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Abstract: The intestinal microbiome, the largest reservoir of microorganisms in the human body,
plays an important role in neurological development and aging as well as in brain disorders such as
an ischemic stroke. Increasing knowledge about mediators and triggered pathways has contributed to
a better understanding of the interaction between the gut-brain axis and the brain-gut axis. Intestinal
bacteria produce neuroactive compounds and can modulate neuronal function, which affects behavior
after an ischemic stroke. In addition, intestinal microorganisms affect host metabolism and immune
status, which in turn affects the neuronal network in the ischemic brain. Here we discuss the latest
results of animal and human research on two-way communication along the gut-brain axis in an
ischemic stroke. Moreover, several reports have revealed the impact of an ischemic stroke on gut
dysfunction and intestinal dysbiosis, highlighting the delicate play between the brain, intestines and
microbiome after this acute brain injury. Despite our growing knowledge of intestinal microflora in
shaping brain health, host metabolism, the immune system and disease progression, its therapeutic
options in an ischemic stroke have not yet been fully utilized. This review shows the role of the gut
microflora-brain axis in an ischemic stroke and assesses the potential role of intestinal microflora in
the onset, progression and recovery post-stroke.
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1. Introduction

A brain ischemia results in brain injury caused by transient or permanent or focal or
global stop of the cerebral blood flow that can lead to permanent neurological deficits, de-
mentia or death [1,2]. A brain ischemia in people called a stroke is a global health problem
that has now become the second leading cause of death and the third most common cause of
disability worldwide [3]. In humans, a stroke is classified as ischemic or hemorrhagic based
on the underlying neuropathology [3]. Ischemic strokes account for 85% of all cases and
hemorrhagic strokes for about 15% [3]. An ischemic stroke is mainly caused by occlusion
of the middle cerebral artery, which causes damage to the brain parenchyma in the affected
region followed by a neuroinflammatory and immune response [1,4,5]. Brain damage
due to an ischemic stroke is the result of a complex series of neuropathophysiological
and neuropathological events including excitotoxicity, oxidative stress, neuroinflamma-
tion, apoptosis, amyloid production and tau protein dysfunction [4–11]. The post-ischemic
brain is characterized by the accumulation of amyloid plaques and neurofibrillary tangles
with a subsequent development of dementia [9–13]. It therefore will become a serious
public health problem with morbidity and prevalence reaching epidemic proportions in
the next few decades if the disease cannot be prevented or slowed down. Although a
stroke increases neurological deficits with dementia, infections are a major cause of death
from a stroke [14]. About 90% of stroke cases have been documented to be associated with
behavioral factors including poor nutrition, low physical activity and smoking as well
as metabolic factors including diabetes, obesity, hyperlipidemia and hypertension [15].
According to global disease research, a stroke is and will be a very serious health problem;
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the negative influence of which will grow with the aging of the world population [16].
In addition, there is a mechanistic relationship between cerebral ischemia, innate and
adaptive immune cells and intracranial atherosclerosis as well as intestinal microflora
in the modification of brain responses to an ischemic injury. Experimental studies have
highlighted the cellular and tissue mechanisms associated with stroke damage; mecha-
nisms that have identified new pathways of damage that have not yet been accurately
described. After a stroke, up to 50% of patients experience gastrointestinal complications
including constipation, dysphagia, gastrointestinal bleeding and stool incontinence [17–20].
Gastrointestinal complications after a stroke affect poor patient treatment results including
a delayed outcome, increased mortality and progressive neurological deficits. Recently, a
few studies have also shown that impaired intestinal microflora can also be a risk factor
for a stroke and can affect the prognosis after a stroke [15,21]. Additionally, other studies
have shown a significant influence of the gut microbiome on the pathogenesis of various
cerebrovascular diseases [22]. Human intestinal microflora consists of tens of trillions of
bacteria with about 1000 species of known bacteria and about three million genes, which is
150 times more than the human genome [22]. The brain and intestine are connected by a
neuronal network, forming a complex gut-brain-gut axis with strong bilateral interactions.
Increasing data indicate that intestinal microflora is an important factor in the development,
sequelae and treatment of a stroke. An ischemic stroke also changes the composition of
the intestinal microflora. Conversely, the gut microflora can modulate the outcome of a
stroke and play a role in its development. From a clinical point of view, the risk of a stroke
remains a huge challenge today.

