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Abstract: D-allulose is a natural rare sugar with important physiological properties that is used
in food, health care items, and even the pharmaceutical industry. In the current study, a novel
D-allulose 3-epimerase gene (Bp-DAE) from the probiotic strain Blautia produca was discovered for
the production and characterization of an enzyme known as Bp-DAE that can epimerize D-fructose
into D-allulose. Bp-DAE was strictly dependent on metals (Mn2+ and Co2+), and the addition of
1 mM of Mn2+ could enhance the half-life of Bp-DAE at 55 ◦C from 60 to 180 min. It exhibited optimal
activity in a pH of 8 and 55 ◦C, and the Km values of Bp-DAE for the different substrates D-fructose
and D-allulose were 235.7 and 150.7 mM, respectively. Bp-DAE was used for the transformation
from 500 g/L D-fructose to 150 g/L D-allulose and exhibited a 30% of conversion yield during
biotransformation. Furthermore, it was possible to employ the food-grade microbial species Bacillus
subtilis for the production of D-allulose using a technique of whole-cell catalysis to circumvent the
laborious process of enzyme purification and to obtain a more stable biocatalyst. This method also
yields a 30% conversion yield.

Keywords: D-allulose 3-epimerase; D-allulose; Blautia produca; probiotics; biochemical characterization;
biotransformation

1. Introduction

Recently, different risk factors such as obesity, hypertension, and diabetes have been
rising quickly around the world. The widespread occurrence of these chronic illnesses
is strongly correlated with the excessive consumption of meals high in simple carbs and
fat [1]. Therefore, in the field of food, nutrition, health care, and pharmacology, calorie-
free and low-calorie sweetener alternatives such as rare sugars are gaining increasing
attention [2]. Monosaccharides and their derivatives, which are infrequent, are referred to
as rare sugars. D-allulose, commonly known as D-psicose belongs to a naturally rare sugar
rather than an artificial sweetener, is one of the most significant rare sugars that has been
the focus of most research. Several years ago, the US of Food and Drug Administration
(FDA) identified it as generally regarded as safe (GRAS) and could be used as a component
of food or food additives products [3,4]. The taste, functionality, and sweetness of D-
allulose are essentially identical to those of sucrose, and it has little caloric content [5].
Furthermore, D-allulose possesses several physiological functions, such as the prevention
of obesity and diabetes [6,7], treatment of hypoglycemia [8,9], metabolism of fat [10,11],
and enhancement of antioxidant activity [12]. Additionally, it has great promise in the field
of food, agriculture, and medicine as well as health and fitness.

Due to its rarity in nature, its large-scale application presents significant challenges
and gains more attention from researchers. The previous studies elaborate that D-allulose
was produced from a chemical method in the 1960s but it featured several unexpected
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drawbacks such as different side effects, grueling purifying procedures, and significant con-
taminations [13,14]. On the contrary, biosynthesis approaches such as enzymatic synthesis,
provide many advantages, including high specificity, simple and convenient purification
steps, and environmentally friendly features [15]. Consequently, biological production has
progressively replaced other methods as the primary way to produce D-allulose [16]. It
is worth our attention that in recent years, many studies have been focused on enzyme-
catalyzed and microbiological methods for synthesis of D-allulose based on the Izumoring
strategy [17]. The Izumoring strategy is an effective method proposed in 2006 for the bio-
production of various kinds of rare hexoses [18] and also involves D-allulose 3-epimerase
(DAE), D-tagatose 3-epimerase (DTE), polyol dehydrogenases, and aldose isomerases [19].
Consequently, D-fructose can be epimerized at the C-3 position to produce D-allulose
by DTEs or DAEs [20]. Due to the substrate specificity, catalytic property, and specific
enzyme activity of D-tagatose epimerase and D-allulose epimerase being different en-
zymes and are named DTE and DAE, respectively [21,22]. However, they are collectively
known as DTE family enzymes, and they are the primary enzymes played a role in the
biosynthesis of D-fructose to D-allulose [16]. The DTE was discovered in 1994 from Pseu-
domonas cichorii ST-24 microbial strain [23]. According to the previous studies, there are
many strains that have been discovered for the production of DTE such as Agrobacterium
tumefaciens [21], Rhodobacter sphaeroides [24], Clostridium cellulolyticum H10 [25], Ruminococ-
cus sp. [26], Clostridium sp. [27], Clostridium bolteae [28], Dorea sp. CAG317 [29], Treponema
primitia ZAS-1 [30], Flavonifractor plautii [31], Arthrobacter globiformis M30 [32], Agrobac-
terium sp. ATCC 31749 [33], Sinorhizobium sp. RSC Adv. [34], Novibacillus thermophilus [35].
Table 1 goes into more detail on the catalytic properties of these DTE family enzymes. The
optimal industrial conditions for D-allulose production are relatively high temperature
and a neutral or slightly acidic environment; while the former can lower the substrate’s
viscosity and make D-fructose easier to convert to D-allulose [36], the latter can decrease
unexpected by-product formations [28]. Hence, low thermal stability is the main obstacle to
the industrial production of D-allulose. Although site-directed mutagenesis as per previous
studies can improve the thermal stability of DTEs [37], fewer studies exhibited that these
mutations can reduce the catalytic activity of the enzyme [36]. According to one study, DTE
extracted from the genes found in the macro-genome resource of the hot water exhibited
high thermostability at 60 ◦C to 70 ◦C [35]. Probiotics are also sources of several DTEs,
including the DTE-CM gene from Christensenella minuta DSM 22607 [20], which is produced
in accordance with food safety regulations.

Table 1. Comparison of the enzymatic properties of previous DTEs and DAEs.

