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SUMMARY
Humanpluripotent stem cells (hPSCs) represent a potentially valuable cell source for applications in cell replacement therapy, drug devel-

opment, and disease modeling. For all these uses, it is necessary to develop reproducible and robust protocols for differentiation into

desired cell types. However, differentiation protocols remain unstable and inefficient, which makes minimizing the differentiation

variance among hPSC lines and obtaining purified terminally differentiated cells extremely time consuming. Here, we report a simple

treatment with three small molecules—SB431542, dorsomorphine, and CHIR99021—that enhanced hPSC differentiation into three

germ layers with a chemically transitional embryoid-body-like state (CTraS). Induction of CTraS reduced the innate differentiation pro-

pensities of hPSCs (even unfavorably differentiated hPSCs) and shifted their differentiation into terminally differentiated cells, particu-

larly neurons. In addition, CTraS induction accelerated in vitro pathological expression concurrently with neuralmaturation. Thus, CTraS

can promote the latent potential of hPSCs for differentiation and potentially expand the utility and applicability of hPSCs.
INTRODUCTION

Human pluripotent stem cells (hPSCs) have been in devel-

opment for applications in cell replacement therapy

(Okano et al., 2013; Tabar and Studer, 2014), drug discovery

(Imamura et al., 2017), and hPSC diseasemodeling (Ichiya-

nagi et al., 2016; Imaizumi et al., 2015; Matsumoto et al.,

2016) using patient-derived induced pluripotent stem cells

(iPSCs). Although the development of reproducible and

robust protocols for the differentiation into desired cell

types will accelerate progress in these fields, differentiation

protocols for several types of neural cells remain unstable

and inefficient to obtain terminally differentiated cells

without any specialized purification techniques (Matsu-

moto et al., 2016). In addition, individual hPSC lines are

predisposed to differentiating into specific cell lineages,

which may be influenced by the source cell type, donor,

and reprogramming method (Kim et al., 2010, 2011;

Osafune et al., 2008; Polo et al., 2010). To overcome this

concern in neural disease modeling, we recently developed

the direct neurosphere (dNS) conversionmethod (Fujimori

et al., 2016; Matsumoto et al., 2016). Previous studies of

early Xenopus development showed that dissociation of

animal cap cells results in neuralization, presumably due

to the loss of extracellular factors (Wilson and Hemmati-

Brivanlou, 1995). BMP-4 and other extracellular signaling

molecules present in the animal cap are known to repress

neural development (Piccolo et al., 1996). Relevant to

this, in our dNS method, PSCs are placed in a low-density

floating culture to exclude all exogenous signals, including
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BMPs, to achieve efficient neural differentiation consistent

with the default mechanism in neural fate specification

exhibited by mouse embryonic stem cells (ESCs) (Nori

et al., 2011), Xenopus, and iPSCs derived from T cells

(Fujimori et al., 2016; Matsumoto et al., 2016).

Although we used a neural differentiation protocol

involving embryoid body (EB) formation to prepare neural

cells from hPSCs for use in pre-clinical studies in spinal

cord injury(Kobayashi et al., 2012; Nori et al., 2011), the

EB-based protocol was time consuming (�2 months to

induce neurospheres) and was unable to efficiently differ-

entiate T cell-derived iPSCs (TiPSCs) (Matsumoto et al.,

2016). Upon implementing EB-based neural differentia-

tion protocols, several differentiation-resistant hPSC lines

exhibited low-level expression of ectodermal markers at

the EB stage and poor neurosphere (NS) formation from

the dissociated EBs (Matsumoto et al., 2016). However,

during the process of lineage-specific differentiation from

PSCs, EB formation has beenwidely used to initiate sponta-

neous differentiation toward the three germ lineages, as it

is a relatively simple method for obtaining lineage-

committed cells in the mesodermal and endodermal

lineages (Ng et al., 2005; Ogawa et al., 2013; Yang et al.,

2008). During the EB formation process in high-density

floating cultures in the presence of serum, non-committed

PSCs receive various signals under 3D-culture conditions.

We hypothesized that the presence of diverse extracellular

signals interferes with efficient neural differentiation and

that the various differentiation propensities of the PSC

clones leads to differences in the cell distribution within
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the EBs. However, EBs provide a highly suitable environ-

ment for the maturation of committed cells.

Compared with cells cultured in 3D in vitro conditions,

monolayer 2D-cultured cells are directly and homoge-

neously affected by exogenous factors in the culture

medium. It has been reported that several small molecules

can enhance and accelerate lineage-specific differentiation

from hPSCs (Li et al., 2013). In the present study, we

focused on the effects of SB431542 (SB), dorsomorphin

(DM), and CHIR99021 (CHIR). SB has been implicated in

efficient neural conversion of human ESCs (hESCs) and

hiPSCs via inhibition of SMAD signaling in combination

with Noggin activity (Chambers et al., 2012). Noggin, an

inhibitor of BMP signaling, can be replaced by DM, which

only enhances neural induction (Di-Gregorio et al., 2007).