It is believed that the digestive tract is the main organ of the immune response, which
is rich in immune cells and responsible for more than 70% of the activity of the whole
immune system [15]. Increasing evidence suggests that enteritis along with the immune
response plays an important role in neuropathophysiology of a stroke, which may be-
come an important therapeutic target in treating the consequences of a stroke [23]. The
intestinal microflora has been shown to play an important role in regulating the immune
system [15]. The intestinal microflora has also been shown to be an important factor
in the development and sequelae of a stroke in a mouse model [24–27]. In addition, a
stroke usually triggers intestinal dysfunction, intestinal microflora dysbiosis and intestinal
bleeding as well as septicemia of intestinal origin, which affects a poor prognosis [15].
Stroke-induced gastrointestinal complications [17–20] coexist with poor post-stroke out-
comes (for instance, increased mortality, worsening neurological functions and delayed
recovery time) [15,19,21,24,28,29]. However, the less known secondary effect of a stroke
is the intestine microbiota dysbiosis. It is known that imbalances in the intestinal mi-
croflora contribute to neuro-behavioral problems, neuroinflammation and to worsening
stroke outcomes [28,29]. There is little information on the characteristics of the intesti-
nal microflora from stroke patients [30]. Often, these complications adversely affect the
outcomes of a stroke. Recent studies have postulated the role of the brain-gut axis in
causing dysbiosis of the intestinal microflora and various complications and negative
outcomes post-ischemia [31–33]. In this review, we present our recent understanding
of the interaction between the intestinal microbiome and the brain in determining the
course of an ischemic stroke and reveal related pathways that may be promising ther-
apeutic targets. This review also discusses ongoing research into the production and
role of trimethylamine-n-oxide, its association with strokes and other pathogenic stroke
mechanisms and trimethylamine-n-oxide-based therapeutic strategies.

2. Post-Ischemic Brain versus Gut Microbiota

Studies indicate the effect of intestinal microflora on a host stroke outcome, paying at-
tention to two-way communication along the brain-gut axis [28,34]. Growth of Bacteroidetes
after an ischemia was confirmed in monkeys [35]. Increased Bacteroidetes abundance was
also found three days after the occurrence of an ischemic stroke in mice, which is considered
a characteristic feature of post-stroke dysbiosis [28]. In contrast, a clinical study in which
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stool samples were taken for two days after admission showed a decrease in Bacteroidetes
levels in patients with an acute ischemic stroke and a transient ischemic attack [36]. In the
study of monkeys after a focal brain ischemia, an increased relative abundance of Prevotella
was found, suggesting that this type may be associated with an inflammatory response
following a stroke [35]. In monkeys after a local cerebral ischemia, reduced relative levels
of Faecalibacterium, Streptococcus, Lactobacillus and Oscillospira were observed [35]. Faecal-
ibacterium and Oscillospira species are recognized as the main source of butyrate in the
host body [37,38]. Butyrate, the short chain fatty acid, plays a key role in maintaining the
integrity of the intestinal barrier, inhibits the production of pro-inflammatory cytokines and
is considered a therapeutic target in brain disorders [39]. A decrease in plasma butyrate
concentration in monkeys after a focal cerebral ischemia was observed within 6–12 months,
which was probably associated with a decrease in Faecalibacterium and Oscillospira lev-
els [35]. The reduced plasma levels of short chain fatty acids found in monkeys after a focal
cerebral ischemia with a survival of 6–12 months indicated that chronic intestinal dysbiosis
may also affect the production of short chain fatty acids.

