphologic and functional parameters at the cardiac
level. Moreover, these results agree in suggesting that relatively low doses of ω-3 PUFA may be
more effective in preventing chemotherapy-induced side-effects in the heart. It is worth pointing
out that, in this case, ALA supplementation decreased the DOX-induced oxidative stress, confirming
the result observed in the study by Uygur et al. [79], where (see above) low doses of EFA capsules
(at high levels of EPA and DHA, but also containing ALA) were administered. On the contrary,
the parenteral solution infused by Xue et al. [81], and containing comparable amounts of EPA + DHA,
did not affect the other several investigated parameters of oxidative stress. On the other hand,
lipoperoxidation (LP) was found increased in the heart tissue and the level of vitamin E decreased
by Matsui et al. [112], and these modifications were included by the authors among the harmful
effects exerted by these fatty acids at cardiovascular levels. Interestingly, in a work [118] (Table 1)
where rats were subject to chemically-induced mammary carcinogenesis, a supplementation with
doses of DHASCO oil furnishing approximately 3.5 g DHA intake/kg body weight [121,124], prior and
during the EPI treatment, did not induce any increase in LP in normal tissue, including the cardiac
tissue. Meanwhile, the cardiac total antioxidant activity, as well as that of the antioxidant enzymes
SOD and GPx was found to be increased. On the contrary, LP increased remarkably in the tumor
tissue, due to the lack of adjustment of the antioxidant reserve, which may potentially improve the
outcome of ATC chemotherapy. Moreover, two in vitro investigations (Table 2) [80,82] found that
EPA and DHA added to the culture medium had the potential to suppress the DOX-induced ROS
production of H9C2 cardiomyoblast cell line. It was also found that the treatment of cardiomyoblasts
in vitro with DHA [82] or sardine oil embedded in vanillic acid-chitosan microparticles [83] could also
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suppress the DOX-induced expression/activation of NF-κB [82,83], a transcription factor activated by
the increase of ROS at the cellular level, and, furthermore, involved in the transcription of inflammatory
cytokines. Compatibly, DHA was also found to suppress [82] the DOX-induced expression of TNF-α,
IL-6, MCP-1 and IL-1β. In the same work [82] DHA also reduced the DOX-mediated expression of
the enzyme iNOS, related to the generation of the powerful oxidant peroxynitrite from NO. Some of
these in vitro studies (Table 2) reported the contrasting effect exerted by ω-3 treatment on phenomena
related to the DOX-induced apoptosis, i.e., the decrease of the mitochondrial membrane potential,
and caspase-3 activation [80,83]. Lastly, one of these studies reported the ω-3 ability to suppress
the increase in (Ca2+)i related to the alteration induced by DOX in sarcoplasmic reticulum Ca2+

release [119].

6. Conclusions

Overall, the extreme variability in the experimental in vivo models makes their analysis and
comparison very difficult. However, from the experiments performed in rats, it is possible to
conclude that the level ofω-3 PUFA intake represents one of the main factors determining whether
they exert protection against ATC-induced cardiotoxicity. We have observed that relatively low
doses administered to rats with the diet (0.5 g/kg body weight for ALA, and ranging from 0.2
to 1.5 g/kg body weight for EPA + DHA or DHA alone) could prevent the development and
progression of DOX-mediated cardiotoxicity in vivo. Even lower doses of ω-3 PUFA given to rats
in vivo (0.030–0.045 g/kg body weight) resulted in cardioprotective effects in hearts excised and
perfused ex vivo with DOX. On the contrary, higher doses (2.0–3.0 gω-3/kg body weight) exacerbated
the harmful effects of DOX at the cardiac level. Interestingly, however, even higher doses of EPA
and/or DHA (4.5 g EPA + DHA/kg body weight or 6.0 g DHA/kg/body weight) appeared neutral,
not adding further risks to the cardiotoxicity if associated to a treatment with EPI, an ATC showing less
cardiotoxicity than DOX. Thus, these outcomes suggest that, to obtain a protective effect, relatively low
doses ofω-3 PUFA should be administered (lower than 2.0 g/body weight in rats). These doses would
probably not be sufficient to induce cytotoxicity driven by lipoperoxidation and high level of oxidative
stress that, conversely, are known to be induced by high concentrations of these fatty acids [125].
On the contrary, as demonstrated by the outcomes of both the in vivo and in vitro studies, low and
protective doses may not alter or may even decrease the ATC-induced lipoperoxidation. They may
also not affect or even reduce the level of ATC-induced ROS formation, and, lastly, may not modify the
ATC-induced decrease in antioxidant enzyme expressions or activities, or even induce them.

Moreover, in a future prospective, it should be emphasized that, although the mechanisms of
cytotoxicity related to the oxidative stress are those mainly investigated by the ATC/ω-3 PUFA
combined studies, recently, several other important and more specific mechanisms have been sought to
explain the health effects ofω-3 PUFA, both in general and at CV levels (Figure 1). Some of them involve
their anti-inflammatory activities, as well as their ability to negatively modulate some molecular
pathways, such as those leading to the activation of NF-κB or those involved in autophagy [126–129],
or to influence the epigenetic regulation [7,130]. Interestingly, these mechanisms represent some
of those more recently involved in the ATC-induced cardiotoxicity. Since they often appear to be
modulated by ATC and ω-3 PUFA in an opposite way, it would be worthwhile to investigate their
involvement in future combined studies examining the effects ω-3 PUFA and ATC at CV level.
Remarkably, it has been recently observed that one of the consequences of iron overload at the hepatic
level is the inhibition of the ∆-5 and ∆-6 desaturases, which prevents the endogenous synthesis of
LC-ω-3 PUFA, and leads to their depletion with harmful consequences for the cells [131]. Since iron
overload is also considered one of the main mechanisms of ATC-induced cardiotoxicity, it would be
stimulating to investigate whether it may suppress the synthesis and the level of LC-ω-3 PUFA also at
cardiac levels, and if the impaired synthesis could be related to ATC-cardiotoxicity.
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Figure 1. Potential protective effects of ω-3 polyunsaturated fatty acids (PUFA) against anthracyclines 
(ATC)-induced cardiotoxicity. Diagram of a cardiomyocyte and some mechanisms of ATC-induced 
cardiotoxicity that were found to be either activated or inhibited by ω-3 PUFA (ω-3 PUFA) (indicated 
by plain black arrows with + sign or dashed black arrows with – sign, respectively), or that could be 
potentially affected by these fatty acids (see in the text for more details). The question marks indicate 
some mechanisms that we have suggested, and through which ω-3 PUFA could potentially prevent 
ATC-induced cardiotoxicity toxicity (see in the text for more details). Orange arrows indicate 
mechanisms of ATC-induced cardiotoxicity. Purple arrows indicate pathways leading to cell death.  
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mechanisms of ATC-induced cardiotoxicity. Purple arrows indicate pathways leading to cell death.
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