Source of Enzymes Opt.
pH

Opt.
TEMP.
(◦C)

Metal
Depen-
dence

Opt.
Ion

Half-Life
(min)

Opt.
Substrate

Km
b

(mM)

kcat/Km
b

(mM−1

min−1)

Conversion
(%)

Pseudomonas cichorii [23] 7.5 60 No Co2+ NR D-tagatose NR NR 20
Agrobacterium tumefaciens [21] 8.0 50 No Mn2+ 64 (50 ◦C) D-allulose 12 198.4 33

Rhodobacter sphaeroides [24] 9.0 40 No Mn2+ NR D-fructose NR NR 23
Clostridium cellulolyticum [25] 8.0 55 Yes Co2+ 10 (60 ◦C) D-allulose 17.4 186.4 32

Ruminococcus sp. [26] 7.5 60 No Mn2+ 96 (60 ◦C) D-allulose 48 50.5 28
Clostridium sp. [27] 8.0 65 Yes Co2+ 15 (60 ◦C) D-allulose 227.6 141.4 25

Clostridium bolteae [28] 7.0 55 Yes Co2+ 43 (55 ◦C) D-allulose 27.4 106 32
Dorea sp. [29] 6.0 70 Yes Co2+ 30 (60 ◦C) D-allulose 191 412 30

Treponema primitia [30] 8.0 70 Yes Mn2+ 30 (50 ◦C) D-allulose 209.1 144.3 28
Flavonifractor plautii. [31] 7.0 65 Yes Co2+ 130 (60 ◦C) D-allulose 162 156 NR

Arthrobacter globiformis M30 [32] 7.5 70 No Co2+ NR D-allulose 31 182.7 NR
Agrobacterium sp. [33] 7.5–8.0 55–60 Yes Co2+ 75 (55 ◦C) D-allulose NR NR 30
Sinorhizobium sp. [34] 8.0 50 No Mn2+ NR D-tagatose 39.8 118.2 NR

Novibacillus thermophilus
(DAEM) [35] 7.0 80 Yes Co2+ 49 (80 ◦C) D-allulose NR NR 31

Christensenellaceae.minuta [20] 6.0 50 Yes Ni2+ 40 (50 ◦C) D-tagatose 53.8 124 30
Blautia produca a 8.0 55 Yes Mn2+ 60 (55 ◦C) D-allulose 150.7 39.1 30

NR, not reported. a Bp-DAE, the enzyme used in this study. b Determined with D-allulose as substrate.
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Consequently, it is necessary to excavate new enzymes that possess intrinsic proper-
ties according to the industrial demands. Additionally, the screening of sequence-based
metagenomic library can be used to identify relevant DTE family enzymes [20]. Due to
the availability of an abundance of sequence data, it is feasible to discover new DTEs from
safe and little investigated sources and even extreme environments. In this work, one
unique putative DAE (Bp-DAE) from the Blautia produca genome was discovered using
a sequence similarity by blast tool from NCBI. The putative gene of DAE was cloned in
the pANY1 vector, expressed in Escherichia coli BL21 (DE3), then purified. The biochemical
characterization, including optimal temperature, pH, metal ion, thermostability, molecular
mass, and general properties such as substrate specificity and kinetic parameters, was
investigated. By conducting molecular docking with different substrates closely linked
residues were identified. Furthermore, considering the safety of the strain [38], we used
the Bacillus subtilis as the host to express Bp-DAE and the recombinant Bacillus subtilis cells
were employed for the biosynthesis of D-allulose from D-fructose. The experimental results
elaborate that Bp-DAE could transform D-fructose into D-allulose which could be used to
reduce the cost of downstream industries.

2. Materials and Methods
2.1. Strains, Media, and Materials

The pANY1 vector was presented by the Shenyang Agricultural University, China.
Escherichia coli DH5α and the host strain, Escherichia coli BL21 (DE3), were purchased from
Stratagene (La Jolla, CA, USA). The shuttle vector, pP43NMK, and the host strain, Bacillus
subtilis WB800N, were purchased from Fenghui Biotechnology Co., Ltd., (Hunan, China).

The cloning host, Escherichia coli DH5α, was grown at 37 ◦C and 220 rpm for 12 h in
Luria-Bertani (LB) medium supplemented with Kanamycin (50 µg/mL). And the expression
host strain, Escherichia coli BL21 (DE3), was cultivated in LB medium containing 50 µg/mL
Kanamycin at 37 ◦C for 3~4 h and then supplemented with IPTG (1 mmol/mL) at 25 ◦C for
12 h. Bacillus subtilis WB800N was grown at 37 ◦C and 220 rpm for 24 h in Terrific Broth
(TB) medium containing 50 µg/mL erythromycin.

The Ni2+-NTA resin was procured from Sangon Biotech Co., Ltd. (Shanghai, China).
The main chemical reagents such as D-allulose, D-fructose, erythromycin, kanamycin,
and isopropyl β-D-1-thiogalactopyranoside (IPTG), etc. were purchased from TCI (Tokyo,
Japan), Aladdin (Shanghai, China), Macklin (Shanghai, China) and the Sinopharm Chemical
Reagent (Beijing, China). Plasmid extraction and gene purification kits, the PCR required
high fidelity enzymes, restriction endonuclease, and protein marker etc. were purchased
from Vazyme (Nanjing, China). All of these chemicals involved in the reaction were
analytical grade unless otherwise specified.

2.2. Gene Mining and Phylogenetic Analysis

According to the reported DTEs, Pseudomonas cichorii ST-24 DTE (Genebank ID:
BAA24429.1) was used as the probe during the selection of novel DTEs in the NCBI
database using the Blast tool. We obtained the potential DAE protein sequence originating
from Blautia produca (NCBI accession number: WP_148391986.1). The phylogenetic tree
of the different DTEs and DAEs was constructed by MEGA 11. The multiple sequences
alignment of Bp-DAE was performed by ClustalX and ESPript.

