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Abstract
Background: Lung squamous cell carcinoma (LUSC), one of the main pathological
types of lung cancer, has led to consequential socioeconomic burden. Ferroptosis is an
iron-dependent form of cell death process with potentials for therapeutic target in var-
ious kinds of tumors. However, whether ferroptosis-related genes (FRGs) are associ-
ated with the prognosis of LUSC patients is still unclear. The aim of this study was to
establish a FRGs-based signature which could stratify patients with LUSC.
Methods: The RNA sequencing profiles and corresponding clinical data of LUSC
patients were retrieved from The Cancer Genome Atlas (TCGA) database and Gene
Expression Omnibus (GEO) dataset. A FRG-based signature was developed using the
TCGA-LUSC cohort and validated in the GEO cohort. Gene set enrichment analysis
(GSEA) and analysis of immune cell characteristics were conducted to assess the rela-
tionship between FRGs and biological function or immune status. A nomogram based
on selected clinical factors and the risk scores which were generated from the FRG-
based signature was developed using the TCGA cohort and validated in the GEO
cohort.
Results: A set of 16 FRGs, significantly associated with overall survival (OS) in the
TCGA cohort, was identified and could classify LUSC patients into two risk groups.
Kaplan–Meier analysis illustrated that the survival rate of the high-risk group was sig-
nificantly lower than the low-risk group. Assessment and external validation of the
signature showed that the survival predictive performance of this signature was ade-
quate. Additionally, multiple pathways and functions were enriched through GSEA
and the analysis of immune cell characteristics showed significantly different abun-
dances of immune cells among the two risk groups. Finally, a nomogram integrating
the FRG-based signature and selected clinical factors was also developed and assessed
in both the TCGA and GEO cohort.
Conclusion: This study indicated the association between the FRGs and prognosis of
patients with LUSC. Targeting ferroptosis may serve as a novel potential therapeutic
alternative for LUSC.
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INTRODUCTION

Lung cancer poses a severe global health problem with bur-
dening medical and socioeconomic consequences, with
about 2 093 870 new patients diagnosed and leading to
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about 1 761 000 deaths worldwide annually.1,2 Non-small
cell lung cancer (NSCLC) represents the main subtype of
lung cancer, accounting for about 85% of all lung cancer.3

NSCLC is also further classified into several histological
types, including lung adenocarcinoma (LUAD), lung squa-
mous cell carcinoma (LUSC), and large-cell lung cancer
(LCLC), as well as other infrequent types, among of which
LUSC comprises 25%-30% of all lung cancer cases.4 The
clinical outcomes of lung cancer patients are related to asso-
ciated risk factors and tumor stage at the time of diagnosis.
Due to the lack of specific symptoms, more than two-thirds
of patients are diagnosed in advanced stages, leading to a
5-year survival rate ranging from 13% to 1%.5–7 This phe-
nomenon calls for early diagnosis and timely treatment.

In recent years, considerable developments have been
achieved in targeted therapies, and several effective molecular
targets such as epidermal growth factor receptor (EGFR) and
anaplastic lymphoma kinase (ALK) have been identified.8

However, these targets are not efficient among LUSC patients,
compared to LUAD because these two NSCLC subtypes have
different mutation profiles.9,10 Immune checkpoint inhibitors
(nivolumab, pembrolizumab) in combination with paclitaxel
and carboplatin are currently the first–line therapy for LUSC
patients11–13 and treatment with immunotherapy can signifi-
cantly improve the prognosis of patients.14 However, the
strategy for immunotherapy is extremely expensive and side
effects are also an inevitable issue, leading to unsatisfactory
treatment outcomes for LUSC patients.15 Therefore, explora-
tion of novel therapeutic mechanisms and development of
effective prognostic models for accurate risk stratification and
prognostic evaluation of LUSC patients are urgently needed.

Ferroptosis is an iron-dependent form of necrotic cell
death that is driven by the lethal accumulation of lipid peroxi-
dation products and reactive oxygen species (ROS).16 The fea-
tures and mechanisms of ferroptosis are different from those
of typical cell death processes such as apoptosis and
autophagy.17 In recent years, the induction of ferroptosis has
been found to be a promising therapeutic alternative to trigger
cancer cell death, especially for malignancies resistant to tradi-
tional therapy.18,19 Emerging evidence, although limited, have
shown that numerous genes are related to ferroptosis and play
significant roles in the regulation of tumor progression in
NSCLC. For instance, GPX4, which could play a pivotal role
in the resistance to process of ferroptosis, was revealed to facil-
itate the proliferation of cancer cells of NSCLC.20 FSP1 and
EGLN1 might act as suppressors to inhibit ferroptosis in
lung cancer cells.21,22 Upregulated NFS1 was found to be
associated with resistance to ferroptosis in LUAD.23 Addi-
tionally, ferroptosis has also been reported to influence
tumor progression by interacting with some immune
cells.24,25 All these discoveries have shown ferroptosis as a
promising target for lung cancer treatment. Nevertheless,
whether ferroptosis process and relevant ferroptosis-related
genes are associated with the prognosis of LUSC patients
still requires further investigation.