It was noted that Lactobacillus, which is an important type of host probiotic bacte-
ria, possessed a reduced relative level after an infarction of the brain in monkeys [35].
Lactobacillus supplementation has been shown to improve cognitive function, mood and
alleviate aging-related inflammation [40–42]. Dementia and depression after a stroke are
common complications in animals and survivors of a stroke [43–45] with simultaneous
chronic systemic and cerebral inflammation [4,5]. Whether Lactobacillus supplementation is
beneficial for post-stroke patients, the case is open and should be investigated in future
clinical trials. It has also been found that the relative level of Streptococcus abundance is re-
duced after a cerebral ischemia. The genus Streptococcus includes probiotic bacteria such as
Streptococcus thermophilus [46] and pathogenic bacteria such as Streptococcus pneumoniae [47].
At present, the exact role of intestinal Streptococci in cerebral infarctions remains to be
clarified in future studies. An increased blood lipopolysaccharide has been found to cause
brain neuroinflammation, blood-brain barrier alterations, brain edema and complicates
post-stroke survival [48]. This correlates with the increase in plasma lipopolysaccharide in
post-ischemic monkeys especially 6 and 12 months after a stroke [35]. Thus, lipopolysac-
charide may play an important role in chronic systemic inflammation after a stroke, which
is confirmed by damage to the intestinal mucosa barrier and morphological damage to the
intestinal mucosa after an ischemia. The damaged intestinal mucosal barrier is probably
associated with an increased release of lipopolysaccharide from the intestines into the
bloodstream. It was confirmed that the pro-inflammatory cytokines IFN-g, IL-6 and TNF-α
were elevated in plasma up to 12 months after a focal brain ischemia, suggesting that
systemic inflammation persisted chronically after a stroke [35]. These observations suggest
that not only intestinal microflora dysbiosis develops after a cerebral infarction but also
chronic systemic inflammation as well. Correlation studies also revealed that increased
plasma lipopolysaccharide or inflammatory cytokine levels and excessive Bacteroidetes
growth were closely related [35]. We can conclude that the chronic systemic inflammatory
response after a stroke can affect the brain because it has been proven that this inflamma-
tory response is associated with cognitive impairment, learning and memory impairment,
depression and anxiety [40]. Pro-inflammatory cytokines released from the gut into the cir-
culation communicate directly with the brain intensifying pathological changes [40]. Thus,
post-stroke intestinal microbiota and chronic systemic inflammation may be therapeutic
targets in the treatment of a stroke.

The removal of intestinal bacteria by an initial antibiotic treatment has been shown
to worsen the outcome of the post-ischemic mouse [28,29]. In mice, the composition of
the cecum microflora was found to change following a local cerebral ischemia, identifying
specific changes in Peptococcaceae and Prevotellaceae that correlated with the extent of the
injury [25]. It has also been shown that dysbiosis affects the outcome of an ischemic stroke
by suppressing the effector T cell movement from the intestine to leptomeninges in a model
of a local cerebral ischemia [34].
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A few microflora studies in stroke patients have shown gut dysbiosis associated with
systemic inflammation and a reduced trimethylamine-n-oxide level [36,49,50]. An ischemic
stroke in patients was associated with more opportunistic pathogens such as Enterobacter,
Megasphaera and Oscillibacter and in minority with beneficial types such as Bacteroides,
Prevotella and Faecalibacterium [36]. It was then found that a stroke was independently
associated with an increase in Atopobium and Lactobacillus ruminis and a reduced level of
Lactobacillus sakei [50]. In another study, stroke patients had a dysbiosis of the intestinal
microflora with increased levels of Escherichia, Bacteroidetes, Megamonas, Parabacteroides and
Ruminococcus [15]. In patients with a high risk of a stroke, the enrichment of opportunistic
pathogens with reduced levels of butyrate-producing bacteria was noted [21]. A significant
increase in Odoribacter, Akkermansia, Ruminococcaceae, Flavobacteriaceae and Victivallis was
observed in stroke patients [15]. Odoribacter, Akkermansia, Ruminococcaceae and Victivallis
are well known producers of short chain fatty acids including acetate, propionate and
butyrate [21,51–53]. In patients with a mild stroke, Enterobacter, Pyramidobacter and Lach-
nospiraceae increased their level [15]. In contrast, patients with a severe stroke had an
increase in the number of Ruminococcaceae and Christensenellaceae [15]. These observations
suggest that gut flora is involved in the human stroke and correlates with its severity. It was
unequivocally found that short chain fatty acids were produced by increased Odoribacter
and Akkermansia in stroke patients [15]. Earlier studies have shown that the shift in micro-
biological composition caused by a stroke was associated with an increase in Akkermansia
muciniphila and an excessive number of Clostridial species in post-stroke mice [27]. On the
contrary, it was observed that Akkermansia decreased in post-stroke patients [49]. Another
study found that Akkermansia increased significantly in post-stroke patients [15]. It has
been reported that Akkermansia muciniphila uses mucin to produce high-level acetate that
can be used by butyrate-producing Ruminococcaceae to stimulate butyrate production [21].
Another study showed that the type Odoribacter, a producer of butyrate that belongs to
the type Bacteroidetes, also increased after a stroke in patients [15]. This indicated that the
simultaneous growth of these two bacteria could promote butyrate production. Butyrate
is a preferential source of energy for epithelial cells and maintains epithelial health [54].
Butyrate may also affect the expression level of genes stimulated by Akkermansia muciniphila
in epithelial cells [55]. Therefore, some believe that Akkermansia may play a key role in
wound healing by promoting butyrate levels, which has resulted in the fixation of epithe-
lial integrity in mice after a stroke [27]. In addition, Akkermansia muciniphila can induce
mucus production and Reg3γ expression in the colon, resulting in microflora remodel-
ing [56]. Therefore, further work is needed to determine the possible role of Akkermansia
and Odoribacter in post-stroke patients.

