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For megavoltage photon radiation, the fundamental dosimetry characteristics of 
Gafchromic EBT3 film were determined in 60Co gamma ray beam with addition of 
experimental and Monte Carlo (MC)-simulated energy dependence of the film for 
6 MV photon beam and 6 MeV, 9 MeV, 12 MeV, and 16 MeV electron beams in 
water phantom. For the film read-out, two phase correction of scanner sensitivity 
was applied: a matrix correction for scanning area and dose-dependent correction 
by iterative procedure. With these corrections, the uniformity of response can be 
improved to be within ± 50 pixel values (PVs). To improve the read-out accuracy, a 
procedure with flipped film orientations was established. With the method, scanner 
uniformity can be improved further and dust particles, scratches and/or dirt on scan-
ner glass can be detected and eliminated. Responses from red and green channels 
were averaged for read-out, which decreased the effect of noise present in values 
from separate channels. Since the signal level with the blue channel is considerably 
lower than with other channels, the signal variation due to different perturbation 
effects increases the noise level so that the blue channel is not recommended to be 
used for dose determination. However, the blue channel can be used for the detec-
tion of emulsion thickness variations for film quality evaluations with unexposed 
films. With electron beams ranging from 6 MeV to 16 MeV and at reference mea-
surement conditions in water, the energy dependence of the EBT3 film is uniform 
within 0.5%, with uncertainties close to 1.6% (k = 2). Including 6 MV photon 
beam and the electron beams mentioned, the energy dependence is within 1.1%. 
No notable differences were found between the experimental and MC-simulated 
responses, indicating negligible change in intrinsic energy dependence of the EBT3 
film for 6 MV photon beam and 6 MeV–16 MeV electron beams. Based on the 
dosimetric characteristics of the EBT3 film, the read-out procedure established, 
the nearly uniform energy dependence found and the estimated uncertainties, the 
EBT3 film was concluded to be a suitable 2D dosimeter for measuring electron 
or mixed photon/electron dose distributions in water phantom. Uncertainties of  
3.7% (k = 2) for absolute and 2.3% (k = 2) for relative dose were estimated.

PACS numbers: 87.53.Bn, 87.55.K-, 87.55.Qr
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I. INTRODUCTION

Electron beams have been the primary treatment modality for skin and superficial malignancies 
throughout the era of modern radiotherapy. Owing to the physical properties (i.e., high dose 
to the surface and first centimeters below the skin surface in the regions of treatment volumes 
and sharp dose falloff at depths larger than the depth of dose maximum (dmax) to spare organs 
at risk), electron beam radiotherapy has stood up against increasing popularity of photon beam 
radiotherapy, which has advanced along with new treatment techniques such as intensity-mod-
ulated radiotherapy (IMRT) and volumetric-modulated arc radiotherapy (VMAT).(1) In addition 
to recent advancements in electron beam radiotherapy (e.g., dynamic electron arc therapy(2)), 
there are also cases where a combination of an electron beam and photon IMRT fields or VMAT 
arcs could produce a better dose distribution for the patient than one beam quality solely.(1,3,4,5) 

The accuracy of dosimetry of electron and combined electron/photon beam dose distributions 
in phantom is challenged, mainly due to required high spatial resolution in areas of large dose 
gradients involved. Moreover, the gradients of electron spectra in phantom and measurements 
in combined photon/electron fields emphasize the low energy dependence of the dosimeter dose 
response. To fulfill the need to measure two-dimensional dose distributions, radiochromic films 
have successfully been applied in external and internal radiotherapy for kilovoltage to megavolt-
age beam energies with various beam types, including photon, electron, and proton beams.(6)