In this present study, we collected the mRNA expression
profiles of LUSC from public databases and identified the

differentially expressed genes (DEGs) of LUSC which were
also categorized as ferroptosis-related genes (FRGs). Then,
functional enrichment analysis was performed to explore
the underlying mechanisms. Moreover, a prognostic multi-
gene signature was constructed with these selected FRGs.
Finally, a FRGs and clinical factors-based model was con-
structed to improve the prognostic evaluation of LUSC
patients. This study explored the potential prognostic value
of ferroptosis-related genes in LUSC and developed a user-
friendly tool to assess the risk and prognosis for patients
with LUSC.

METHODS

Data collection

Two patient cohorts were included in this study. RNA
sequencing profiles and corresponding clinical data of
502 patients with LUSC patients, including 502 tumor sam-
ples and 49 normal samples, were downloaded from The
Cancer Genome Atlas (https://portal.gdc.cancer.gov) (TCGA
cohort). The raw data of mRNA expression matrix and clini-
cal information of 69 tumor samples were retrieved from the
Gene Expression Omnibus (GEO) dataset (https://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE73403) (GEO
cohort).26 The platform of GSE73403 was GPL6480
(Agilent-014850 Whole Human Genome Microarray
4x44K G4112F). Patients who met the following selection
criteria were included: histologically diagnosed as LUSC,
available gene expression data, and available prognostic
data. In this study, the TCGA cohort was used as the train-
ing set and the GEO cohort as the validation set.

Development and validation of the prognostic
ferroptosis-related gene signature

A total of 278 FRGs were gathered from the FerrDb database
(http://www.zhounan.org/ferrdb/). We performed the follow-
ing process to develop the prognostic signature. The differen-
tial analysis of the FRGs between LUSC and normal tissues
were performed using the Wilcoxon test after within-array
replicate probes were replaced with their average via “limma”
R package in the TCGA cohort.27,28 The p-value was adjusted
with the false discovery rate (FDR).29 FDR < 0.05 and jlog2
(FC)j ≥ 1 was considered statistically significant. To visualize
the ferroptosis-related DEGs, heatmap and volcano plot were
generated using the “pheatmap” R package. Univariate Cox
analysis of overall survival (OS) was performed to screen for
FRGs with prognostic values. p < 0.05 were considered statis-
tically significant. Subsequently, the least absolute shrinkage
and selection operator (LASSO) regression algorithm was
performed to establish the FRGs-based signature.30,31 LASSO
regression analysis was conducted using the “glmnet” package
in R software, Tenfold cross-validation was utilized to filtrate
candidate genes and identify the penalty parameter (λ),
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corresponding to the minimum value of partial likelihood
deviance. The risk scores of each patient were calculated
based on the expression level of selected FRGs and
corresponding regression coefficients of genes. The prognostic
risk score formula was constructed as follows:

Risk score¼
Xn

i¼1

coefficients*Expression of FRGs ið Þ

Using the risk score calculated based on this formula, the
patients were divided into high- and low-risk groups
according to the median value of the risk score. We further
evaluated the prognostic value of the ferroptosis-related
gene signature through Kaplan–Meier survival analysis. The
“timeROC” package was utilized to perform time-dependent
receiver operating characteristic (ROC) curve analyses to
evaluate the predictive discrimination of the FRGs-based
signature. Performance assessments of the signature were
also conducted in the GEO cohort.

Functional enrichment analysis

To investigate the potential molecular mechanisms of these
FRGs which were significant in LASSO regression analysis, we
performed gene ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) enrichment analyses of the FRGs
among the high-risk group and low-risk group in the training
set, which were selected according to the thresholds of jlog2
(FC)j ≥ 1 and FDR < 0.05. The gene set enrichment analysis
(GSEA) was conducted using the “clusterProfiler” R package.
The pathways with p < 0.05 were significantly enriched.

Analysis of immune cell characteristics

Utilizing the “CIBERSORT” R package, the proportions of
22 tumor-infiltrating immune cells from each patient in the
TCGA cohort were determined. In brief, CIBERSORT was
performed to analyze the relative expression levels of
547 genes in individual tissue samples based on their gene
expression profiles, to predict the abundance of 22 types of
immune cells in each patient.32 Additionally, the enrichment
levels for multiple immune cells of patients in the high- and
low-risk groups were compared to show the potential associ-
ation between ferroptosis and immune status.

Establishment and validation of the nomogram
incorporating ferroptosis-related gene signature

In this study, we developed a nomogram incorporating the
risk score generated from the prognostic FRGs-based signa-
ture and clinicopathological predictors in the training set
using the “rms” R package. We then assessed the prognostic
value of the nomogram through Kaplan–Meier survival

analysis based on the high- and low-risk groups stratified by
the median value of the risk score, generated from the nomo-
gram. The performance of the nomogram was also evaluated
with respect to its discrimination and calibration in the train-
ing and validation set. The ROCs at 3- and 5-year follow-up
were performed to assess the discrimination of the model,
and calibration was evaluated by visualizing the discrepancy
between actual probabilities and predicted probabilities using
the calibration curves. In addition, the clinical usefulness of
the nomogram was assessed by calculating the net benefits at
different threshold probabilities in decision curve analysis
(DCA). All these assessments were performed in both the
TCGA cohort and the GEO cohort.