CHIR is an inhibitor of glycogen synthase kinase 3 (GSK3)

and activates the canonical Wnt signaling pathway (Ring

et al., 2003). Although the precise mechanism of Wnt

signaling remains controversial, CHIR is often used to drive

the induction of endodermal and/or mesendodermal

specification, especially during early development (Clevers

et al., 2014). Since these small molecules enhance different

forms of germ-layer-specific differentiation through their

effects on each pathway, we hypothesized that induced

differentiation in a 2D culture environment by a defined

combination of chemicals could give rise to cells at the

transitional differentiation state that would be committed

to all three germ layers in an unbiased manner.

In this study, we evaluated the effect of three small

molecules on 2D cultures of undifferentiated hPSCs to

induce intermediate progenitor cells. In addition, by

differentiating these chemically induced cells (chemically

transitional EB-like state [CTraS]) using conventional dif-

ferentiation protocols, we demonstrated the potential of

CTraS cells as core precursor cells for lineage-specific differ-

entiation and as models of disease, particularly neurolog-

ical disorders. In addition, CTraS induction is applicable

to a wide range of hPSCs in that nearly all types of

hPSCs can be induced to differentiate into neuronal cells

without hPSC colony selection. Thus, CTraS could serve

as a core intermediate progenitor to induce the differentia-

tion of hPSCs irrespective of their innate differentiation

propensities.
RESULTS

Evaluation of Small Molecules to Accelerate the

Differentiation of All Three Germ Layers from hPSCs

Optimal concentrations for each SB, DM, and CHIR treat-

ment to hPSCs were determined based on the results of

PSC colony morphologies and the expression of each

germ-layer marker (Figures S1A and S1B). Undifferentiated
1676 Stem Cell Reports j Vol. 9 j 1675–1691 j November 14, 2017
hPSCs were treated with SB, DM, CHIR or a combination of

the three compounds for 5 days on a feeder in the presence

of fibroblast growth factor 2 (FGF-2) as shown in Figure 1A.

These small molecules clearly affected the morphology of

the hPSC colonies, and the diameter of colonies was signif-

icantly smaller than that of the untreated group, especially

the SB + DM + CHIR group (Figures 1B and S1C–S1E).

Combined treatment with all three inhibitors induced a

significant decrease of the expression of pluripotent

markers and an increase in the expression of germ-layer

markers as well as the number of floating EBs (Figures 1C

and 1D). These results indicate that treating hPSCs with

SB, DM, and CHIR can cause the differentiation of these

PSC colonies into EB-like 2D colonies on feeder layers.

To determine the optimal treatment duration with these

small molecules, we next evaluated the hPSC morphology

and the changes in the expression of pluripotent markers

and germ-layer markers (Figures 1E–1G and S1H–S1J) and

concluded that a 5-day treatment with the small molecules

was best suited for inducting the differentiated state of

hPSCs. The other two hPSC lines also showed similar

changes after a 5-day treatment (Figures S2A and S2B). In

addition, the differentiation-promoting effect of these

three agents was more significant at the PSC stage

compared with the later differentiation stage (Figures

S2C–S2F). These results indicate that 5-day administration

of SB, DM, and CHIR efficiently converts undifferentiated

hPSCs into an EB-like state of differentiation, hereafter

referred to as CTraS.

Synergistic Inhibition of the GSK3, TGF-b, and BMP

Signaling Pathways Enhanced the Endodermal,

Mesodermal, and Ectodermal Differentiation of hPSCs

To explore differences in the signaling pathways affected

by CTraS induction, we evaluated the global gene expres-

sion profiles in CTraS PSCs, untreated PSCs, and EBs.

Hierarchical clustering analysis revealed that CTraS PSCs

were grouped more closely with EBs than with untreated

hPSCs (Figure 2A). Based on the hierarchical clustering,

we extracted the gene set with different expression pattern

in CTraS PSCs compared with EB and untreated PSCs.

Pathway analysis using these gene sets demonstrated that

cholesterol biosynthesis and its related pathways were

remarkably promoted in CTraS induction (Figure S3).

Next, we prepared a list of CTraS-regulated genes by select-

ing gene expression with fold changes >2.0. We analyzed

the Gene Ontology (GO) terms of the genes (Table S1)

and grouped them into three major classes; Biological

Process, Molecular Function, and Cellular Component.