Gafchromic EBT films (Ashland ISP, Wayne, NJ) are the most popular radiochromic films 
and, at the moment, the third generation of the film (EBT3) is available for the radiotherapy 
community. Several studies have been published presenting the dosimetric characteristics of 
the EBT3 film, often comparing to the previous EBT2 model.(7,8,9,10,11,12,13) Many groups have 
also published dosimetry protocols or comprehensive sets of dosimetry procedures based on 
the use of the EBT3 film.(14,15,16,17,18,19,20) It has been widely used for various applications, 
for example verification of IMRT treatment plans,(21) stereotactic radiotherapy,(22,23) in vivo 
dosimetry,(24) and brachytherapy.(25) However, the number of reported results on dosimetric 
characteristics of the EBT3 film in electron beam dosimetry is limited and the studies applying 
the EBT3 film to various purposes in electron beam radiotherapy are almost nonexistent. Even 
though some studies suggest that the performance of the EBT3 film would be comparable to its 
predecessor, EBT2 film,(7,13) it is also known that the structure and/or the atomic composition 
of various used materials between different EBT film generations have varied, and even dur-
ing the product life span.(11,26) Therefore, it is important to evaluate the performance of every 
new EBT film model and always, when changes in the structure and/or atomic composition are 
made, with every beam quality. Sorriaux et al.(10) studied the characteristics of the EBT3 film 
dosimetry system in clinical photon, proton, and electron beams. With single electron beam 
energy included (6 MeV), they achieved total uncertainty within 2% for the calibration curve 
for dose levels above 0.8 Gy. Moylan et al.(24) included 9 MeV electron beam in their study, 
where the EBT3 film was tested in in vivo dosimetry, concentrating on the film size, region of 
interest (ROI) size, and film scanning location dependencies. The combined dosimetric accuracy 
with the 6 MV photon beam was reported to be 2.6%. Farah et al.(27) reported that the accuracy 
of their EBT3 film-based system with the 6 MeV electron beam is comparable to the accuracy 
of the system with the 6 MV photon beam.

In this study, the dosimetric characteristics of the EBT3 film are investigated aiming to the 
applications of the EBT3 film for electron beam and combined photon/electron beam dosimetry. 
In addition to the fundamental dosimetry characteristics of the EBT3 film, the read-out proce-
dure is analyzed and some improvements to the procedure are presented. The study covers the 
electron beam energies 6 MeV, 9 MeV, 12 MeV, and 16 MeV, and presents energy dependence 
evaluation of the EBT3 film based on measurements and full Monte Carlo (MC) simulations. 
For the measurements of absorbed dose to water, uncertainty analysis in electron beams using 
the EBT3 film is presented.
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II. MATERIALS AND METHODS

A.  Radiochromic film, irradiation and scanning procedures
In this study, Gafchromic EBT3 film was used. It consists of two 0.125 mm thick layers of 
polyester foils and 0.030 mm active layer emulsion sandwiched between the polyester layers, 
the total thickness of the film being 0.280 mm. The surface of the film is covered with tiny 
silicone spheres eliminating Newton’s rings artifact in the image. A more thorough description 
of the film structure is presented  by Lewis et al.(14) In this work, total of six boxes of EBT3 
film (size 20 cm × 25 cm (8” × 10”)) from lots A12141101 (exp. Dec. 2013), 01171401 (exp. 
Jan. 2016), and 03031403 (exp. Mar. 2016) were used.

A single film sheet was cut to 5 cm × 6 cm pieces for calibration irradiations and for irradia-
tions to determine various film characteristics. For dose profile measurements, the film was cut 
to 5 cm × 25 cm stripes, and dose distribution in plane was measured with a whole or a half film 
sheet, depending on the field arrangements and film orientation in the phantom. Identification 
marks were added on the edge of all films to record the original position and orientation. The 
films were handled in dimmed room light to minimize the potential unwanted background 
darkening of the film. The 60Co gamma ray beam for the irradiations was from Gammabeam 
X200 (Best Theratronics Ltd., Ottawa, ON, Canada), and the photon and electron beams were 
from Varian Clinac iX (2300C/D) (Varian Medical Systems, Inc., Palo Alto, CA) linear accel-
erator (linac). Gammex 457 Solid Water (Gammex Inc., Middleton, WI) plates were used as 
phantom material for the measurements in the 60Co gamma ray beam, whereas a water phantom 
was used in photon and electron beams. Apart from the films used to study the postirradiation 
darkening, the exposed films were scanned four days after the irradiation to ensure the stabili-
zation of changes in all color channels. Films were scanned three times and an average value 
was determined. The background readings for each film pieces were collected no more than a 
week before irradiation and compared to average value of all film pieces. If the difference was 
more than 0.5% for red or green channel or more than 1% for blue channel, the film piece was 
rejected from the calibration.

All the films were scanned with Epson Perfection V750 Pro (Seiko Epson Corporation, 
Tokyo, Japan) flatbed scanner with an additional top lid for transmission images. Scanning was 
performed with 72 dpi resolution and 48-bit color depth and no color corrections were used. 
The whole scanning area was utilized to maintain fixed X (transversal) and Y (longitudinal) 
positions in the image, the image size thus always being 576 × 720 pixels. All the images were 
saved in tagged image file format (tiff) for subsequent analysis. The film pieces were scanned 
with a film holder, which locates the film in the middle of the scanner plate and blocks the gaps 
for direct light from scanner. When film stripes were used, they were attached together with a 
tape for scanning to avoid small gaps between the films.