3. Post-Ischemic Amyloid and Tau Protein versus Gut Amyloids

Amyloid peptides or an amyloid fiber (of a curly type), associated with forming seeds
for aggregation of a brain amyloid, may be produced by some Enterobacter species and
fungi [57–59]. Microbial amyloids trigger the nucleation of amyloid aggregates with a huge
accumulation and cause an inflammatory response [60,61]. In the absence of intestinal
microflora, there was a decrease in the amyloid accumulation in transgenic mice [62].
In addition, it has been noticed that amyloid aggregation in vitro may be inhibited by
the intestinal microflora-produced short chain fatty acids [63]. Subsequently, a bacterial
endotoxin is responsible for neuroinflammation triggering the formation of amyloid fib-
rils [64,65]. Some bacteria, such as Escherichia coli, produce amyloid [65] but the relationship
of this amyloid to neurodegeneration in the brain after an ischemia has not been clarified. It
should be added that bacterial gram-negative lipopolysaccharide supports amyloid deposi-
tion in the brains of mice, harmfully affecting cognition [66]. It is not known how bacterial
amyloids cooperate with other neuropathological mechanisms in the post-ischemic brain
such as post-translational tau protein changes, β-amyloid peptide generation, neuroin-
flammation and cerebrovascular degeneracy. When the intestinal barrier permeability
increases, bacterial amyloids enter the systemic circulation increasing inflammation in
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the brain and causing memory impairment in mice [67]. These observations indicate that
bacterial amyloids may play a key role in increasing the immunoreaction and nucleation of
amyloid aggregates in the brain post-ischemia. An amyloid produced by a microbiome
has the potential to affect amyloidogenesis in neurodegenerative diseases [68]. These
observations have recently been supported by in vitro and in vivo data [69,70]. Microbial
amyloids can control brain inflammation and β-amyloid peptide levels by influencing brain
gliosis [4,5,68–70]. The altered bacterial flora may affect the level of bacterial amyloids and
metabolites in the plasma and therefore may act as a trigger in the onset and exacerbation
of neurodegeneration in the post-ischemic brain.