We focused on the ‘‘Developmental Process and Differenti-

ation’’ terms within in the ‘‘Biological Process’’ and

‘‘Molecular Function’’ groups to evaluate the effects of

CTraS induction. Although there were no terms related to
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‘‘Developmental Process and Differentiation’’ in the down-

regulated group, 15.2% of genes in the upregulated group

contained development-related terms (Figure 2B). In addi-

tion, most terms in the upregulated group were not related

to lineage specification (Table S1). These results also suggest

that CTraS induction differentiates hPSCs into three germ

layers. Pathway analysis identified multiple signaling

pathways related to CTraS induction, including ‘‘cell

cycle,’’ ‘‘apoptosis modulation and signaling,’’ and ‘‘senes-

cence and autophagy,’’ indicating the enhancing effects on

aging-related signaling at least in certain cell subpopula-

tions (Figure 2C).

To evaluate how individual cells within CTraS-PSC col-

onies were altered by inhibitor treatment, we stained either

colonies or dissociated single cells fromuntreated PSCs and

CTraS PSCs for pluripotent markers and markers for all

three germ layers. The intensities and frequencies of the

pluripotentmarkers TRA-1-60 and SSEA4were significantly

decreased in CTraS colonies (Figures S1F and S1G). In

addition, CTraS PSCs showed significant expression of

markers representing all three germ layers (Figure 2D).

Cell population analysis also revealed that CTraS induction

decreased the number of undifferentiated cells and

increased the number of differentiated cells in all the

germ layers (Figures 2E and 2F). Next, to evaluate the effect

of CTraS on differentiation ability, we formed EBs from

CTraS PSCs and untreated PSCs. Although the morphol-

ogies seemed similar in both CTraS EBs and untreated

EBs, the frequencies of the differentiation markers were

significantly increased in CTraS-EB-derived cells (Figures

2G and 2H). These data indicate that the addition of SB,

DM, and CHIR to hPSCs strongly enhances lineage-specific

differentiation, resulting in the generation of cell clusters

containing endodermal, mesodermal, and ectodermal cells

on the feeder layers.

CTraS Induction Accelerated Subsequent

Differentiation with Lineage Specificity

Next, we evaluated the differentiation propensity of CTraS-

derived cells using dNS, which can differentiate most

hiPSC clones (even those derived from blood cells) (Matsu-
Figure 1. Evaluation of Small Molecules for Enhancing hPSC Diffe
(A) Schematic representation of experiments for screening combinat
(B) Representative images of SB-, DM-, and/or CHIR-treated hPSCs. S
(C) qPCR analysis of the indicated genes in hiPSCs cultured under the in
3 independent experiments; mean ± SEM; *p < 0.05, **p < 0.01; vers
(D) Heatmap summary of the qPCR analysis shown in (C).
(E) Schematic of experiments for the time course of the treatment w
(F) qPCR analysis for the indicated genes in hiPSCs cultured with SB, D
mean ± SEM; *p < 0.05, **p < 0.01; versus untreated; Dunnett’s test
(G) Heatmap summary of the qPCR analysis shown in (F).
hPSC line used: 201B7. See also Figures S1 and S2.
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moto et al., 2016). To adjust the induction periods, control

cells were cultured for an additional 5 days in theNS forma-

tion (Figure 3A).We observed that the number of SOX1+NS

were markedly increased in the CTraS group at day 10 after

NS induction in all the fractions comparedwith the control

cells at day 15 (Figures 3B–3D).

PSC-derived NSs typically contain heterogeneous cell

progeny containing original neural stem cells (NSCs),

including NSCs themselves and their progeny (Hawes

and Pera, 2006). To evaluate the effects of CTraS on the

cell population in NSs, we quantified the expression of

pluripotent markers and markers for all three germ layers.

Although CTraS induction represented the time-depen-

dent upregulation of the markers for all three germ layers,

the expression of mesoderm and endoderm markers were

significantly decreased during NS formation (Figures 3F–

3G, S4A, and S4B). In addition, NSs from CTraS PSCs at

day 10 significantly increased the expression of the neural

marker TUBB3, and also expressed bIII-TUBULIN in the

protein level (Figures 3E and 3F). A cell population analysis

also clarified that the ratio of cells committed to the

ectodermal lineage was apparently increased in CTraS-

derived NSs at all time points measured (Figure S4C). By

immunocytochemical analysis of formed NSs using repre-

sentative markers in the anteroposterior (A-P) axis and

dorsoventral (D-V) axis, we clarified that the cell popula-

tion constituting CTraS NSs retained the region specificity

on the dorsal side around the midbrain/hindbrain without

significant difference from untreated NSs (Figure 3H).

