
Hedonic and incentive signals for body weight control

Emil Egecioglu & Karolina P. Skibicka & Caroline Hansson & Mayte Alvarez-Crespo &

P. Anders Friberg & Elisabet Jerlhag & Jörgen A. Engel & Suzanne L. Dickson

Published online: 22 February 2011
# The Author(s) 2011. This article is published with open access at Springerlink.com

Abstract Here we review the emerging neurobiological
understanding of the role of the brain’s reward system in
the regulation of body weight in health and in disease.
Common obesity is characterized by the over-consumption
of palatable/rewarding foods, reflecting an imbalance in the
relative importance of hedonic versus homeostatic signals.
The popular ‘incentive salience theory’ of food reward
recognises not only a hedonic/pleasure component (‘liking’)
but also an incentive motivation component (‘wanting’ or
‘reward-seeking’). Central to the neurobiology of the reward
mechanism is the mesoaccumbal dopamine system that
confers incentive motivation not only for natural rewards
such as food but also by artificial rewards (eg. addictive
drugs). Indeed, this mesoaccumbal dopamine system receives
and integrates information about the incentive (rewarding)
value of foods with information about metabolic status.
Problematic over-eating likely reflects a changing balance in
the control exerted by hypothalamic versus reward circuits
and/or it could reflect an allostatic shift in the hedonic set
point for food reward. Certainly, for obesity to prevail,
metabolic satiety signals such as leptin and insulin fail to

regain control of appetitive brain networks, including those
involved in food reward. On the other hand, metabolic control
could reflect increased signalling by the stomach-derived
orexigenic hormone, ghrelin. We have shown that ghrelin
activates the mesoaccumbal dopamine system and that central
ghrelin signalling is required for reward from both chemical
drugs (eg alcohol) and also from palatable food. Future
therapies for problematic over-eating and obesity may include
drugs that interfere with incentive motivation, such as ghrelin
antagonists.
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1 Introduction: Food reward and obesity

To eat is pleasurable and rewarding. It is not surprising
therefore that brain centres involved in pleasure and reward
are activated when we eat. Fundamental neurobiological
mechanisms involved in food reward are of considerable
importance for understanding how body weight is regulated,
both in health and in disease. A great deal of obesity research
over the past two decades has identified genes and mecha-
nisms that are important for maintaining energy balance.
Although body weight is strongly influenced by our genes, it
is also influenced by lifestyle and social habits, reflecting a
powerful interaction between genes and environment [1].
Food intake, however, is motivated not only by the need to
restore energy homeostasis; palatable, rewarding high fat
and/or sugar foods such as chocolate can motivate intake
despite a state of satiety. Obesity reflects an energy
imbalance in which genetically susceptible individuals
become increasingly vulnerable to an obesogenic environ-
ment. Thus, both the palatability and availability of foods in
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the Western diet play a major role for the development of
this disease [2]. An emerging hypothesis concerns the role of
the brain’s reward system, that responds to the stimulus
provided by rewarding and palatable ‘obesogenic foods’ and
appears to override the homeostatic signals for body weight
control [3]. Indeed, mismatch between the hedonic/reward-
ing value attributed to food and energy needs is characteristic
of eating disorders, including those that lead to obesity
(Fig. 1).

From an evolutionary perspective, it is easy to under-
stand why eating involves hedonic processes. A positive
hedonic experience in association with the consumption of
food helps ensure an adequate supply of nutritionally
diverse foods from our environment. Whereas ‘man the
hunter’ would have benefited from the hedonic experience
of eating, in our modern obesogenic environment, it may be
more advantageous for health and survival to suppress it.

Indeed, this concept has inspired research and development
of anti-obesity drugs that target the reward mechanism.
Such agents would be expected to reduce food intake
through the suppression of food reward, involving direct or
indirect interruption of food-sensitive reward pathways.
Here we review some of the mechanisms and candidate
systems, focusing especially on recent advances in the field.