Meta-analysis data indicate that gut metabolites may exacerbate neuroinflammation,
the aggregation of amyloid and tau protein in brain neurodegenerative diseases [71]. Gut
microbiota is involved in the secretion of more than 100 metabolites but their contribution
to the neuropathogenesis of the post-ischemic brain has not been proven [72]. Valerian,
isobutyric, isovaleric, butyric, acetic, propionic and formic acids have been shown to affect
the development of neurodegenerative diseases by acting on astrocyte and microglia activ-
ity and reducing neuroinflammation, amyloid and tau protein aggregation [73,74]. Host gut
microflora was found to affect microglia homeostasis in the brain, which produced apparent
microglia defects with an immature phenotype in germ-free animals, eventually impairing
innate immune responses [75]. An attempt to re-colonize with complex microflora partly
restored the physiological characteristics of microglia [75]. In summary, this observation
suggests that the gut microflora may control microglia maturation, function and activation
and therefore, in the case of impaired gut microflora, microglia maturation and its poten-
tial for amyloid and tau protein phagocytosis that accumulate after ischemia are limited.
In vitro studies have shown that propionic, valeric and butyric acids produce an inhibition
of oligomerization of the β-amyloid-(1–40)-peptide [63]. However, when the effect of gut
microbiota metabolites on the aggregation of the β-amyloid-(1–42)-peptide was assessed,
it was shown that only valeric acid inhibited the formation of amyloid oligomers [63]. In
contrast, a study on the conversion of β-amyloid peptides into β-amyloid peptide fibrils
showed that both butyric and valeric acids inhibited the conversion of a monomer of a
β-amyloid-(1–40)-peptide to a filamentous β-amyloid peptide [63]. The dependence on
the type of intestinal metabolite indicated that an increase in the amount of beneficial
metabolites produced by the intestinal flora and particularly anti-inflammatory bacteria
may support the removal of tau protein and amyloid from the brain tissue following
an ischemia.

4. Trimethylamine-n-oxide and Stroke

Trimethylamine-n-oxide is a by-product of the intestinal microflora closely related to a
stroke [76]. In addition, trimethylamine-n-oxide is directly associated with poor treatment
outcomes in ischemic brain injury patients regardless of traditional risk factors [76,77]. A
limited number of studies suggest that trimethylamine-n-oxide plays a protective role but
other studies suggest that trimethylamine-n-oxide is an indicator of disrupted homeostasis
rather than a causative or protective factor [78,79]. There are currently relatively few studies
in the literature on the relationship between trimethylamine-n-oxide and a stroke. A clinical
trial in the Chinese hypertensive population revealed that elevated trimethylamine-n-oxide
levels were associated with an increased risk of a first stroke [80]. In addition, patients
with lowered folic acid and high trimethylamine-n-oxide had the highest frequency of
strokes [80]. In patients after the first stroke, elevated levels of trimethylamine-n-oxide
were associated with the risk of a recurrent stroke. This relationship persisted even af-
ter adjusting for traditional cerebrovascular risk factors and the initial severity of the
stroke. Additionally, the concentration of trimethylamine-n-oxide in the serum is closely
related to the number of pro-inflammatory monocytes [81]. Clinical trials in patients
after a stroke and a transient ischemic attack have shown a significant dysbiosis of the
intestinal microflora. Importantly, stroke and transient ischemic attack patients exhibited
lower plasma trimethylamine-n-oxide concentrations when compared with control cases
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with asymptomatic atherosclerosis. The authors gave an explanation that they studied the
trimethylamine-n-oxide level in patients who had already had a stroke or transient ischemic
attack—the level of trimethylamine-n-oxide being evidently low in comparison with a
former Western investigation—and the management of the stroke or transient ischemic
attack might reduce the trimethylamine-n-oxide levels [36]. A multicenter study provided
evidence that the serum trimethylamine-n-oxide concentration prior to carotid artery stent-
ing was found to be significantly higher in cases exhibiting new injuries on a post-stenting
diffusion-weighted image compared with patients having no new injuries. Following ad-
justments for possible confounding factors, increased blood trimethylamine-n-oxide levels
served as a self-dependent predictor of new lesions on a diffusion-weighted image after
carotid artery stenting. Furthermore, elevated plasma trimethylamine-n-oxide concentra-
tions have been suggested to increase carotid intima-media thickness in patients with risk
for diabetes type 2 regardless of insulin resistance, fatty liver and visceral obesity. When a
lifestyle was sufficiently modified, the carotid intima-media thickness was significantly
reduced in patients experiencing the greatest decrease (> 20%) in trimethylamine-n-oxide
levels [82]. Trimethylamine-n-oxide is responsible for neuronal senescence, synapse dys-
function and reduction of the synaptic plasticity [83]. Trimethylamine-n-oxide may play a
role in Alzheimer’s disease pathology as a factor promoting brain vessel diseases. As a
matter of fact, vascular risk is common in Alzheimer’s disease patients and cerebrovascular
events are frequently associated with Alzheimer’s disease pathology [84].