The films were analyzed with in-house-built Visual Basic .NET software (Microsoft, 
Redmond, WA). The program reads in 48-bit tiff images from the scanner, analyzes the data 
from different color channels, and performs all required scanner corrections and dose conver-
sions. The software is also able to combine several images to increase accuracy, and it can 
superimpose and compare the measured dose distributions to treatment planning system (TPS)-
generated dose distributions.

B.  Investigation of scanner-dependent characteristics and corrections
The short term repeatability of the scanner was investigated by scanning the same unexposed and 
exposed films several times. Between each scan, 1 min delay was applied. The same procedure 
was repeated with a film exposed to 2 Gy dose. The long-term repeatability was determined by 
scanning a single unexposed film, in which six ROIs and four position marks were added. The 
film was scanned 25 times over a period of four months. The pixel values (PVs) from ROIs 
and the distance between position marks were analyzed.
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Correction for the inhomogeneity of the scanner sensitivity on the whole scanning area was 
determined by scanning 10 unexposed films and calculating the average value for each pixel 
and for each color channel. With this data, a relative correction matrix for selected normaliza-
tion area was quantified. The normalization area, 3 cm × 4 cm, was in the middle of the scanner 
plate and the same area was used for small films. The correction matrix was collected at least 
two times for each film lot. For unexposed film, this matrix correction produces uniform PVs 
for the whole scanning area.

In addition to the matrix correction, an additional dose dependent correction in transversal 
direction was required. This was determined by exposing a film stripe to a constant dose and 
scanning the stripe in different locations on the scanner plate. This additional dose dependent 
correction can be taken into account by applying an iterative method. The films stripes were 
exposed to a uniform dose with a rotating reel in a 60Co gamma ray beam. The film stripe was 
attached inside the reel so that sufficient thickness of buildup and backscatter material was pres-
ent on both sides of the film. The reel rotated over 400 rounds during irradiation, with uniformity 
less than 0.2% (1 SD) in the film. The dose was determined by comparing the irradiated films 
on the reel to the films calibrated in the calibration phantom.

C.  Description of dose determination
The net optical density (OD) for a film was determined as:

  (1)
 

where PVun is the PV for unexposed film and PVex is the PV for the same exposed film. The 
background PVun was measured not more than a week before the irradiation.

The manufacturer of the film has provided guidance to fix the orientation of a film with 
respect to the scanner to avoid the errors in read-out procedure due to film orientation.(28) This 
effect was investigated comprehensively by measuring the film OD in steps of 10° rotation of 
the film. The effect of film orientation was taken into consideration as the procedure for read-
out of a film was improved through repeated read-outs of film in different flipped orientations.

In this work, a combination of red and green channels was used for dose determination. A 
response of the EBT3 film to absorbed dose in water was investigated in 60Co gamma ray beam 
to up to 8 Gy. The films were irradiated in the Gammex 457 Solid Water phantom at depth of 
5 cm. The phantom block was placed in front of a 30 cm × 30 cm × 30 cm PMMA wall water 
phantom to produce full backscatter. Source-to-skin distance (SSD) of 95 cm and field size 
10 cm × 10 cm were used, irradiating one film piece at a time, located in the center of the field. 
The calibration was done for each film lot at least three times. Typically three to five differ-
ent dose levels ranging from 0.25 Gy to 8 Gy were given in each exposure, every calibration, 
including 2 Gy dose level. For 60Co gamma ray beam reference doses were measured by a 
cylindrical Farmer-type NE 2571 (0.69 cm3) ionization chamber (IC) (Nuclear Enterprises Ltd, 
Reading, England), connected to a NE Farmer dosimeter 2570/1. In all measurements with ICs 
in this study, IAEA TRS398 protocol(29) was followed, and calibrations of ICs were traceable 
to standards of SSDL (STUK, Helsinki, Finland) and BIPM.

D.  Investigation of film-dependent characteristics

D.1 Postexposure changes
The stabilization time for development of the EBT 3 film after irradiation was investigated with 
60Co gamma ray beam over a period of 16 days by scanning the same irradiated film several 
times in successive days. To investigate the influence of the scanner light, some of the films 
were scanned only few times during these 16 days.
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D.2 Homogeneity
The homogeneity of film sheets was investigated as a part of the calibration procedure. The 
films were cut to 5 cm × 6 cm pieces and the optical densities were measured from each 16 
pieces prior to irradiation. More than 10 film sheets were used for calibration, resulting to that 
160 film pieces in total were used. The measurement was done with all three color channels at 
35 mm × 40 mm area in the middle of each film piece.