2 Neurobiological mechanisms of food reward

The popular ‘incentive salience theory’ of reward recog-
nises three distinct neurobiological components: ‘liking’,
‘wanting’ and ‘learning’, phenomena that can be applied as
readily to natural reinforcers such as food as to artificial
reinforcers such as chemical drugs of addiction [4].
‘Liking’ is the hedonic component that reflects the
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Fig. 1 Schematic illustration of the interactions of between homeo-
static/metabolic and hedonic control of food intake in normal weight
and obese individuals. Palatable foods reinforce their consumption by
increasing both the motivational and hedonic components of the
reward process. Whereas homeostatic signals are able to put a brake
on food reinforcement in normal weight individuals, this does not
appear to be the case for the obese. Moreover, increased food intake in
obesity may reflect an allostatic shift in the set-point for food reward,
characterized by either an increased hedonic requirement (the reward
hyperfunction theory) or an increased motivation to compensate for a
hedonic deficit (the reward hypofunction theory). By analogy with

chemical drug addiction, problematic over-eating may commence with
an increased hedonic requirement but with increased exposure, the
hedonic/rewarding value of the food decreases, resulting in an
increased motivation for food (ie eating in the absence of pleasure in
the ‘food addicted’ state). Unfortunately obesity- associated leptin and
insulin resistance likely play an important role to desynchronize these
appetitive brain mechanisms. Recent studies have identified the
central ghrelin signalling system as having an important role for
increasing food reward. Given that obese individuals appear to remain
ghrelin sensitive, future therapies for problematic overeating could
include ghrelin antagonists
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immediate experience or anticipation of pleasure, for
example, from the orosensory stimulation of eating a
pleasurable food [5]. ‘Wanting’ is the reward-seeking (or
incentive motivation) component that results in increased
appetite, food cravings and other behaviours associated
with increased motivation to obtain food [1, 5–7]. While
‘liking’ and ‘wanting’ are closely associated, it is clear from
individuals with chemical drug addiction that motivated
reward-seeking activity can occur in the absence of
pleasure. Although it remains much debated as to whether
there is a sufficient evidence base for food addiction, there
are indications that the ‘wanting’ and ‘liking’ of obesogenic
foods can also be dissociated, for example, in individuals
with binge eating disorders [8, 9].

2.1 The role of dopamine in food reward

A great deal is known about the circuits and mechanisms
underpinning both hedonic and motivational components of
reward, including mechanisms that are common to natural
and artificial rewards. As these circuits and mechanisms are
covered extensively in other reviews [8, 10–12], only the
key elements are described here. The neurotransmitter
‘dopamine’ is of primary importance for incentive motiva-
tion [13], involving especially a key ‘mesoaccumbal’
projection from the ventral tegmental area (VTA) of the
midbrain to the nucleus accumbens (NAcc) [14], but also
via a neuronal network that includes VTA projections to the
prefrontal cortex, amygdala and hypothalamus. Studies
measuring accumbal dopamine release in rodents have
revealed that the mesoaccumbal dopamine pathway is
activated in response to sweet tastants [15] by binging on
sugar [16] and by corn oil [17]. Consistent with these
effects on the dopamine system, such foods also stimulate
motivated behaviour for a food reward [18–21]. In these
studies motivated behaviour for a food reward was
demonstrated using either operant conditioning experiments
in which the animals have to work increasingly hard (eg by
pressing a lever) in order to obtain a food reward or by
studies incorporating the ‘incentive runway’ paradigm, in
which motivated behaviour is reflected in the time taken to
reach a goal box. Operant responding for food can be
increased by drugs that increase accumbal dopamine
signalling (eg amphetamine)[22] and decreased in models
of suppressed dopamine signalling [23]. As reviewed
elsewhere [12, 13], the mesolimbic dopamine system does
not appear to be directly involved in the ‘liking’ of sweet
tastants, although it is involved in the reinforcement of their
consumption; thus, animals will repeat behaviours that
increase accumbal dopamine levels, such as the consump-
tion of food rewards. Dopamine lesions (using 6-OHDA)
that deplete forebrain dopamine do not alter food intake per
se but do alter facial ‘liking’ reactions (facial affective

expressions of taste pleasure) to sweet tastants [24]. In a
model of enhanced dopamine signalling in mice (by genetic
knockdown of a dopamine transporter gene), ‘liking’
reactions to sucrose did not increase, even although such
mice did show increased motivated behaviour for sweet
rewards [25, 26]. Indeed, it has been suggested that taste
may not be required for food reward. Mice that are unable
to process sweet tastes (trpm5 knockout mice) appear to
experience reward from sucrose reflected by an increased
sucrose preference and by the ability of sucrose to activate
the mesoaccumbal system in these mice [27].