To explore the detailed differences in neural differentia-

tion between CTraS PSCs and untreated PSCs, we evaluated

the global transcriptional profiles inNSs derived from these

cells. Principal component analysis demonstrated that the

gene expression patterns of NSs were significantly affected

by CTraS induction (Figure 3I). GO analysis showed that in

the category of ‘‘Developmental Process and Differentia-

tion,’’ most of the extracted GO terms in the CTraS upregu-

lated group were related to neural lineage, while those in

the CTraS downregulated group were related to other

lineages (Figures 3J, 3K, and S4D). In addition, in the ‘‘Bio-

logical Process and Molecular Function’’ category, the top
rentiation
ions of hPSC differentiation enhancers.
cale bars, 200 mm.
dicated conditions for 5 days compared with 36-day EB cultures (n =
us untreated; Dunnett’s test).

ith the three small molecules (SB, DM, and CHIR).
M, and CHIR for the indicated days (n = 3 independent experiments;
).
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20GO terms associated with CTraS upregulation contained

18 development-related terms, one-third of which were

related to neural development (Figure 3K). These data sup-

port our cell population analysis data and strongly suggest

that escape from pluripotency via CTraS induction not

only accelerates subsequent differentiation but also en-

hances the lineage-specific differentiation depending on

the surrounding environment.

Efficient Generation of Functional Neurons Using

Direct Neurosphere Conversion via CTraS

Wenext examinedwhether CTraSNSs enhanced the termi-

nal differentiation of neural cells (Figure 4A). After 13 days,

differentiated cells from CTraS NSs showed increased

expression of various neuronal and astrocyte markers and

downregulated levels of NSCmarkers, pluripotentmarkers,

mesoderm markers, and endoderm markers, while the

expression of cortical neuron markers showed no signifi-

cant difference between CTraS neurons and untreated

neurons (Figures 4B, S5A, and S5B). Immunocytochemical

analysis also revealed that differentiated CTraS NSs were

mostly terminal differentiated cells, meanwhile those of

untreated NSs were mostly NSCs with high proliferation

potency (Figures 4C–4F and S5C–S5E). In addition, differ-

entiation efficiency into astrocytes, which required

differentiation and maturation at the NS stage, was also

promoted by CTraS induction (Figures S5F–S5H). These

data indicate that NSs derived from CTraS PSCs were

rapidly differentiated into neuron and glia, resembling

those found in the relatively posterior region between the

midbrain and hindbrain and that the differentiated cell

population had few residual stem cells.

We next sought to evaluate maturation of neural cells

using the mature neuronal marker SYNAPSIN1 (Valtorta

et al., 2011). Immunocytochemical analysis revealed that

the number of SYNAPSIN1+ puncta on neurons was signif-

icantly increased in CTraS-NS-derived neurons (Figures 4G
Figure 2. Synergistic Inhibition of the GSK3, TGF-b, and BMP Sign
(A) Hierarchical clustering analysis of the global gene expression pro
(B) Gene Ontology analysis of transcripts that were up- and downregu
PSCs (a fold change difference of ±2.0).
(C) Top 20 pathways associated with the genes that were differentia
(a fold change difference of ±2.0). hPSC lines used, KA11 and eKA3.
(D) Immunostaining of single-cell dissociated untreated PSCs and SB +
Scale bars, 100 mm.
(E and F) Cell population and analysis using single-cell dissociated un
independent experiments; mean ± SEM; **p < 0.01; Student’s t test)
(G) Immunocytochemistry for the in vitro germ-layer assay and a repre
bars, 200 mm.
(H) Relative intensity of the indicated tridermal lineage markers i
experiments; mean ± SEM; **p < 0.01; Student’s t test). hPSC lines u
See also Figures S2 and S3.
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and 4H). Moreover, electrophysiological analysis using a

microelectrode array (MEA) recording system demon-

strated that CTraS-NS-derived neurons showed frequent

spontaneous firing at 20 per day (Figures 4I–4K) while

control cells never exhibited this activity. These data indi-

cated that dNS-based neuronal differentiation protocols

via CTraS (CTraS-dNS; CdNS) can efficiently accelerate

neuronal differentiation into mature functional neurons.

Neural Induction from Differentiation-Resistant ESC

Lines and 30 Newly Established TiPSC Lines via CTraS

We sought to determine whether CTraS induction would

improve the efficiency of neural differentiation of differen-

tiation-resistant PSC clones. We evaluated four ESC lines

(KhES 2–5), which exhibit insufficient neural differentia-

tion via dNS. Using the CTraS induction protocol shown

in Figure 5A, all four KhESC lines presented significantly

increased expression of the markers of all three germ layers

(Figure 5B). Although their differentiation patterns were

slightly maintained in EBs even after CTraS induction,

this treatment clearly reduced the differences among all

four KhESC lines (Figures 5C and 5D) and accelerated their

differentiation into all three germ layers (Figures 5C and

5E).