2.3. Gene Cloning and Expression

The gene encoding Bp-DAE was ligated with 6×His-tag and optimized according to
the E. coli codon preference, chemically synthesized as well as inserted between the Pst I
and BamH I endonuclease sites of the expression vector pANY1. The recombinant plasmid,
named as pANY1-Bp-dae and was then transformed into E. coli BL21 (DE3) cells in order to
check the expression and its expression level.

The above-mentioned E. coli strains were cultivated in 0.3 L LB medium supplemented
with 50 µg/mL Kanamycin at 37 ◦C, 220 rpm. Add 1 mmol/mL IPTG into the medium as
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soon as the OD600 reached 0.6~0.8, which takes about 3 to 4 h, and then the temperature
was shifted to 25 ◦C, the shaking speed was shifted to 150 rpm, the induction was about to
start and would last 12 h. After the induction phase, the harvested cultures were collected
by centrifugation at 6000 rpm for 10 min at 4 ◦C. Then the cells collected by centrifugation
were washed twice with 0.9% NaCl solution, and about 0.06 g of cells were resuspended in
15 mL of 50 mM Na2HPO4/NaH2PO4 buffer (pH 7.0), ultrasonic crushing of it on ice for
15 min (500 W, 3 s working, 3 s stopping), centrifuged to collect the crude cell extract, and
then filtered through 0.22 µm MCE filter membrane to obtain the crude enzyme that used
for the next study and subsequent enzyme purification.

2.4. Purification of Enzyme and SDS-PAGE Analysis

First, loading 5 mL binding buffer (pH 7.0) that contained 50 mM Na2HPO4/NaH2PO4
and 150 mM NaCl into the Chelating Sepharose Fast Flow resin column (1.0 cm × 10.0 cm)
that contained Ni2+ for equilibrating with the column. Then, loading the obtained crude
enzyme into the column twice until the target protein is bound to the Ni2+ column as much
as possible. The unbound proteins were eluted away with 5 mL washing buffer (pH 7.0)
that contained 50 mM Na2HPO4/NaH2PO4, 150 mM NaCl and 50 mM imidazole. Last, the
bound protein BP-DAE was eluted by 5 mL elution buffer (pH 7.0) that contained 50 mM
Na2HPO4/NaH2PO4, 150 mM NaCl and 500 mM imidazole. Then, 1.5 mL centrifuge tube
was used to receive the eluate and changed to a new tube for every full 1 mL until finished.
In general, the second and third tubes have the highest protein content. The protein purity
was determined by a method, sodium dodecyl sulfate polyacrylamide gel electrophoresis
(SDS-PAGE) analysis, as well as the determination of protein concentration was done by the
Bradford method [39]. Thereafter, characterization experiments as well as determination of
its kinetic and catalytic properties were performed with pure enzymes.

2.5. Enzyme Assay

The enzymatic reaction was conducted in 50 mM Na2HPO4/NaH2PO4 buffer (pH 8.0),
supplemented with 50 g/L D-fructose, a certain amount of enzyme or recombinant whole-
cell and 1 mM Mn2+ in a final volume of 1 mL at 55 ◦C for 10 min. Placing the sample
in boiling water (100 ◦C) for 10 min to terminate the reaction. Then the reaction solution
was centrifuged at 12,000× g rpm for 10 min, the supernatant was filtered and taken
for analysis by high performance liquid chromatography (HPLC). Where one unit (U) of
enzyme activity was defined as the amount of enzyme or recombinant cells required to
generate 1 µ mol D-allulose per minute at pH 8.0 and 55 ◦C [35].

2.6. Characteristics of Enzyme

Determining the influence of pH on enzyme activity entailed using different ranges
of pH (pH 5 to 11) in different buffer systems, for instance, 50 mM sodium acetate (pH 5,
and 5.5), 50 mM phosphate (pH 6.0 to 8.5), and 50 mM glycine-NaOH (pH 9, 10, and 11.0)
buffers. The optimum performing enzyme activity was defined as 100%, the pH stability
was determined through incubating the enzyme in the above combination of pH buffers at
4 ◦C for 12 h, with standard enzyme activity assays, and the initial activity was assumed to
be 100% at each pH.

Similarly, the effect of temperature was measured using different temperatures from 40
to 80 ◦C in 50 mM Na2HPO4/NaH2PO4 buffer (pH 8.0), where the best performing enzyme
activity was defined as 100%; the temperature stability of the enzyme was examined
through incubating the enzyme in 50 mM Na2HPO4/NaH2PO4 buffer (pH 8.0) at 30 ◦C,
40 ◦C, 55 ◦C, 55 ◦C accompanied with Mn2+, and 60 ◦C for several hours followed by
standard enzyme activity assays. An unincubated sample was used as the control and its
activity was defined as 100%.

The effects were investigated of the presence of different metal ions (1 mM Co2+, Mn2+,
Mg2+, Fe2+, Ni2+, Zn2+, Ca2+, and Cu2+) on the catalytic activity under optimal pH and
temperature conditions. Furthermore, 10 mM EDTA was used to chelate metal ions to
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confirm whether metal ions are required for the catalytic reaction. A sample without added
metal ions served as control, and its activity was defined as 100%.

2.7. Substrate Specificity and Kinetic Properties of Enzyme

The substrate specificity of Bp-DAE was determined, with standard enzyme activity
assays, using a 300 mM concentration of different substrates such as D-fructose, D-allulose,
D-tagatose, and D-sorbose; the optimum enzyme activity was defined as 100%.