2.2 The role of mu-opioid signalling in food reward

The neural networks involved in the ‘liking’ hedonic
component of reward include pathways involved in taste
processing in the brainstem, pons, nucleus accumbens,
ventral pallidum, amygdala and prefrontal cortex [28, 29].
Within these circuits, the mu-opioid system emerges as a
key target for the hedonic experience of feeding [26, 30].
Indeed, mu opioid receptor stimulation of the NAcc has
been shown to increases the intake of (and preference for)
sweet and high fat foods [31, 32]. Indeed, within the
extensive opioid-responsive feeding circuits the NAcc has
been identified as a primary target for food intake that is
associated with “liking” orofacial responses [33]. It has
recently been questioned whether the NAcc mu-opioid
system may not also be of importance for ‘wanting’ [34].
These authors found that suppression of endogenous mu-
opioid in the nucleus accumbens shell using selective
antagonists decreased both ‘liking’ of sucrose (reflected by
fewer positive hedonic orofacial responses) and the incentive
value (‘wanting’) of a food reward, assessed in the incentive
runway paradigm. Consistent with this, it was earlier
reported that a mu-opioid receptor agonist increases moti-
vated behaviour for a food reward, reflected by the elevated
break point for progressive ratio lever pressing [35].

2.3 The role of cannabinoids and orexin in food reward

Suppression of the endogenous cannabinoid (endocannabi-
noid) system resulted in a successful anti-obesity therapy,
rimonabant that unfortunately was withdrawn due to
adverse psychiatric effects. The cannabinoid receptor 1
(CB1) is widely expressed in the CNS, including areas
associated with food intake, food reward and appetitive
behaviour. Various parenchymal targets appear to be
important for the orexigenic effects of the endocannabi-
noids, including several nuclei in the hypothalamus and
hindbrain [36–38] as well as the NAcc (shell) [39]. CB1
signalling also appears to be important for food reward,
both hedonic and incentive motivation components [40]
involving interactions with both dopaminergic and opioid
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mechanisms [41, 42]. Interestingly, endocannabinoid sig-
nalling in the parabrachial nucleus appears to be especially
important for the intake of palatable foods [38].

The central orexin signalling system also figures rather
prominently in motivated behaviour for artificial and natural
rewards (including food), involving a key projection from the
lateral hypothalamus to the VTA, where orexin appears to
directly target the dopamine cells that project to the NAcc
shell [43, 44]. Within the appetitive/reward circuits CB1 and
orexin A receptors colocalize and appear to interact, reflected
by the effects of a subeffective dose of rimonabant to
suppress the effects of centrally administered orexin [45].

3 Palatability and food reward

From a neurobiological perspective, it remains difficult to
identify what makes ‘Luxury Creamy Dark Chocolate Fudge
Cake’ more rewarding to eat than a bowl of piping hot
porridge, so much so that we are prepared to consume a large
portion or two at the end of a satiating meal. How do
rewarding foods trigger neural responses that reinforce their
consumption? Is it the ingredients or even the combination of
ingredients that elicit special visual, olfactory and/or oro-
sensory experiences that make them more palatable and
heighten their rewarding value? Rats, like humans, have a
“sweet tooth” and show preference for sweet and/or fatty
foods. Indeed, a well-recognised and highly reproducible
finding is that animals show dietary hyperphagia (an increased
kcal consumed per day) when switched from normal chow to
an obesogenic diet [46]. The most likely explanation for this
diet-induced hyperphagia is that the obesogenic diet is more
rewarding and invites increased consumption. Conceivably,
increased exposure to such foods could even increase the
‘hedonic set point’ leading to problematic over-consumption.
Indeed, sweet taste alone appears to be sufficient to activate
the reward system, reflected by the effects of high sucrose
solutions to increase motivated behaviour for food in the
operant conditioning model [19, 47]. Moreover there are
indications that the calorie content of sucrose, not the taste,
that is rewarding [27]. Sugar and fat are especially effective
for inducing motivated behaviour for food in rats, especially
in combination [18–21]. On the other hand, properties of the
food such as palatability (i.e. the hedonic evaluation of a
flavour stimulus) enhance pleasure and motivational drives
that induce further consumption, providing positive rein-
forcement (Fig. 1). In the context of chemical drug reward,
reinforcement forms part of the addiction mechanism. For
survival, evolutionary pressures have clearly promoted
reinforcement of the oro-sensory pleasurable experience of
eating in order to help maintain energy balance. The problem
emerges of how to put on the break during times of food
excess.