D.3 Dose-rate and energy dependence
The dose-rate dependence was not subject to this study, but according to work by Casanova 
Borca et al.,(21) the EBT3 film can be considered nearly independent on dose-rate. The energy 
dependence of the dose response of the EBT3 film was investigated at reference measurement 
conditions by measurements and MC simulation. The measurements and simulations were 
made for 6 MV photon beam and 6 MeV, 9 MeV, 12 MeV, and 16 MeV electron beams of the 
linac. For each electron beam and 6 MV photon beam, at least two films were exposed to 2 Gy 
dose, minimizing the effect of dose dependence. All irradiations were made at the reference 
depth in a water phantom and the doses were measured with IBA PPC-40 parallel plate IC 
(IBA Dosimetry AB, Sweden) and a cylindrical Farmer-type NE 2571 IC connected to a NE 
Farmer dosimeter 2570/1. Sutherland and Rogers(26) have pointed out the difficulties related to 
MC simulation of the EBT film dose response, emphasized especially at low-energy photons. 
The consistency of simulated and measured responses of the EBT3 film with higher photon 
and electron energies was aimed for in our study.

The MC simulations were performed with the BEAMnrc code package (V4–2.4.0, or 
BEAMnrc 2013), which uses the EGSnrc MC code system that simulates coupled electron–
photon transport. The EGSnrc-based phantom dose calculation is performed with DOSXYZnrc, 
which is also included in the BEAMnrc code package.(30) The geometry model of the linac 
treatment head was based on the abovementioned linac applying proprietary manufacturer 
geometry and materials information. The MC model was based on the earlier work by one of 
the authors.(31,32,33,34) The iterative initial electron beam tuning process and beam parameter 
selection are discussed in Ojala et al.(31,33) The phase space data of the particles collected at 
the SSD 100 cm was used as a source in the dose calculation performed with the DOSXYZnrc 
code. The electron and photon transport cutoff parameters used were ECUT = AE = 0.521 MeV 
and PCUT = AP = 0.01 MeV. Other EGSnrc parameters were the same as in Ojala et al.(34) In 
each DOSXYZnrc simulation, the number of particle histories used was selected so that the 
statistical uncertainty in high-dose voxels was less than 0.3%.

To determine the absorbed-dose energy dependence(26) of the EBT3 film, DOSXYZnrc was 
used to simulate the dose deposition in the active layer of the film and corresponding volume 
replaced with water. A virtual rectilinear water phantom with 40 cm × 40 cm area and 20 cm was 
modeled. For each electron beam energy, the film with exact materials and layer thicknesses was 
modeled at depth-of-dose maximum. For the photon beam, a depth of 5 cm was selected. The 
area of the scoring volume was 5 cm × 5 cm. For the water used in the phantom, H20521ICRU 
was found in the default PEGS4 material library, but the polyester and the active material of the 
film were created by the authors with PEGS4 utility found in the BEAMnrc code package. The 
corresponding cross section data for the materials were applied in MC dose calculations. The 
phase space sources contained the particle data of a 20 cm × 20 cm field for the electron beams 
and 10 cm × 10 cm field for the photon beam. In MC simulation, the elemental compositions 
for materials of the EBT3 film shown in Table 1 were used. 
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III. RESULTS 

A.  Investigation of scanner-dependent characteristics and corrections
Considering the short-term repeatability of the scanner, the deviation with the unexposed film 
from average value was less than 0.2%, but with the exposed film the reading increased by 
0.03% with each successive scan. Based on the long-term repeatability measurements, the PV 
of a film can be determined within 0.2% accuracy.

The maximum deviation of PVs relative to longitudinal positions was 340 PV. The longi-
tudinal deviations of the PVs are small compared to transversal direction and are not dose-
dependent. In transversal direction, the sensitivity does not depend notably on the longitudinal 
position on a scanner plate, whereas the sensitivity in transversal direction is asymmetric and 
in the right side of the image depends on the OD level (i.e., absorbed dose). With unexposed 
film, in transversal direction the matrix correction is in order of 300 PV on the left side of the 
image and decreases to zero in the middle and increases up to 1800 PV towards the right edge. 
Repeatability of the matrix correction is approximately 20 PV. To implement the additional 
dose-dependent transversal correction an iterative procedure is followed. First, the correction 
for the background OD is made and an absorbed dose estimate for each pixel is calculated. In 
the second step, the dose estimates of the first round are used to calculate the dose-dependent 
corrections for each pixel. For higher accuracy measurements, one can avoid the use of the 
right part of the image or the image can be scanned in four different orientations.