The kinetic parameters of Bp-DAE were determined by measuring the activity using
different range of substrate concentration (5 to 1500 mM), including D-fructose, D-allulose,
D-tagatose, and D-sorbose. Kinetic parameters (such as Km, kcat and Vmax) were calculated
by fitting with Michaelis–Menten plot and the corresponding Lineweaver-Burk plot using
GraphPad Prism software (Version 6.0, San Diego, CA, United States).

2.8. Protein Homology Modeling and Substrate Molecular Docking

The homology model of Bp-DAE was auto-created in accordance with the reported
DAE crystal structure using the SWISS-MODEL server. https://swissmodel.expasy.org/
(accessed on 27 May 2022). The substrate molecules, D-fructose and D-allulose, were
used as the ligand to dock the enzyme Bp-DAE with Auto Dock software to perform
molecular docking. The PyMOL software was used for the 3-dimensional structural model
visualization of the enzyme.

2.9. Enzymatic Production of D-allulose

Use of the purified Bp-DAE as biocatalysts for the production of D-allulose from
D-fructose. The enzymatic reaction solution was performed in a total volume of 50 mL
consisting of 100, 300, and 500 g/L D-fructose and 50 mg purified Bp-DAE (450 U) in
50 mM Na2HPO4/NaH2PO4 buffer (pH 8.0) supplemented with 1 mM Mn2+ of the metal
ion. The reactions were run at 55 ◦C and 200 rpm for 14 h in a shaker, samples were taken
every one hour and the conversion yield was determined by HPLC.

2.10. Transformation of Bacillus subtilis and Whole-Cell Preparation of D-allulose

Based on the synthesized gene encoding Bp-DAE, primers were designed to clone
the gene and link it to shuttle plasmid pP43NMK by the SeamLess Cloning technique and
named pP43NMK-Bp-dae. Transfer of recombinant plasmids into Bacillus subtilis WB800N
and expression of Bp-DAE. The recombinant Bacillus subtilis cells were cultured at 37 ◦C and
220 rpm for 24 h in Terrific Broth (TB) medium contained 50 µg/mL erythromycin. Firstly,
2 mL of cultured bacterial solution were taken and measured its OD600 and calculated
the weight of the bacterial cells by fitting the curve of OD600 to the cell dry weight. The
remaining bacterial cells were collected by centrifugation at 6000 rpm for 10 min at 4 ◦C.
Then the centrifuged collected cells were washed twice with 0.9% NaCl solution. Finally,
resuspend the cells with the appropriate amount of 50 mM Na2HPO4/NaH2PO4 buffer
(pH 8.0) depending on the weight of the cells required for the reaction system and stored
them at 4 ◦C for further use. As with the enzymatic method, the whole-cell catalytic
reaction was also carried out in phosphate buffer (50 mM Na2HPO4/NaH2PO4 buffer,
pH 8.0) containing 500 g/L D-fructose, 20 g/L recombinant Bacillus subtilis cells, and 1 mM
Mn2+ in a shake flask with the final volume of 50 mL at 55 ◦C and 200 rpm.

2.11. Analysis of Products

The products involved in the reaction such as D-allulose, D-fructose, D-tagatose, and
D-sorbose were analyzed by HPLC equipped with a refractive index detector (RID-20A)
(Shimadzu, Japan) [40]. More details were in the filtration of the sample with a 0.22 µm
MCE filter membrane prior to the sample analysis and the HPLC system was analyzed
through a Ca2+-carbohydrate column (Hi-Plex-Ca, Agilent, Church Stretton, Shrops, UK)
with its temperature of 84 ◦C, with deionized water as the mobile phase, and a flow rate of
0.6 mL/min.

https://swissmodel.expasy.org/
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And each experiment was repeated three times and the date were analyzed and
processed using GraphPad Prism software and presented as mean value ± standard
deviation (SD).

3. Results and Discussion
3.1. Screening DAEs and Sequence Analysis of Bp-DAE

The industrial use of D-allulose enzymes did much to pave the way for the mining
of novel DTE family enzymes. NCBI database was the unique source for discovering
potential contenders of DTE family enzymes. According to the database, a few other
enzymes such as transaminase [41], glucose isomerase [42], and dehydrogenase [43] are
workable. From the required information of the NCBI database, the putative protein (pro-
tein ID: WP_148391986.1) was obtained for the extraction of DAE from Blautia produca with
298 amino acids and 897 base pairs of nucleotides having a theoretical molecular mass
of 33.7 kDa. The putative DAE, named Bp-DAE had 41.87% sequence similarity to the
Pseudomonas cichorii DTE [23]. It was interesting to note that when Blast was run using
Bp-DAE protein as a probe, the sequence shared up to 60% similarity with a Lachnospiraceae
DAE [44]. The blast results raised the probability that Bp-DAE belongs to the DAE family
enzymes and the safety of the source of strain was not ignorable during the screening pro-
cess. The human gut bacteria Blautia produca isolated from feces whose species belonging
to the Lachnospiraceae family had rapidly attracted more attention for its capabilities to
alleviate inflammatory, metabolic disorders and its antibacterial properties against partic-
ular microorganisms since its discovery [44,45]. It could be used as a probiotic in food,
medicinal and culinary preparations [46].

To further evaluate whether Bp-DAE is a member of the DAE family enzymes, a
phylogenetic tree was formed with it using known DTE and DAE protein sequences derived
from different strains. The protein sequence-based phylogenetic analysis revealed that the
Bp-DAE gene had a close relationship with the previously reported Lachnospiraceae DAE
(Figure 1). The multiple sequence alignment of Bp-DAE with the earlier reported DTE and
DAE protein sequences is shown in Figure 2. After comparison, the sequence similarities
were all above 60%. It exhibited that the catalytic residues including Glu151, Asp184,
His210, and Glu245 are responsible for metal binding sites. The glutamate residues are also
liable for the isomerization at the carbon position 3 of D-fructose. Some residues such as
Glu157, Arg216, His 187, and Glu 245 were taking part in the substrate binding mechanism
while Tyr7, Trp15, Trp113, and Phe247 residues provide a hydrophobic environment in the
surroundings. These results were based on the comparison with the already discovered
crystal structures of Pseudomonas cichorii DTE [47] and Agrobacterium tumefaciens DAE [48].
All of these results elaborate that Bp-DAE was a member of the DAE family enzymes and
ability to epimerize D-fructose to D-allulose.