4 Obesity: an altered hedonic “set point”?

The rewarding value attributed to a given food can be rather
subjective, influenced not only by food palatability and
availability but also by individual genetic/trait/psychosocial
differences. In a recent report, it has even been suggested
that for some individuals, exercise increases the rewarding
value of food and hence, diminishes the impact of exercise
on fat loss [48]. Obese individuals may have allostatic
changes in the hedonic set point for food and hence,
attribute inappropriate rewarding values to foods. For
example, according to the reward hyperfunction model of
obesity, over-consumption could reflect a heightened
responsiveness of the reward circuits to rewarding foods
[49]. This would be rather analogous to the enhanced
responsiveness of the reward circuits to addictive drugs in
susceptible individuals. Supportively, obese individuals
self-report increased pleasure and displayed stronger rein-
forcement from eating high-fat and high-sugar foods than
lean individuals [50, 51]. Alternatively (or perhaps addi-
tionally), it has been suggested that over-eating, like
gambling or substance use disorder, could reflect a reward
deficiency syndrome, the consequences of which would be
to increase motivation to obtain the reward, in this case for
food [52]. Consistent with this, animals fed rewarding diets
(eg high fat feeding or saccharine-enhanced chow) appear
to have reduced sensitivity to psychostimulant rewards,
reflected by an impaired acquisition of an operant response
task reinforced by cocaine [53, 54].

It seems rather likely, as is the case for chemical drug
addiction, that individuals predisposed to obesity may
exhibit increased hedonic drives during early stages of the
disease but, with increased exposure to rewarding foods,
their hedonic value wanes while the motivational drives to
obtain reward increase (ie increased eating to compensate
for an increasing hedonic reward deficit). Supportively,
studies in rodents, including obesity-prone rats, reveal
addiction-like neuro-adaptive responses of the reward circuits
to obesogenic diets, in terms of operant conditioning for
rewarding foods, craving behaviour following cessation of the
diet and self-administered reward (evoked by electrical
stimulation of the lateral hypothalamus) [55–57]. Indeed, rats
self-restrict their ad libitum intake of standard chow during
“abstinence” from palatable/rewarding food [56, 57]. These
adaptations, appear to be associated with suppressed dopa-
mine release/turnover and dopamine receptor signalling/
expression [58–60].

More direct evidence for an altered reward mechanism in
obese individuals is provided from studies examining the
brain response to food intake [61] or visual food cues [62].
Those pathways responding to food intake are likely
involved in the oro-sensory pleasure experience of eating,
whereas those responding to visual food cues are likely
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important for incentive motivation. It has been shown that
individuals that have a tendency to over-eat, show an
increased activity in brain areas associated with reward
(ventral striatum, amygdala, anterior cingulate and premo-
tor cortex) when shown appetizing compared with bland
foods [63]. Obese individuals have a greater striatal
response to visual food cues relative to lean individuals
[64–66]. By contrast, the striatal response to actual food
intake was actually reduced in obese individuals [67].
Collectively, these data suggest that obese individuals differ
from lean individuals in reward processing; conceivably,
the reduced activity of pathways involved in ‘liking’ is
compensated for by a heightened activity of pathways
involved in incentive motivation (‘wanting’). Consistent
with this hypothesis, obese individuals have been shown to
have reduced dopamine receptor D2 availability in the
striatum relative to lean individuals, assessed by positron
emission tomography [68, 69]. A decrease in D2 receptor
availability, in other contexts, such as chemical drug
addiction, has been thought to reflect increased dopamine
release (ie increased activity of pathways involved in
incentive motivation) [68]. Indeed, according to this model
problematic over-eating would be driven by a hypofunction
of the reward mechanism that compensates for a hedonic
reward deficit.