Corrected PVs relative to their position on scanner can be represented as follows:
 
 PVx,y, corr = PVx,y + Mx,y + MDx,dose (2)

where PVx,y is the raw measured PV, Mx,y is the matrix correction, and MDx,dose is the dose-
dependent transversal correction. PVx,y, corr is converted to optical density according to Eq. (1).

Transversal dose-dependent correction was verified by comparison to 60Co gamma ray 
beam absorbed dose profiles measured in water by Scanditronix-Wellhöfer RK cylindrical IC 
(Scanditronix Medical AB, Uppsala, Sweden) and the EBT3 film. The experiment was made 
at 2 Gy dose level. The measured profiles are shown in Fig. 1. Inclusion of dose-dependent 
transversal correction produces dose profile comparable to measurement by IC within 0.5%.

Table 1. Elemental composition of the EBT3 film used in MC simulations.(31)

 Composition
 (weight%)
 Layer H Li C O Al

 Polyester 4.2 0.0 62.5 33.3 0.0
 Active Layer 8.8 0.6 51.1 32.8 6.7
 Polyester 4.2 0.0 62.5 33.3 0.0
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B.  Description of dose determination
The variation of OD relative to rotation of the film on scanner plate is presented in Fig. 2. 
Sinusoidal type variation of OD was received at 90° intervals of rotation. The largest change 
occurred at 90° rotation, but with 0° and 180° the results remained constant. The films can 
be scanned either in landscape or in portrait orientation, but this has to be fixed for all scans. 
However the film can be rotated 180° and flipped around with no change of net OD.

As described in by Lewis et al.,(14) the EBT3 film is symmetrical and can be read on both 
sides. The variation of OD relative to the angle of rotation was found to be identical within the 
uncertainty related to the repeatability, if the measurement is performed on either side of the 
film. Exploiting this feature of the EBT3 film, a following enhanced read-out procedure based 
on flipping the film sheet was established (see Fig. 3).

The film sheets are marked for identification, orientation, and superimposition. The film is 
scanned in four different orientations; non-rotated, rotated 180°, flipped non-rotated, and flipped 
and rotated 180°. All four images are corrected with the scanner corrections and converted to 
dose. Then the dose distributions are rotated, mirrored, and superimposed to restore the original 
orientation and images are merged by mean dose.

The measured net OD values as a function of absorbed dose to water is presented in Fig. 4. To 
determine the absorbed dose from the net OD values, a following function was found to produce 
the best fit to the experimental data for all color channels:     

   
  (3)
 

where x is the net OD. The negative OD values must be handled accordingly to set the zero 
level for dose properly and extrapolation for higher doses should be avoided. Also, the dose 
response and the fitting parameters are expected to depend on the film lot used, on the variation 
between individual scanners and changes caused by aging of the film.

Based on the measured and fitted data, an OD-dependent calibration factor for the EBT3 
film is defined as:

  (4)
 

where the Q refers to radiation quality used in calibration.

Fig. 1. The verification of transversal correction of the film scanner. Measured relative dose profiles in 60Co gamma ray 
beam for 10 cm × 10 cm field at depth of 5 cm in a phantom. Blue = IC measurement, Red = EBT3 measurement with the 
matrix correction, and Green = EBT3 measurement with the matrix correction and dose-dependent correction.
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Fig. 2. The relative change of OD in the middle of a film sheet in a rotation point as a function of the angle of rotation. The 
maximum difference is with 90° and 270°. In zero angle position the longer edge of the film sheet is parallel to scanning 
direction. OD value is a mean OD in a circular area of 30 mm in diameter. Blue = blue channel measurement, Green = 
green channel measurement, and Red = red channel measurement.

Fig. 3. Procedure for scanning the EBT3 film image in four different orientations. Only 180° of rotation is made.

Fig. 4. The net OD values for all color channels as a function of the absorbed dose to water in 60Co gamma ray beam (dose 
rate 1.4 Gy/min) with dose levels up to 8 Gy. A linear fit has been applied between data points. Film lot: 01171401 (exp. 
Jan. 2016). Red = red channel measurement, Green = green channel measurement, and Blue = blue channel measurement.
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C.  Investigation of film-dependent characteristics

C.1 Postexposure changes
After relatively fast increase in OD during first two days, the increase in OD becomes slower. 
For a period from four to 16 days, the increase in OD was about 1% (Fig. 5). For practical 
reasons, a four-day delay from irradiation to read-out was fixed for other measurements. In the 
time span from two to four days, the change in OD is less than 0.2%.