3.2. Heterologous Expression and Purification of Bp-DAE

The recombinant plasmid pANY1-Bp-dae was expressed into the host E. coli BL21
(DE3) as well as cultured overnight on the 50 µg/mL of kanamycin LB agar plates. A
positive transformant was then selected for extended cultivation and successful induction
of expression. Then the cells of recombinant bacterium E. coli BL21 (DE3)/pANY1-Bp-
dae were obtained, washed, disrupt with ultrasonication, centrifuged to obtain the crude
enzyme, and purified. A single and clear protein band of about 34.5 kDa was obtained
by SDS-PAGE (Figure 3A). In the purified protein, a 6× His-tag tag was ligated with
the encoded gene, which possessed a molecular mass of about 0.8 kDa. Therefore, the
molecular mass of the purified protein was obtained as 33.7 kDa plus 0.8 kDa by SDS-PAGE
analysis which become approximately 34.5 kDa and was consistent with the predicted
molecular mass of Bp-DAE. Then the purified enzyme will be used for subsequent enzyme
characterization. In addition, HPLC was used for the detection of the conversion from
D-fructose to D-allulose to confirm the enzymatic functionality. Figure 3B shows the
chromatogram of standard sugars D-fructose and D-allulose displaying 14 and 19.7 min of
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retention time respectively, and the reaction is also showing the same peaks on the same
retention time confirming the capability of Bp-DAE to convert D-fructose to D-allulose.
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3.3. Characteristics of Bp-DAE

The influence of the presence of various metal ions on the catalytic activity of Bp-
DAE presented by Figure 4. The results exhibited that Bp-DAE possessed the maximum
epimerization of 202% and 195% with 1 mM Mn2+ and Co2+ respectively. Additionally,
the presence of 1 mM Mg2+, Fe2+, and Ni2+ slightly improved the activity of Bp-DAE
but Ca2+, Zn2+, and Cu2+ inhibited the enzyme activity. The addition of EDTA (10 mM)
entirely reduced enzyme activity, which is interesting because Bp-DAE did not exhibit any
activity in the absence of the metal cofactor, demonstrating that the enzyme was strictly a
metal-dependent enzyme. The present results were similar to the previously characterized
DTE family enzymes such as DaeM [35] and C. minuta DTE [20]. However, some members
of DTEs or DAEs family enzyme were not strictly metal-dependent, e.g., Agrobacterium
tumefaciens DAE [21], Pseudomonas cichorii DTE [23], and Sinorhizobium DTE [34], but the
presence of Mn2+ and Co2+ significantly enhanced their enzyme activity. The presence
of Mn2+ and Co2+ nearly always boosted enzyme activity, while Cu2+ and Zn2+ almost
invariably decreased the enzyme activity of DTEs and DAEs, as shown in Table 1.

The effect of pH on the enzyme activity and its stability of Bp-DAE was determined
at optimum temperature and different ranges of pH (5 to 11) were applied as shown
in Figure 5A. Generally, a neutral to alkaline pH environment is more suitable for Bp-
DAE activity. It was at optimal activity in 50 mM phosphate buffer (pH 8.0) showing
100% relative activity and maintaining above 80% of its relative activity at pH (7 to 11),
suggesting that the enzyme might function in a relatively wide range of pH environments.
However, the relative enzyme activity was decreased to 20% while the reaction was carried
out in an acidic environment (pH 5 and 5.5) (Figure 5A). According to Table 1, it could be
concluded that DTEs and DAEs generally exhibited the highest activity under neutral and
weakly alkaline conditions. As shown in Figure 5B, above 60% of activity was remained at
pH 6.5 to 10 after 12 h of incubation at 4 ◦C. This result indicated that Bp-DAE could be
more stable in neutral to alkaline pH conditions.
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Figure 2. Amino acid multiple sequence alignment of Bp-DAE with known DAEs and DTEs. Sequence
alignment results were performed using the software of Omega, ClustalX, and ESPript. The black wavy
lines and arrows represented α-helix and β-strand, respectively. In all the sequences, amino acid residues
that are identical are highlighted in red and those that are highly conserved and similar are framed in
blue; the residues involved in the metal ligand sites, catalysis sites, and hydrophobic pocket forming
were symbolized as red asterisks, blue dots, and black squares, respectively.
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3.3. Characteristics of Bp-DAE 
The influence of the presence of various metal ions on the catalytic activity of Bp-

DAE presented by Figure 4. The results exhibited that Bp-DAE possessed the maximum 
epimerization of 202% and 195% with 1 mM Mn2+ and Co2+ respectively. Additionally, the 
presence of 1 mM Mg2+, Fe2+, and Ni2+ slightly improved the activity of Bp-DAE but Ca2+, 
Zn2+, and Cu2+ inhibited the enzyme activity. The addition of EDTA (10 mM) entirely re-
duced enzyme activity, which is interesting because Bp-DAE did not exhibit any activity 
in the absence of the metal cofactor, demonstrating that the enzyme was strictly a metal-

Figure 3. (A) SDS-PAGE analysis of the BP-DAE expressed in E. coli BL21(DE3). Lane M, stan-
dard protein marker; Lane 1, E. coli BL21(DE3)/pANY1 without the Bp-dae gene; Lane 2, E. coli
BL21(DE3)/pANY1-Bp-dae with IPTG induction; Lane 3, purified Bp-DAE. (B) HPLC analysis image
of the standard D-fructose, D-allulose and the biotransformation of sample in reaction. The peak
diagrams in order from top to bottom are D-fructose, D-allulose, and Bp-DAE with D-fructose and
D-allulose Mixed reaction solution.
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Figure 4. Influence of the presence of different metal ions on the enzyme activity of Bp-DAE.