Human genetic association studies also implicate dopa-
mine signalling in obesity; for example associations were
found between body weight and genetic variants in a
dopamine transporter [70], catechol-o-methyl transferase
(COMT) [71], and D2 receptor [72]. Indeed, functional
studies have associated genetic variants of the D2 gene with
increased activity in the dorsal striatum in response to
palatable food [67].

The question remains as to whether long term exposure
to obesogenic foods reprograms our hedonic set point for
food reward. In rodents, diet-induced obesity causes
temporal changes in the mesoaccumbal dopamine system,
reflected by a suppression of basal accumbal dopamine
levels [59], a reduced accumbal dopamine turnover [60] as
well as a reduction in D2 receptors in the striatum [73].
Diet-induced obese animals display a suppressed motivated
behaviour (operant responding) for palatable/rewarding
foods [55] that appears to be independent of the obesity
[60]. Conceivably, such animals receive sufficient reward
from their obesogenic diet and therefore do not need to
display motivated behaviour to increase their food reward.
In obesity-prone animals, increased motivated behaviour
for a palatable food reward only became apparent when the
obesogenic diet has been terminated, when animals typi-
cally express craving behaviour [56].

There are indications that the successful outcome of
Roux-en-Y gastric bypass surgery (RYGB), in terms of
weight loss, may reflect allostatic changes in the hedonic

set point for food. Patients that have undergone this
bariatric surgery not only make healthier food choices but
also have an altered attitude to (and desire for) food [74].
Moreover, recent studies in RYGP rats reveal an altered
food reward phenotype [75, 76]. After surgery, these rats
show a suppressed preference/acceptance of high fat food
together with a restoration of normal “wanting” and
“liking” responses, effects that likely reflect an altered
gut-reward signalling mechanism.

5 Metabolic regulators of food reward

There is much evidence from rodent studies to suggest that
the rewarding effect (and hedonic experience) of a given
food is powerfully modulated by nutritional state and by
metabolic regulators of hunger and satiety [77–81]. Thus,
hungry animals show increased operant responding [80]
and hedonic reactivity [82] to palatable foods. Conversely,
caloric satiety has been shown to reduce positive hedonic
reactions to sweet tastants [82]. Studies in human subjects
have found that a food stimulus that induces reward when
hungry can cause aversion when satiated, involving
changes in neural activity in several brain regions that
include the amygdala and orbitofrontal cortex [83]. Inter-
estingly, nutritional status also impacts upon the rewarding
value of reinforcers other than food, including addictive
drugs [84]. Importantly, while the rewarding value attribut-
ed to a given food appears to reflect internal nutritional
state, it also seems clear that hedonic drives are able to
promote intake independently of nutritional need (i.e. over-
eating palatable/rewarding foods when satiated). Thus,
exposure to highly appetizing food cues can override
satiety signals and promote overeating [85].

5.1 Food reward: regulation by leptin

The discovery that 1 week of treatment of the adipose-
derived hormone, leptin to leptin-deficient obese individuals
is able to alter the response of their reward system (especially
striatum) to visual food cues [86], confronts us with the
realization that metabolic hormones are able to exert a
powerful influence on the way we process visual information
about food from our environment (eg by advertising).
Metabolic status is signalled to the brain, not only by
circulating nutrients but also via a number of circulating
hormones that include those produced by adipose tissue (eg
leptin, adiponectin), by the gut (eg. ghrelin, PYY(3–36),
oxyntomodulin, cholecystokinin) and also by hormones
regulating glucose homeostasis (eg. insulin, glucagon-like
peptide-1). As discussed in a number of recent reviews [87–
89] these circulating signals inform diverse neurobiological
circuits, including especially those involved in energy
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homeostasis in the hypothalamus and brainstem. For many
of these hormones, there is increasing evidence that they also
target diverse brain areas involved in reward, emotion and
cognitive function, including those depicted in Fig. 1. Thus,
for example, it is clear that leptin regulates both hedonic and
motivational components of reward [80, 81, 90, 91]. Central
leptin treatment to rodents suppresses the ability of sucrose
and high fat food to condition a place preference [92, 93]
and also suppresses operant responding for sucrose [79].
There is considerable evidence that the mesoaccumbal
dopamine system appears to be a key target for leptin.
Leptin receptors are present in the VTA, including on
dopaminergic cells in this region and, moreover, direct
injection of leptin into the VTA suppresses food intake, and
leptin has been shown to suppress both accumbal dopamine
release (basal and food-induced) and the electrical activity of
VTA dopamine neurones [94–96]. Interestingly a sub-
population of leptin-responsive VTA neurones have been
shown to project to the central nucleus of the amygdala [97],
an area strongly implicated in the addiction process.
Additional reward targets for leptin include the lateral
hypothalamus; leptin receptors have recently been shown
to be present on discrete populations of cells in this region,
including cells that project both to the VTA and to orexin-
cells in the lateral hypothalamus [98].