Then, to evaluate the effect of CTraS on NS formation

and the subsequent neural differentiation of each KhESC

line, we applied CdNS. Although all four KhESC lines tested

showed poor NS formation and neural differentiation,

CdNS significantly increased the number of NSs and

showed highly efficient neural differentiation in 23 cul-

tures from hPSCs (Figures 5F–5J). Immunocytochemical

analysis revealed that the number of SYNAPSIN1+ puncta

was also significantly increased in neurons derived from

CTraS NSs in all four KhESC lines (Figure 5K).

Next, we examined whether CTraS induction could

improve the propensity for diverse differentiation of iPSC

clones. Using Sendai virus, we established TiPSC clones
aling Pathways Enhanced the Differentiation State of the hPSCs
files of untreated PSCs, CTraS PSCs, and EBs.
lated in CTraS PSCs compared with the transcript levels in untreated

lly expressed in CTraS PSCs compared with those in untreated PSCs

DM + CHIR-treated PSCs for the indicated tridermal lineage markers.

treated PSCs and CTraS PSCs stained for the indicated markers (n = 3
. Intensity of markers (E) and numbers of cells (F) are shown.
sentative image of EBs derived from untreated and CTraS PSCs. Scale

n EBs induced from untreated or CTraS PSCs (n = 3 independent
sed: 201B7, WD39, and KhES1.
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from T cells obtained from a healthy donor. We randomly

picked 30 independent colonies with typical hiPSC mor-

phologies (SeV-TiPSC 1–30; 30 cell lines total). These clones

were expanded and differentiated into neurons via NSCs

using the CdNS protocol as shown in Figure 6A. Twenty-

three days after neural differentiation, bIII-TUBULIN+ neu-

rons were observed in nine SeV-TiPSC clones differentiated

without CTraS induction. In contrast, 28 clones gave rise to

bIII-TUBULIN+ neurons via CTraS induction over the same

period (Figures 6B and 6C). The percentage of bIII-

TUBULIN+ neurons apparently increased because of CTraS

induction (Figure 6C). The number of SYNAPSIN1+ puncta

was significantly higher in neurons derived fromCTraSNSs

in all the SeV-TiPSC lines (Figure 6D). These data indicate

that most of the hiPSC clones efficiently differentiated

into neurons following treatment by CdNS even without

stringent clone selection.

CTraS Induction Accelerated Disease-Specific

Phenotypes in a Model of Neurodegenerative Disease

We examined whether CTraS induction could accelerate

in vitro aging to efficiently detect phenotypes associated

with a late-onset neurodegenerative disease model.We first

used iPSC clones derived from a patient with autosomal

recessive juvenile Parkinson’s disease (PD) due to the loss

of PARK2 activity. Since midbrain dopaminergic neurons

(mDANs) are selectively damaged in PD, we first modified

the CdNS protocol to provide the regional identity around

the midbrain (CdNS-MD) (Figure 7A) using Sonic Hedge-

hog (SHH) and FGF-8 (Gale and Li, 2008). qPCR and immu-

nocytochemical analysis showed increased expression of

mDAN markers/populations in both NSs and neurons

induced by CdNS-MD compared with the original unbi-
Figure 3. hPSCs Were Rapidly Differentiated toward the Neural C
(A) Overview of the culture protocol in this experiment.
(B–D) Sphere formation analysis of NSs derived from untreated PSCs an
and size (C), and total number (D) of the NSs were analyzed on the indi
Dunnett’s test). Scale bar, 400 mm.
(E) Representative images of NSs at day 10 derived from CTraS PSCs w
(F) qPCR analysis of the indicated markers in untreated-PSC- and CTr
**p < 0.01; Dunnett’s test).
(G) Fold change in the endoderm and mesoderm gene expression leve
experiments; mean ± SEM; **p < 0.01; Student’s t test).
(H) Immunocytochemical analysis of NSs for A-P and D-V markers. T
the percentage of total neurospheres (n = 3 independent experiment
and KhES1.
(I) Comparison of global gene expression profiles of untreated PSCs
analysis of the gene expression data. Brown, untreated PSCs; red, CTr
(J) GO analysis of transcripts that were up- and downregulated in CTr
change difference of ±2.0).
(K) Top 20 GO terms associated with the upregulated genes in CTraS
ference of ±2.0). Red, developmental process and differentiation; gre
See also Figure S4.
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ased CdNS protocol (Figures S6A–S6D). Although both

CdNS-MD- and CdNS-derived NSs differentiated into bIII-

TUBULIN+ neurons at a similar frequency by day 30, the

number of TH+ dopaminergic neurons was increased

among the CdNS-MD-derived cells (Figures 7B and 7C).