C.2 Homogeneity
The background determination was done for 160 film pieces and the maximum variations of 
ODs for all channels were within 2%. For all 50 film pieces used in dose calibration, the maxi-
mum variations of ODs for both red and green channels were within 0.5% and for blue channel 
within 1%. The blue channel response is affected the most on the thickness variation of the film 
emulsion. If the response of a single film piece deviated more than 1% in blue channel response 
from the average value, the film piece was not used for calibration. Only a few pieces had to be 
rejected from the calibration, which implies that the overall homogeneity of the films was very 
good. Maximum difference of these rejected films was 2%. This analysis is based, however, 
on only three different lots and six packages of film. Each film package should be verified 
separately. Based on the experience in this study, the OD of a film sheet varies in a shape of 
longitudinal bands, which are assumed to be due to spreading of emulsion in the film. For this 
reason when stripes of film are used, it is recommended to cut the film in longitudinal direction.

C.3 Energy dependence
The MC-simulated and measured energy dependencies of the EBT3 response at reference 
measurement conditions for 6 MV photon beam and 6 MeV, 9 MeV, 12 MeV, and 16 MeV 
electron beams are presented in Fig. 6. The reference measurement depths for 6 MV photon 
beam and 6 MeV, 9 MeV, 12 MeV, and 16 MeV electron beams were 50 mm, 13 mm, 20 mm, 
29 mm, and 38 mm, respectively. As the results suggest, when normalized to the ratio of the 
value for the water and the EBT3 film for the 6 MV photon beam, all the results for the electron 
beams are within 0.5%. Also, the difference between the experimental and simulated responses 
is negligible, indicating minimal intrinsic energy dependence of the EBT3 film at this energy 
range. The difference in the EBT3 response between 6 MV photon beam and electron beams 
from 6 MeV to 16 MeV is about 1.0%.

Fig. 5. Relative OD as a function of time from exposure to read-out. Irradiation with 60Co gamma ray beam. Time in 
days and OD normalized to OD value at four days. Blue = background (unexposed EBT3 film) and Red = exposed to 
2 Gy absorbed dose.
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D.  Uncertainty budget
The uncertainty evaluation is presented in Table 2 for a situation where the EBT3 film is cali-
brated in a 6 MV photon beam, and measurements are performed in electron beam and where all 
measurements are performed in water filled PMMA phantom. For Step 1, the largest contribution 
to uncertainty comes from implementing the beam quality correction factor of the IC from 60Co 
gamma ray beam to 6 MV photon beam, according to TRS-398 protocol.(29) In Step 2, ± 0.5 mm 
accuracy in positioning of the film in a water phantom was assumed, which can be regarded as 
conservative estimate for reference conditions. This leads to 0.58% (1 SD) uncertainty in dose, 
which is the largest sub-uncertainty in Step 2. For Step 2, the relatively low total uncertainty 0.71% 
(k = 1) was achieved due to low statistical uncertainty and minimal corrections for uniformity 
for scanner on 35 mm × 40 mm area. In actual measurement of electron dose distribution at linac 
beam (Step 3), the main components for the uncertainty are measurement of OD on large area 
film (0.62%, 1 SD) and the positioning of the film in a water phantom (0.58%, 1 SD). For the 
measurement of relative dose distributions in electron beams uncertainty of 2.3% (k = 2) was 
concluded. This included the uncertainty of Step 3 shown in Table 2, added with uncertainty 
contribution of normalization of film result to corresponding area of the IC. 

 

Fig. 6. The response of the EBT3 film for absorbed dose to water as a function of electron beam nominal energy and 
normalized to the response for 6 MV photon beam. Blue = EBT3 measurement and Red = MC simulation. The uncertainty 
of measured absolute dose for 6 MV photon beam is 1.3% (k = 1) and the main contribution of uncertainty comes from kQ 
factor of the IC. The contribution to the uncertainty from the film measurement is 0.5% (k = 1). The statistical uncertainty 
of MC simulations was within 0.3%.

Table 2. The uncertainty budget for the EBT3 film. Absorbed dose level close to 2 Gy corresponding 26000–26500 
PVs. The film calibration in 6 MV photon beam and measurement of electron dose distribution. Resolution 72 dpi.

 Uncertainty
 (k=1, %)
  For the Step Cumulative
 Source of Uncertainty (1 SD) % (1 SD) %

 Step 1. Measurement of absorbed dose to water with IC at  
 SSD 100 cm, 10 cm × 10 cm field at 10 cm depth in water  
 phantom in 6 MV photon beam.  