An important question to address is whether the reward
system remains responsive to leptin in obesity, given the
key role attributed to leptin resistance in the development of
the disease. Rats fed a higher fat diet for 5 weeks were
resistant to the effects of centrally-administered leptin on
operant responding for a sucrose reward [79]. Interestingly,
low serum leptin levels have not been associated with
binging episodes (ie a behaviour connected to food reward)
in obese patients diagnosed with binge eating disorder [99],
arguing against leptin as an acute regulator of food reward
in obese patients. In such patients, chronic leptin resistance
may be a more important factor, regulating the sensitivity of
the brain’s feeding networks to rewarding foods in the long
term and thereby increasing the likelihood of binge-eating,
rather than having a direct role in individual binge episodes.

5.2 Food reward: regulation by insulin and PYY (3-36)

Of the other circulating anti-obesity satiety/anorexigenic
hormones, several are rather well-studied in the context of
food reward. The work of Diane Figlewicz, amongst others, has
highlighted the importance of insulin in food reward, acting via
similar mechanisms to leptin at the level of the VTA [81]. This
could indicate that leptin and insulin potentiate each other’s
effects at the level of the VTA as shown previously for the
arcuate nucleus [100]. Unfortunately, obesity-associated insu-
lin resistance in rats has also been shown to impact on the
ability of the reward circuits to respond to insulin [79]

(Fig. 1). PYY(3-36), a lower gut hormone, is released in
association with food intake [101], has also been shown to
impact upon key reward circuits in the VTA and ventral
striatum [102]. Interestingly, these fMRI studies have shown
that PYY(3-36) may play an important role in shifting feeding
control from hypothalamic homeostatic circuits when hungry
to the reward circuits when satiated.

For obesity to prevail, it seems clear that metabolic
satiety signals are failing to regain control of appetitive
brain networks, including those involved in food reward.
There remains good reason for hope, however. Altered gut-
brain signalling for appetite control remains a major topic
of investigation, not least because the successful outcome
of gastric bypass surgery (a bariatric weight loss procedure)
appears to include not only a reduction in the amount of
food eaten but also an altered attitude to, and preference for,
healthier food [74]. Indeed, many metabolic/endocrine
signalling systems, especially gut hormones, have been
implicated in the successful outcome.

5.3 Food reward: role of ghrelin

In our research group, we have been especially interested
recently in the possibility that future therapies for obesity
may include a suppression of the central ghrelin signalling
system. Ghrelin is the first identified circulating hormone to
be attributed an orexigenic role. Ghrelin levels increase
preprandially in association with meal initiation [103, 104]
and studies in rodents have shown orexigenic effects after
acute central or peripheral administration [105, 106]. It
seems clear that ghrelin and synthetic ghrelin mimetics
target cells in the hypothalamic arcuate nucleus [107, 108],
notably the orexigenic neuropeptide Y cells in this region
[109] that are likely involved in ghrelin’s orexigenic effects.
The ghrelin receptor, GHS-R1A, is also expressed in
tegmental and mesolimbic areas involved in reward, such

A
C

T
IV

E
 L

E
V

E
R

 P
R

E
S

S
E

S

5 min 120 min

40

80

120

160

0

*

*

IP VEHICLE

IP GHRELIN

Ghrelin to satiated rats

A
C

T
IV

E
 L

E
V

E
R

 P
R

E
S

S
E

S IP VEHICLE

IP JMV 1 mg/kg

IP JMV 3 mg/kg

*

**

5 min 120 min

50

100

150

200

0

250

GHS-R1A antagonist to hungry ratsa b

Fig. 2 Central ghrelin signalling is required for the incentive
motivation (“wanting”) for sweet rewards in rats. Operant responding
(lever-pressing) for a sucrose reward is a increased by peripheral
administration of ghrelin to satiated rats and b decreased by peripheral
administration of a GHS-R1A (ghrelin receptor) antagonist to hungry
rats. Reproduced with permission from Addiction Biology (122)