Before the pathological analysis, we confirmed that the

iPSC lines used for the analysis showed similar differentia-

tion efficiency in NS formation and mDAN induction by

CdNS-MD (Figures S6E and S6F).

To detect PARK2-specific mitochondrial phenotypes, we

treated mDANs derived via CTraS with carbonyl cyanide

m-chlorophenylhydrazone (CCCP), which triggers mi-

tophagy by disrupting the mitochondrial membrane

potential (Fujimori et al., 2016; Imaizumi et al., 2012; Mat-

sumoto et al., 2016). Although PARK2 neurons at day 30

did not show an accumulation of impaired mitochondria

in neurons without CTraS (Figures 7D and 7E), the mDANs

induced via CTraS clearly demonstrated PARK2-specific

phenotype by day 30 (Figures 7D and 7E) accompanied

by a significant decrease of the number of mDANs (Fig-

ure 7F). The observed increase in reactive oxygen species

production (Fujimori et al., 2016; Matsumoto et al., 2016)

only manifested in PARK2 mDANs induced via CTraS (Fig-

ures 7G and 7H). Immunocytochemical analysis demon-

strated pa-synuclein aggregation (Athauda and Foltynie,

2015) in the neuronal cytoplasm of PARK2-PA cells at day

40 that were derived from the CdNS-MD method (Figures

7I and 7J) with the breakdown of established neurites (Fig-

ure 7K). Cell viability analysis using MTT showed a signifi-

cant decrease of viable PARK2 neurons derived from CTraS

after 40 days (Figure 7L). We also observed a significant

increase in condensed nuclei that expressed cleaved cas-

pase-3 in iPSC neurons from the PD patient compared
ell Lineage via CTraS Induction

d CTraS PSCs; SOX1 expression (B), relationship between the number
cated day (n = 3 independent experiments; mean ± SEM; **p < 0.01;

ith antibodies targeting the indicated markers. Scale bar, 200 mm.
aS-PSC-derived NSs (n = 3 independent experiments; mean ± SEM;

ls of untreated-PSC- and CTraS-PSC-derived NSs (n = 3 independent

he frequency of NSs containing immunopositive cells is shown as
s, mean ± SEM). Scale bar, 100 mm. hPSC lines used: 201B7, WD39,

, CTraS PSCs, untreated NSs, and CTraS NSs. Principal component
aS PSCs; blue, untreated NSs; orange, CTraS NSs.
aS NSs compared with the transcript levels in untreated NSs (a fold

NSs compared with the levels in untreated NSs (a fold change dif-
en, neural lineage differentiation. hPSC lines used: KA11 and eKA3.
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with those from a healthy donor, especially among TH+

dopaminergic neurons (Figure 7M), indicating that

PARK2 dopaminergic neurons are more prone to activating

cell death programming upon CTraS. Such promotion of

in vitro pathology via CTraS was also confirmed in familial

amyotrophic lateral sclerosis (ALS) models carrying

TARDBP mutations; the neurite swellings and the reduc-

tion of cell viability were reproduced with a shorter culture

period by CTraS induction (Figure S7). These data clearly

indicate that CTraS induction efficiently accelerates

in vitro aging to detect phenotypes from early to terminal

stage in neurological disease models.
DISCUSSION

In the present study, we have shown that treatment with

three small molecules, SB, DM, and CHIR, effectively

enhanced the differentiation of hPSCs and changed their

state toward a chemically transitional EB-like state, which

we have designatedCTraS. Interestingly, hPSC-derived cells

with CTraS induction differentiated into their respective

progenies significantly faster than those without CTraS in-

duction. Using this approach, we demonstrate two advan-

tages of CTraS induction in hiPSC generation and disease

modeling. First, stringent colony selection of newly gener-

ated PSC clones is not required to eliminate clones that are

resistant to differentiation using conventional protocols.

Second, CTraS induction accelerated in vitro neural matura-

tion and progressive cellular phenotypes in models of

neurodegenerative diseases, including PD and ALS. In a

previous study, more than 100 days of monolayer differen-

tiation were required to detect an apparent phenotype
Figure 4. Efficient Generation of Functional Neurons Using Direc
(A) Overview of the culture protocol in this experiment.
(B) Heatmap results derived from the qPCR analysis depicting the rel
(201B7)-derived NSCs as described previously (Nori et al., 2011).
(C) Representative images of terminally differentiated derivatives of
markers. Scale bar, 100 mm.
(D) Neural differentiation analysis quantifying the percentage of bIII-
**p < 0.01; Student’s t test).
(E) Residual neural stem cell analysis quantifying the percentage of SO
Student’s t test).
(F) Cell population analysis of terminally differentiated derivatives o
bar, 50 mm.
(G) SYNAPSIN1 expressions in CTraS and untreated neurons. Scale ba
(H) Neuronal maturation analysis indicated by the number of SYN
(n = 3 independent experiments; mean ± SEM; **p < 0.01; Student’s
(I) Representative image of cultured neurons on the 64-electrode arr
(J and K) Electrophysiological analysis of neurons derived from derive
recording system (n = 3 independent experiments; mean ± SEM; *p <
hPSC lines used: 201B7, WD39, and KhES1. See also Figure S5.
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among neurons derived from disease-specific hiPSCs (Imai-