1.40 -

 Step 2. Calibration of film (OD on area of 35 mm × 40 cm)  
 at SSD 100 cm, 10 cm × 10 cm field at 10 cm depth in  
 water phantom in 6 MV photon beam. 

0.71 1.57

 Step 3. Measurement of absorbed dose to water by the  
 EBT3 film in electron beam. Single PVs on  
 200 mm × 250 mm scanning area.  

1.00 1.86

 Combined expanded uncertainty (k=2) - 3.72
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IV. DISCUSSION

A.  Investigation of scanner-dependent characteristics and corrections
The short-term repeatability of the EPSON Perfection V750 Pro flatbed scanner can be con-
sidered suitable for the EBT3 film dosimetry. The unexposed film is quite insensitive for 
scanner light, but the exposed film showed some sensitivity. If five or less scans are taken for 
each film, a mean value can be used for reading. If more scans are repeated for each film, it is 
recommended to calculate a trend line and interpolate the reading to the first one. All measure-
ments were done successfully with 72 dpi reading accuracy (i.e., 0.3 mm × 0.3 mm pixel size), 
which implies that the spatial resolution of the EBT3 film dosimetry system is sufficient for 
clinical treatment plan verification purposes. From practical point of view, it was noticed that 
some films are slightly bent and a holder was needed to press the corners of the film towards 
the scanner plate.

The inhomogeneity of the scanner sensitivity needed to be corrected to achieve reliable 
results for measured dose distributions. Different methods have been presented for corrections 
by other groups.(35,36) By the two-phase corrections implemented in this work, the homogeneity 
of scanner response can be improved remarkably. However, large area scanners would be ben-
eficial for film scanning, as the uniform scanning area is comparable to EBT3 film size.(35) The 
applied corrections for scanner inhomogeneity account for the largest uncertainty component 
of 0.62% (1 SD) for measurement of absorbed dose distributions. It is assumed that the main 
cause of the inhomogeneous response is due to complicated optic system with mirrors used in 
the plane scanners. It is obvious that the changes in scanner sensitivity are dependent on the 
scanner used and should be determined for each scanner individually.

B.  Description of dose determination
By flipping the film for scanning, the uncertainties related to scanner corrections are smoothed 
and precision is improved by repeated readouts. The method reveals also easily, if the homoge-
neity corrections of the scanner are not adjusted properly. The random errors in PVs related to 
dust on film can be detected and corrected before any smoothing. However, the elimination of 
effects of scratches or permanent dirt on film requires more comprehensive analysis of image 
data. In this work, the responses from red and green channels were averaged, which decreased 
the effect of noise present in values from separate channels. It was observed that the use of 
green and red channels is advantageous, since they are more sensitive than the blue channel. 
However, the response from blue channel can still be used when calculating average values in 
larger areas — for example, background film evaluations.

It was noted that to achieve accuracy level of 2%–4%, each new film lot needs an initial 
and repeated calibrations. Our work confirmed the recommendations by Dreindl et al.(13) that 
recalibration should be performed every three months. The accuracy can be improved, if the 
calibration of the EBT3 film is performed at the same time as the actual measurement. This 
minimizes the effect of scanner long term repeatability, background level of film lot, and possible 
environmental effects of the film storage. For absolute electron beam dose measurements, the 
calibration of the EBT3 can be made in 60Co gamma ray beam, in megavoltage photon beam or 
in megavoltage electron beam. The lowest uncertainty can be achieved if the film is calibrated 
in 6 MV photon or 60Co gamma ray beams (3.7%, k = 2). Close to that uncertainty is achieved, 
if cylindrical IC is used as reference in electron beam and clearly lower accuracy is achieved, 
when plane parallel IC is used. In all the IC measurements, IAEA TRS-398 or other recognized 
international dosimetry protocol is recommended to be used. In the calibrations in this study, in 
most cases the film was irradiated to 2 Gy dose and the reference film was irradiated to same 
dose in order to minimize the nonlinear calibration of the film. A preliminary measurement of 
electron beam energy dependence was made in Gammex 457 Solid Water phantom and a 3% 
difference was noted between MC calculations and measurements with lower electron beam 
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energies. With further investigations, the Solid Water was found nonwater-equivalent, with 
electron beam energies lower than 12 MeV. All measurements after that were made in water 
phantom and excellent agreement was achieved between measurements and MC calculations.