146 Rev Endocr Metab Disord (2011) 12:141–151



as the VTA and laterodorsal tegmental areas (LDTg) [110,
111]. Recently, we provided the first evidence that ghrelin
targets a key reward circuit, the so-called “cholinergic-
dopaminergic reward link”. This link includes a cholinergic
afferent projection from the LDTg onto the VTA dopamine
cells. We found that central, intra-VTA or intra-LDTg
administration of ghrelin increases accumbal dopamine
release and locomotor activity, effects abolished by nico-
tinic cholinergic receptor blockade [112, 113]. Consistent
with this, GHS-R1A has been shown to be co-localised
both in dopamine (tyrosine-hydroxylase)-containing cells in
the VTA [114] and with cholinergic (choline acetyl
transferase)-containing cells in the LDTg [115]. In addition
to these cholinergic afferents, we also recently found that
pharmacological suppression of glutamatergic signalling
suppresses ghrelin’s effects on the mesoaccumbal dopamine
system [116]. These findings emerged as having direct
relevance for reward from addictive drugs [117, 118] as
well as from palatable food [119, 120]. Intracerebroven-
tricular injection of ghrelin has been shown to stimulate
food intake [121], especially the intake of palatable food
[119]. Ghrelin signalling at the level of the VTA appears to
be important for these feeding effects as intra-VTA
injection of ghrelin increases the intake of palatable food
[119]. Moreover, the effects of peripheral ghrelin on food
intake were blunted by intra-VTA administration of a GHS-
R1A antagonist [114]. More specifically, the cholinergic-
dopaminergic reward link is implicated in ghrelin-induced
feeding; nicotinic blockade suppressed ghrelin-induced and
fasting-induced feeding and also suppresses the ability of
food to condition a place preference [115]. Consistent with
this, peripheral treatment with a GHS-R1A antagonist
decreased preference for palatable food, suppressed the
ability of sweet treats to condition a place preference [119]
and suppressed motivated behaviour for rewarding foods,
both sweet [122] (Fig. 2) and high fat [120] foods.
Collectively these data support the idea that the physiolog-
ical role of ghrelin is to increase the incentive motivation
for natural rewards such as food.

There are indications that these studies in rodents are
relevant in man as systemic ghrelin administration has been
shown to alter the brain response to visual food cues in
relevant reward targets area, including the striatum [123].
Although common obesity is associated with a reduction in
circulating ghrelin levels [124], food intake appears to be
less effective in suppressing ghrelin levels in obese subjects
[125]. The relevance of the peripheral ghrelin signal in
common obesity could also be questioned as brain ghrelin
production may be increased in obese subjects [126] and,
moreover, the ghrelin receptor may not require ghrelin for
activity as it is possesses a high level of constitutive activity
[127]. It remains to be determined whether the central
ghrelin signalling system has a role in the pathophysiology

of obesity and whether ghrelin antagonists or inverse
agonists will provide an effective future therapy, either
alone or in combination with drugs/hormones that interfere
with overlapping signalling mechanisms.

6 Conclusions

From a neurobiological perspective, it is clear that the decision
to eat is very complex, involving genetic, environmental,
psychosocial and physiological processes. To understand
these processes is to regain control of the obesity epidemic
and develop a better relationship with food in our modern
obesogenic lifestyle. The reward system remains a key target
for the development of future therapies, especially those that
alter the rewarding value of food. In this context, the central
ghrelin signalling system emerges as a novel and interesting
therapeutic target as studies in rodents have shown that
ghrelin antagonists suppress the mesocummbal dopamine
system, suppress the intake of (and preference for) palatable
food, suppress the ability of rewarding foods to condition a
place preference and decrease operant responding for reward-
ing foods. Indeed, such compounds may form part of a future
combination therapy that attempts to mimic the altered gut-
brain signalling observed in patients that have undergone
gastric bypass surgery.
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