zumi et al., 2012; Ohta et al., 2015). By contrast, our

method recapitulates several aspects of PD from early to

terminal stage after only 30–40 days of culture (Figures

7D–7M). These results suggest that CTraS induction reca-

pitulates aging phenotypes within a shorter period without

requiring exogenous factors such as progerin expression

and RanBP17 knockdown (Mertens et al., 2015; Miller

et al., 2013).

The small molecules we used for CTraS induction have

been used in various differentiation protocols (Li et al.,

2013). Some researchers have reported the efficacy of the

combination of SB, DM, CHIR and/or the other chemicals

with the same target pathways to achieve lineage-specific

differentiation from PSCs (Chambers et al., 2012; Kriks

et al., 2011; Li et al., 2011; Lian et al., 2012). However, these

reports referred to their effects on particular lineages, espe-

cially in the efficiency of lineage commitment, and there

have been few observations regarding the characteristics

of the differentiated cells and the other lineages. The out-

comes of the SB + DM + CHIR treatment observed in our

study are significantly different from these reports. Induced

differentiation of hPSCs in a 2D culture using SB + DM +

CHIR gives rise to cells at the transitional differentiation

state that are committed to all three germ layers, which

minimizes the differentiation bias. Based on a global gene

expression analysis, the top ten pathways upregulated by

CTraS included ‘‘cell cycle,’’ ‘‘apoptosis modulation and

signaling,’’ and ‘‘senescence and autophagy,’’ indicating

that CTraS augments cellular aging in addition to promot-

ing unbiased differentiation. At present, we cannot exclude

the possibility that the enrichment of these pathways indi-

cates the increase of apoptosis due to the addition of
t Neurosphere Conversion via CTraS

ative gene expression levels of the indicated markers. hNSC, hiPSC

NSs via CTraS PSCs or not with antibodies targeting the indicated

TUBULIN+MAP2+ cells (n = 3 independent experiments; mean ± SEM;

X1+ cells (n = 3 independent experiments; mean ± SEM; **p < 0.01;

f untreated PSCs and CTraS PSCs using dNS-based protocols. Scale

r, 100 mm.
APSIN1+ puncta within bIII-TUBULIN+ neuronal cells at day 23
t test).
ay on day 23. Scale bar, 100 mm.
d from NSs via CTraS-PSC or not using a microelectrode array (MEA)
0.05, **p < 0.01; Student’s t test).
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(legend continued on next page)
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exogenous factors. In addition to this concern, progress in

the study regarding the mechanism of aging acceleration

by CTraS is expected in the future. As one of the molecular

biological characteristics of CTraS PSCs, enhanced choles-

terol biosynthesis and the mevalonate pathway have

been identified. In recent studies, Okamoto-Uchida and

colleagues showed that the mevalonate pathway is essen-

tial in primitive streak formation using mouse ESCs (Oka-

moto-Uchida et al., 2016), suggesting the association

with the effect of CTraS in terms of differentiation promo-

tion in the PSC stage. From the accumulation of such find-

ings, it is expected that future studies will uncover the

whole mechanism of CTraS.

Wnt/b-catenin signaling is known to maintain the bal-

ance of self-renewal and differentiation in PSCs in a

context-dependent fashion. An imbalance of this activity,

such as dysfunction of the transcriptional network under-

lying pluripotency, promotes differentiation (Abu-Remai-

leh et al., 2010; Davidson et al., 2012). In addition, several

recent studies have reported that Wnt signaling regulates

aging in various tissues and stem cells (Chen and Do,

2012; Fujimaki et al., 2015; Naito et al., 2012). In our cul-

ture protocol described here, CHIR, which functions as a

Wnt activator via GSK-3b inhibition, was used during

both the CTraS and NS induction periods. It is possible

that activated Wnt signaling influences both terminal dif-

ferentiation and aging, which may accelerate pathological

expression in vitro, in the differentiated cells.