The effect of different ranges of temperature on the enzyme activity of Bp-DAE was
performed under optimum pH conditions and the results are sown in Figure 5C. The
results elaborate that the highest Bp-DAE activity was shown at 55 ◦C, while at 50 ◦C,
the enzyme possessed 80% of its relative activity. Bp-DAE abruptly decreased the activity
with gradual increases in temperature; as shown in Figure 5C, at 70 and 80 ◦C the relative
activity decreased to 35%. The temperature stability of Bp-DAE was measured through
incubating the enzyme at different ranges of temperature (30 to 60 ◦C) for a period of time
and the variation of activity was examined as shown in Figure 5D.
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Figure 5. Effect of pH and temperature on the activity of Bp-DAE and its stability. (A) Effects of pH
(B) pH stability; (C) Effect of temperature; (D) Thermal stability.

For the thermal stability assay, Bp-DAE was incubated at different temperatures (from
30 to 60 ◦C) for 0, 30, 60, 120, 180, and 240 min, and the variation in activity was measured
(Figure 5D). The results revealed that Bp-DAE showed more than 80% of relative activity
at 30 ◦C after 4 h and sustained 75% activity for 2 h at 40 ◦C while decrease to 35% after
4 h. The fluctuation in thermal stability at 55 ◦C was comparable with that at 40 ◦C, but
intriguingly, with the addition of an extra 1 mM Mn2+, the enzyme activity was enhanced
by around 35%, and the half-life was increased from 60 to 180 min compared with 55 ◦C.
This was not an anomaly, however, since the addition of 2 mM Co2+ at 50 ◦C, increased the
half-life of DaeM [49] from 297.3 to 539.2 min. Similarly, with the addition of 0.1 mM Co2+,
the half-life of C. cellulolyticum DAE [25] at 60 ◦C increased from 10 to 408 min. Moreover,
the enzyme activity of BP-DAE was almost totally inactivated after 2 hours of incubation at
60 ◦C. One of the key elements affecting the enzyme-catalyzed process was temperature. In
the industrial production of rare sugars, higher temperatures allowed the enzymes to keep
better activity because higher temperatures increased the solubility of the substrate, which
sped up the enzyme reaction, thus increasing the conversion yield and to some extent
reducing microbial contamination [49,50]. However, too high a temperature might trigger
the Maillard reaction and lead to the thermal denaturation of the enzyme, resulting in a
bad quality of sugar and low yields [49,50].

3.4. Substrate Specificity and Kinetic Properties of Bp-DAE

The substrate specificity and kinetic properties of enzymes were examined to investi-
gate the applicability of Bp-DAE in rare sugar production. Four kinds of the substrate such
as D-fructose, D-allulose, D-sorbose, and D-tagatose were employed to inspect the catalytic
activity of Bp-DAE and showed 38.39%, 43.39%, 71.44%, and 100% of relative activities
against each substrate respectively (Figure 6). Interestingly, earlier reported DAEs and
DTEs that specifically favor D-allulose or D-tagatose, similarly, Bp-DAE had also a high
catalytic activity for both substrates. In the previous studies, the epimerization of DAEs or
DTEs had rarely been determined against D-sorbose or its catalytic activity was very low
while in the current study Bp-DAE had a high relative activity on D-sorbose compared to
earlier reported DAEs or DTEs, which suggest a broad rare sugars specificity of this enzyme.
The specific activity in descending order were D-allulose (5.27 ± 0.12 U/mg), D-tagatose
(3.76 ± 0.13 U/mg), D-sorbose (2.29 ± 0.1 U/mg), and D-fructose (1.76 ± 0.099 U/mg). In
this case, the epimerization efficiency of D-allulose was about 1.4 times higher than that of
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D-tagatose, thus, it is the high specificity of this protein for D-allulose that led to its precise
designation as D-allulose 3-epimerase (DAE). Similar specificity preferences were present
in Ruminococcus sp.DAE [26], Clostridium sp.DAE [27] and DaeM [35].
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Figure 6. Substrate specificity of Bp-DAE.

The kinetic properties of Bp-DAE with different substrates such as D-fructose, D-
allulose, D-tagatose, and D-sorbose according to the Lineweaver-Burk plot equation
through the standard enzyme activity assay were given in Table 2 and the schematic
diagram of different substrates as shown in Figure 7. The results explain that using differ-
ent substrates, D-allulose showed the highest catalytic activity by exhibiting a minimum
Km value (150.7 mM), the relatively high kcat value (5878 min−1), and the highest kcat/Km
value (39.1 mM−1min−1) as compared to other substrates. The Km, kcat, and kcat/Km val-
ues of D-fructose were 235.7 mM, 3902 min−1, and 16.57 mM−1min−1, respectively. The
Bp-DAE to D-fructose Km values from 153 to 323 mM were similar to previously reported
DAEs, such as Ruminococcus DAE [26], Clostridium DAE [27], Dorea DAE [29], Treponema
primitia DAE [30] and Flavonifractor plautii DAE [31], etc., and interestingly its kcat/Km value
(16 mM−1 min−1) was extremely similar to that of Ruminococcus DAE [26]. The values of Km,
kcat, and kcat/Km for D-tagatose were 238.7 mM, 6415 min−1, and 26.94 mM−1min−1, respec-
tively. While the values of Km, kcat, and kcat/Km for D-sorbose were 297.6 mM, 6457 min−1,

and 21.74 mM−1min−1, respectively. The kinetic properties of Bp-DAE and earlier reported
DAEs and DTEs to D-allulose are presented in Table 1.