5. Platelets and Trimethylamine-n-oxide

Studies conducted on animal models and healthy volunteers indicated that trimethylamine-
n-oxide contributes directly to platelet hyper-reactivity and increases the risk of thrombo-
sis [22]. Platelet activation by a number of agonists providing a sub-maximal stimulus was
further potentiated by direct exposure to trimethylamine-n-oxide in a process mediated by
an augmented release of Ca2+ from intracellular stores [22]. The trimethylamine-n-oxide-
mediated effect on platelet thrombosis and hyperactivity potential was also found in a
microbial transplantation investigation with the use of germ-free animals [22]. These data
suggest that therapies targeting trimethylamine-n-oxide could exert a desired antithrom-
botic activity with a risk of bleeding complications not being increased [85,86].

6. Conclusions

We have presented the documented role of the gut microbiome in development and
recovery from an experimental cerebral ischemia and a stroke (Figure 1). While it is well
known that the microbiome influences numerous metabolic and immunological aspects of
a cerebral ischemia, our understanding of how exactly the microbiome modulates brain
function before and after a cerebral ischemia is still limited. Research on the gut-brain
axis focuses mainly on the relationship between the composition of the gut microbiome
and disease progression. Although significant progress has been made over the past
few years, it is clear from the review of available publications that much remains to be
clarified in relation to the association of the intestinal microbiome with a stroke. However,
the main obstacle to the clinical translation of microbiome study is the large variability
between patients’ intestinal microbiomes, which cannot be easily reproduced with animal
models. Nevertheless, microbiome-based treatments can have a huge impact on improving
post-stroke outcomes in the future [34,87,88].

As already shown above, the intestinal microflora is closely related to the activity of
the immune system [15] and the subsequent modulation of neuroinflammation and stroke
outcomes [28,29]. A question arises on the putative mechanisms of microflora’s action.
As already mentioned, microbial metabolites belonging to short chain fatty acids, acetate,
butyrate and propionate affect immune cells through free fatty acid receptors. In this way,
they modulate immune and inflammatory responses. Remarkably, via these receptors short
chain fatty acids may regulate the sympathetic nervous system activity [89]. In addition,
short chain fatty acids have been documented to inhibit histone deacetylases which, among
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other actions, is responsible for the reduced production of the pro-inflammatory tumor
necrosis factor and decreased activity of nuclear factor kappa B (a transcription factor).
Evidently, dysregulation of the intestinal microflora via the mechanisms listed above may
have an influence on immune and inflammatory reactions including those observed within
the central nervous system [89].

Figure 1. Influence of intestinal microflora dysbiosis on the development and outcome of an ischemic stroke. ↑: increase, ↓:
decrease, TMAO: trimethylamine-n-oxide.

The dysregulation of intestinal microbiota is associated with inflammatory bowel dis-
ease [90]. In an experimental model of this disease in mice, an expression of colonic matrix
metalloproteinase-9 was elevated and this led to alterations in the fecal microbiome [91].
There is an association between inflammatory bowel disease and strokes and the gut-
brain-microbiota axis is very likely to be bi-directionally involved in this phenomenon [92].
A possibility thus arises that matrix metalloproteinase 9 may participate in the putative
mechanisms of microflora.

Finally, as research into the role of the gut-brain axis in a stroke is in its infancy,
bringing in broader insights of the stroke field, current rodent models and the areas that are
being explored will generate holistic questions for investigators to focus on in the future.
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