Although the detailed molecular mechanisms of CTraS

induction via SB + DM + CHIR remain unclear, our results

suggest the usefulness of CTraS induction as a general

technology for hPSC differentiation. On the basis of our

findings, the expansion of CTraS application to the

feeder-free culture system without serum replacement in

the future is expected to further increase its usefulness.

This systemmay thus contribute to new insights in disease

modeling, drug screening, and regenerativemedicine using

PSCs.
(C) Representative image of EBs and immunocytochemistry based on
200 mm.
(D) Heatmap results derived from the fluorescence intensity analysi
markers. The fluorescence intensity levels were normalized to the me
(E) Fluorescence intensities of the indicated tridermal lineage marker
(F) Schematic representation of dNS-based neuronal differentiation p
(G) SYNAPSIN1 and MAP2 expressions in CTraS and untreated human
(H) Sphere formation analysis of NSs derived from KhESC lines as reflec
indicated methods (n = 3 independent experiments; mean ± SEM; **
(I) Immunostaining of KhESC-derived neurons with antibodies target
(J and K) Neuronal differentiation and maturation analysis as quant
number of SYNAPSIN1+ puncta in bIII-TUBULIN+ neuronal cells (K) (n
Student’s t test).
hPSC cells used: KhES1, KhES2, KhES3, KhES4, and KhES5.
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EXPERIMENTAL PROCEDURES

Culture of Undifferentiated ESCs and iPSCs
The human ESC lines KhES1, KhES2, KhES3, KhES4, and KhES5,

the control human iPSC lines 201B7, WD39, KA11, KA23, and

eKA3, and the PARK2 iPSC lines PB2, PB18, and PB20were cultured

onmitomycin C-treated SNLmurine fibroblast feeder cells in stan-

dard hESC medium (DMEM/F12, Sigma-Aldrich) containing 20%

KnockOut serum replacement (KSR) (Life Technologies), 0.1 mM

non-essential amino acids (Sigma-Aldrich), 0.1 mM 2-mercaptoe-

thanol (Sigma-Aldrich), and 4 ng/mL FGF-2 (PeproTech) in an

atmosphere containing 3% CO2. hESCs were used in accordance

with the guidelines regarding the utilization of hESCs with

approval from the Ministry of Education, Culture, Sports, Science,

and Technology (MEXT) of Japan and the Keio University School

of Medicine Ethics Committee. All experimental procedures

involving iPSCs derived from patients were approved by the Keio

University School of Medicine Ethics Committee (approval no.

20080016).

Isolation of Human T Cells and Generation of TiPSCs
Peripheral bloodmononuclear cells (PBMCs) were obtained from a

healthy donor (race, Japanese; sex, male; age, 26 years) by centri-

fuging heparinized blood over a Ficoll-Paque PREMIUM gradient

(GE Healthcare) according to the manufacturer’s instructions.

CD3-positive cells were selected using a fluorescently conjugated

anti-CD3 mAb (BD Pharmingen). PBMCs and cells subjected to

fluorescence-activated cell sorting were seeded on a plate coated

with an anti-CD3 mAb and cultured at 37�C in 5% CO2 in

GT-T502 medium (KOHJIN BIO) containing 175 JRU/mL rIL-2.

After 5 days of culture, activated PBMCs and activated T cells

were transferred to a 96-well plate coated with an anti-CD3 mAb

at a density of 1.53 103 cells/well and incubated for an additional

24 hr. Thereafter, a solution containing SeV vectors (CytoTune-iPS;

ID pharma) was added to the wells. At 24 hr post infection, theme-

dium was replaced with fresh GT-T502 medium. At 48 hr post

infection, the cells were collected and transferred to a 96-well plate

containing mitomycin C-inactivated SNL feeder cells. After

an additional 24 hr, the medium was replaced with hiPSC

medium, which was changed every other day until colonies were

selected. The generated hiPSCs were maintained on mitomycin
the in vitro three germ-layer assay using KhESC lines. Scale bar,

s depicting the relative protein expression levels of the indicated
an level of each marker in KhES1 cells.
s in differentiated EBs induced from untreated PSCs and CTraS PSCs.
rotocols via CTraS (CTraS-dNS; CdNS) and experimental scheme.
ES-derived neurons. Scale bar, 200 mm.
ted by the quantification of the number and size of the NSs using the
p < 0.01; Student’s t test).
ing the indicated markers. Scale bar, 100 mm.
ified by the percentage of bIII-TUBULIN+MAP2+ cells (J) and the
= 3 independent experiments; mean ± SEM; *p < 0.05, **p < 0.01;
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C-inactivated SNL feeder cells in hiPSC medium. Healthy donor

TiPSC lines (total 30 lines; SeV-TiPSC 1–30) were cultured, and

cells at low passage numbers (between 2 and 5) were used for

analysis.
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