Table 2. Substrate specificity and kinetic properties of Bp-DAE for different substrates.

Substrates Km (mM) kcat (min−1) kcat/Km (mM−1 min−1) Relative
Activity (%)

D-allulose 150.7 ± 9.166 5878 ± 157.3 39.1 ± 3.216 100.1 ± 2.283
D-fructose 235.7 ± 9.938 3902 ± 213.4 16.57 ± 0.8634 33.39 ± 1.88
D-tagatose 238.7 ± 13.63 6415 ± 110.1 26.94 ± 1.686 71.44 ± 2.461
D-sorbose 297.6 ± 13.68 6457 ± 284.9 21.74 ± 1.719 43.39 ± 1.898

All experiments were repeated in triplicate, and data were presented by mean value ± standard deviation.
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4pfh.1) derived from the Pseudomonas cichorii DTE with some modifications. The simu-
lated model was docked with molecules D-fructose and D-allulose respectively to inves-
tigate the mechanism of enzyme-substrate affinity. Studies had revealed that the residues 
around the oxygen atoms at position 1, 2, and 3 of the substrates were highly conserved 
and might precisely control the catalysis [51]. In the protein sequence alignment with 
known DAE and DTE, we knew that Bp-DAE also had similar catalytic residues and was 
related to substrate binding, such as Arg 216, Glu 157, His 187. The Bp-DAE-fructose struc-
ture diagram (Figure 8A) and the Bp-DAE-allulose structure diagram (Figure 8B) showed 
that the O1, O2, and O3 of D-fructose and D-allulose formed the same hydrogen bonds 
with BP-DAE protein molecule respectively including O1-Arg216, O1-Glu157, O1-His187, 
O2-His187, O2-Arg216, O3-Glu151, O3-His210. After molecular docking, we knew that 
they did combine with oxygen 1, 2, and 3 atoms of the substrate to form hydrogen bonds. 
Therefore, the binding-site residues at O4, O5, and O6 of the substrate were the focus of 
the study. According to the Bp-DAE-fructose structural analysis (Figure 8C), a total of 
three hydrogen bonds were established with the O4, O5, and O6 atoms of D-fructose, par-
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Figure 7. Kinetic properties of Bp-DAE. (A) Kinetic parameters of BP-DAE on D-fructose; (B) Kinetic
parameters of BP-DAE on D-allulose; (C) Kinetic parameters of BP-DAE on D-tagatose; (D) Kinetic
parameters of BP-DAE on D-sorbose.

3.5. Structural Analysis of Bp-DAE and Enzyme-Substrate Docking

The structural homology model of Bp-DAE was created in accordance with the pre-
viously discovered DTE crystal structure of the engineered DTE PcDTE-IDF8 (SMTL ID:
4pfh.1) derived from the Pseudomonas cichorii DTE with some modifications. The simulated
model was docked with molecules D-fructose and D-allulose respectively to investigate
the mechanism of enzyme-substrate affinity. Studies had revealed that the residues around
the oxygen atoms at position 1, 2, and 3 of the substrates were highly conserved and
might precisely control the catalysis [51]. In the protein sequence alignment with known
DAE and DTE, we knew that Bp-DAE also had similar catalytic residues and was related
to substrate binding, such as Arg 216, Glu 157, His 187. The Bp-DAE-fructose structure
diagram (Figure 8A) and the Bp-DAE-allulose structure diagram (Figure 8B) showed that
the O1, O2, and O3 of D-fructose and D-allulose formed the same hydrogen bonds with
BP-DAE protein molecule respectively including O1-Arg216, O1-Glu157, O1-His187, O2-
His187, O2-Arg216, O3-Glu151, O3-His210. After molecular docking, we knew that they
did combine with oxygen 1, 2, and 3 atoms of the substrate to form hydrogen bonds.
Therefore, the binding-site residues at O4, O5, and O6 of the substrate were the focus
of the study. According to the Bp-DAE-fructose structural analysis (Figure 8C), a total
of three hydrogen bonds were established with the O4, O5, and O6 atoms of D-fructose,
particularly O4-Glu151, O6-Asn37, and O6-Try7. In contrast, the Bp-DAE-allulose structure
(Figure 8D) established four hydrogen bonds of O4-Glu151, O5-Glu151, O6-Asn37, and
O6-Try7. Compared with the fructose substrate, D-allulose had one more hydrogen bond.
Based on the biochemical and docking analyses, D-allulose would be the best substrate
for Bp-DAE. It was concluded that more hydrogen bonds may have encouraged substrate
alignment and restricted substrate mobility, which might be the reason for the higher affin-
ity of BP-DAE for D-allulose [52]. Bp-DAE contains Asn, a neutral polar residue, in place
of neutral nonpolar Ala37 (the corresponding residue in the engineered DTE PcDTE-IDF8),
which formed one hydrogen bond with the oxygen atom at position 6 of D-fructose. In
other DAEs and DTEs, where the position was usually a neutral nonpolar residue (e.g., Leu,
Ala, or Ile), followed by a neutral polar (e.g., Tyr) or positive polar (e.g., His) residue [35].
The different type of amino acid residues at this position might be the reason for the higher
Km of Bp-DAE and result in lower affinity for the substrate.
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Figure 8. Structure diagram of Bp-DAE docking with substrate molecules. (A) Structure diagram
of Bp-DAE docking with D-fructose; (B) Structure diagram of Bp-DAE docking with D-allulose.
The amino acids residues in the diagram were shown as cyan sticks, and the substrate molecules of
D-fructose and D-allulose were presented as orange and silvery sticks respectively, and the hydrogen
bonds were shown as yellow dotted lines. Other small molecules such as Mn2+, was presented as
a violet ball. (C) Hydrogen bonds were formed with the oxygen atoms at position 4, 5, and 6 of
D-fructose; (D) Hydrogen bonds were formed with the oxygen atoms at position 4, 5, and 6 of
D-allulose.