 
C.  Investigation of film-dependent characteristics

C.1 Postexposure changes
The period from irradiation to read-out of the film was investigated and 96 h was concluded 
to be most practical for external dosimetry audits. Between two to four days the change in 
sensitivity is 0.2%. Four-day pre-read period with ± 12 h time tolerance for the read-out time 
was concluded to provide reliable results and to help read-out also in specific cases. Four-day 
pre-read period allows travel or other delays between the irradiation and read-out. Slightly 
lower uncertainty can be achieved if the read-out would be performed in less than ± 6 h time 
tolerance for the read-out time. Shorter, down to 48 h pre-read period can be used with level 
of 0.4% maximum deviation, if ± 0.5–1 h time tolerance for the read-out time is followed.
 
C.2 Homogeneity
The EBT3 film structure is symmetrical and double plastic layers give good rigid form for 
the film. Based on our experience, the maximum variation in sensitivity of a film sheet is less 
than 2%. This is clearly lower value than for the EBT2 film, where up to 5% variations were 
noticed by the authors (based on unpublished results). Some band-shaped sensitivity changes, 
indicated by measurement with the blue channel, were noticed in the EBT3 films. Blue channel 
can be used to control the homogeneity of individual film sheets according to tolerances in use.

C.3 Energy dependence
The energy dependence of the dose response of the EBT3 film was investigated by measurements 
and by MC simulation. In 6 MV photon and electron beams ranging from 6 MeV to 16 MeV 
and at reference measurement conditions, dose response of the EBT3 film was found to be 
uniform within 1.0%, with uncertainties close to 1.58% (k = 2). Change in response from 60Co 
gamma ray beam to 6 MV photon beam is negligible. The nearly uniform energy dependence 
implies that the EBT3 film can be used for measurements of dose distributions in mixed photon 
and electron beams and in measurements where radiation beam quality correction cannot be 
made, with reasonably low contribution of uncertainty due to the energy dependence. These 
results are strictly valid for reference conditions and electron energy spectra present at refer-
ence measurement depth. For further studies, investigation of electron beam responses at larger 
depths should be evaluated. Inaccuracies related to dose dependence of the EBT3 film response 
can be minimized, when similar dose levels are used in calibration and actual measurements, 
when using the EBT3 film.

Sutherland and Rogers(26) have pointed out the difficulties related to MC simulation of the 
EBT film dose response, especially at low-energy photons. They concluded that contribution of 
intrinsic energy dependence (ratio of dose to the sensitive volume and detector reading) cannot 
be simulated by MC methods due to possible changes in emulsion polymerization process of 
EBT film relative to photon energy. They considered this as a possible reason for deviation of 
measured and calculated results at low-energy photons. They also concluded that other source 
causing differences between the published measured and MC-calculated results could be the 
differences of film sheets in different film lots. In our study, no noticeable difference was found 
between the experimental and simulated responses, indicating negligible change in intrinsic 
energy dependence of the EBT3 film for 6 MV photon beam and 6 MeV–16 MeV electron 
beams at reference measurement conditions. 
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D.  Uncertainty budget
The main contribution of uncertainty for measured absorbed dose by the EBT3 film comes 
from inhomogeneity of the scanner sensitivity and the related corrections, especially in the 
dose-dependent correction in transversal direction. In addition to uncertainty of measured 
OD, the notable components of uncertainty in absolute dose measurement in electron beam 
originate from the measured reference dose by IC and positioning of the film in a phantom. 
The film could be calibrated in 6 MV photon beam, and used for measurements of electron or 
mixed photon and electron and photon dose distributions within uncertainty of about 3.7% (k = 
2). For measurements of relative dose distributions, uncertainty of 2.3% (k = 2) is expected.

Compared to measurement of optical sensitivity in single pixels, scoring dose in larger 
area, such as 35 mm × 40 mm, reduces the uncertainty notably. Uncertainty of OD for single 
pixel is 0.7% (1 SD) on scan area of 20 cm × 24 cm (with 72 dpi) and 0.4% (1 SD) for average 
dose on area of 35 mm × 40 mm in the middle of the scan area of the scanner. These results 
are consistent with the results by Sorriaux et al.,(10) where uncertainty of 0.55% (1 SD) was 
concluded for optical density. Uncertainty estimate assumes close to 2 Gy dose level and higher 
uncertainties of OD for lower doses were imminent for scanner used in this study, because the 
same uncertainty in PV was obtained independently of PV level.

 
V. CONCLUSIONS 

Based on the dosimetric characteristics the EBT3 film, the read-out procedure established and 
the estimated uncertainties, the EBT3 film was concluded to be a suitable 2D dosimeter for 
measuring electron or mixed photon/electron dose distributions in a water phantom.
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