3.6. Enzymatic Production of D-allulose

In a preliminary pre-experiment, 300 mM D-fructose was treated with 5 U/mL Bp-DAE
under optimum reaction conditions to explore the ability of Bp-DAE to convert D-fructose
to D-allulose. The highest conversion of D-allulose reached around 30% after 4.5 h of
reaction. Consequently, different concentrations of substrates such as 100, 300, and 500 g/L
were used with 9 U/mL of enzyme in a total volume of 50 mL under optimal conditions
to further evaluate the high-level yield of D-allulose as well as the reaction equilibrium.
The Bp-DAE showed 30, 90, and 150 g/L D-allulose production from 100, 300, and 500 g/L
D-fructose after 6, 8, and 10 h respectively, which showed that the D-allulose/D-fructose
equilibrium ratio was 30:70 (Figure 9). In the literature, the conversion yield was typically
between 20 to 33% by employing different ketose 3-epimerases (as presented in Table 1).
The results of the present findings elaborate that the catalytic performance of Bp-DAE with
500 g/L substrate was at a medium to a higher level but the catalytic rate of Bp-DAE was
significantly lower than that of known DAEs or DTEs such as the reaction equilibrium
time of Treponema primitia DAE with 500 g/L substrate was 6 h while for Bp-DAE was 10 h
which might be due to the low binding efficiency of the substrate. Alike other enzymes for
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improving some features, either rational modification or random mutation was possible [53].
For example, it was feasible to improve the catalytic rate of Bp-DAE by some techniques
like site-directed mutagenesis as well as random and directed evolution [36,37].
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Figure 9. Time course of enzymatic catalysis reaction with different concentrations of D-fructose.

3.7. Whole-Cell Catalysis Production of D-allulose

The whole-cell biocatalysts production has the following advantages over enzymatic
production: (1) Cell culture is simple, the enzymes present in the cells have greater sta-
bility to the biocatalysts, also eliminating the need for complicated and tedious enzyme
purification processes, (2) enzyme are protected by a cell wall and membranes from harsh
conditions and maintain their full activity [54,55]. These advantages made the bioprocess
more cost-effective and more suitable for scale up production. Therefore, the Bp-DAE
gene was cloned into the pP43NMK shuttle plasmid, and Bacillus subtilis was used as the
expression host, which was considered to be a safe-grade microbial strain. Then, 20 g/L
whole cells of recombinant Bacillus subtilis was used with 500 g/L D-fructose substrate
for a period of time under optimum enzymatic reaction conditions, and their reaction
equilibrium times were recorded. The whole cell catalyst produced 17.43% of D-allulose
after 4 h, 25.69% after 8 h, and reached equilibrium after 12 h with a 30.13% conversion
yield by producing a yield of about 150.65 g/L (Figure 10). In contrast, the whole-cell
catalytic trial with empty vector (pP43NMK shuttle plasmid without Bp-DAE) recombinant
Bacillus subtilis cells used as control, and under a same condition, revealed that this host
cell did not transform any D-fructose during the reaction. In the actual production of
D-allulose, Bacillus subtilis was a safe-grade microbial strain and more applicable for the
food industry as compared to Escherichia coli. Therefore, the catalysis reaction using the
whole cells of Bacillus subtilis for D-allulose production was a desirable method [56]. In
this study, Bacillus subtilis cells were successfully used as hosts to express Bp-DAE, which
converted D-fructose to D-allulose after 12 h based on a whole-cell catalytic reaction with a
conversion yield of about 30%. However, the genomic integration of Bp-DAE had an innate
potentiality for higher catalytic efficiency compared with a plasmid-based transformation,
which showed an instability limitation during multiple generations of plasmid vectors [56].
It is concluded that a whole-cell catalytic technique combined with the fed-batch strategy
is an effective bioprocess approach to achieve a higher yield of D-allulose that could be
applied to the production of many high value-added products [35].
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Figure 10. The whole-cell catalysis reaction for D-allulose production with 500 g/L D-fructose.

4. Conclusions

In brief, we found a novel D-allulose 3-epimerase named Bp-DAE based on the NCBI
database, and encoded genes were obtained from a potential probiotic Blautia produca.
The gene source was safe and conformed to food grade production. Then the encoded
genes were expressed in E. coli BL21 (DE3) for the extraction of Bp-DAE and purified the
enzyme for characterization. The Bp-DAE exhibited neutral to alkaline pH (optimum 8.0) at
optimum temperature 55 ◦C with good catalytic activity and broad substrate specificity. In
addition, it could also maintain activity in slightly acidic environment, which was helpful
for industrial production of D-allulose. The current study showed that Bp-DAE enzyme
was strictly dependent on metal ions and almost inactivated in the absence of metal ions,
its catalytic activity has been greatly increased with the addition of Co2+ and Mn2+ ions.
Moreover, whole-cell catalysis by employing Bp-DAE-transformed Bacillus subtilis cells
and pure enzyme catalysis were used for the conversion of D-fructose to D-allulose, which
showed a 30% conversion yield which was intermediate to high. Recently, many studies
had been focused on improving the specificity of D-fructose and the thermal stability of
enzymes. Conclusively, this research demonstrated that Bp-DAE could be used an effective
biocatalyst for the D-allulose production that can be used for industrial purpose to decrease
the price of downstream industries.
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