Statistical analysis

All statistical analyses were performed using the R statistical
software, version 4.0.2 (https://www.r-project.org). Continu-
ous variables were analyzed using the Student’s t-tests, U
tests, or nonparametric rank-sum tests. Categorical variables
were analyzed using the Chi-squared tests or Fisher’s exact
tests. The OS between different risk groups was compared
using the Kaplan–Meier analysis with the log-rank test. Uni-
variate Cox regression analysis and multivariate Cox regres-
sion analysis were implemented to identify independent
prognostic predictors of OS. All statistical tests were two-
tailed, and p < 0.05 were considered statistically significant.

RESULTS

Patient cohort

The flow diagram of this study is shown in Figure 1. A total
of 502 patients with LUSC from the TCGA-LUSC database
and 69 patients with LUSC from the GEO dataset were
finally included in this study.

Identification of ferroptosis-related DEGs in the
TCGA cohort

In total, 240 specific FRGs were identified with intersections
of the transcription profile in the TCGA-LUSC dataset and
the FerrDb database, of which 155 genes were upregulated
and 85 downregulated. Then, 111 ferroptosis-related DEGs
were identified based on the TCGA dataset, including
72 upregulated genes and 39 downregulated genes (Figure 2).

Establishment and validation of the prognostic
signature

A total of 488 LUSC patients from the TCGA database were
included in the training set. Based on the transcription pro-
file of ferroptosis-related DEGs, 20 FRGs were found

3238 DIAO ET AL.

https://www.r-project.org


associated with the prognosis of LUSC patients in univariate
Cox regression and Table 1 demonstrates the general profile
of survival associated FRGs in LUSC. Then, LASSO regres-
sion analysis was applied to establish a prognostic model
using the expression profile of the 20 genes, and a 16-gene
signature was developed according to the optimal value of λ
(Figure 3(a),(b)). After extracting the coefficient values, the
risk score formula was presented in the format mentioned
above. Consequently, a prognostic FRGs-based signature for
LUSC patients was established.

The risk score of each patient in the training set was
calculated based on the formula, and patients were strati-
fied into a low- or high-risk group according to the deter-
mined median cutoff value (Figure 3(e)). Survival analysis
showed that the survival rate of patients from the high-risk
group was significantly lower than the low-risk group
(p < 0.001, Figure 3(c)). The signature also showed an
acceptable discrimination performance with AUCs of 0.679
and 0.666 at 3- and 5-year follow-up in the training set
(Figure 3(d)). Figure 3(f) showed that an increase in risk
score was associated with increasing number of patients
had a risk of poor prognoses. In brief, patients in the high-
risk group were more likely to encounter death earlier. The
expression levels of the FRGs which were included in sig-
nature were also performed in Figure 3(g).

To validate the robustness of the signature developed
from the training set, patients from the GEO cohort were

also stratified into a high- or low-risk group based on the
median value generated from the same FRGs filtrated from
the training set (Figure 4(c)). Similar to the results from the
TCGA cohort, an obvious separation was shown in the
Kaplan–Meier survival curve of the validation set (p < 0.001,
Figure 4(a)). Further, Figure 4(b) illustrated similar expres-
sion levels of FRGs, compared to the TCGA cohort, and the
risk plots also demonstrated remarkably different survival
statuses between two risk groups (Figures 4(c),(d)).

Gene set enrichment analysis

The predictive power of the 16-FRGs signature was associated
with the biological function of these FRGs in LUSC. To explore
the underlying mechanism, we conducted GSEA based on the
selected FRGs incorporated in the signature to identify the
enriched KEGG pathways and GO terms. KEGG terms
(Figure 5(a)) mainly including ferroptosis, peroxisome
proliferator-activated receptors (PPAR) signaling pathway,
fluid shear stress, and atherosclerosis as well as nucleotide-
binding oligomerization domain (NOD)-like receptor signaling
pathway were significantly enriched. Particularly, the enriched
ferroptosis term was in consistency with the biological function
of FRGs filtered by this study. As shown in Figure 5(b), GO
enrichment analysis indicated enhanced activity of several bio-
logical processes or molecular functions such as response to

F I G U R E 1 The flow chart of this study. TCGA,
The Cancer Genome Atlas; GEO, gene expression
omnibus; DEGs, differentially expressed genes
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endoplasmic reticulum stress, positive regulation of lipid locali-
zation, positive regulation of apoptotic signaling pathway, cel-
lular response to starvation, DNA-binding transcription
activator activity, and cargo receptor activity.

Difference of tumor infiltrating immune cells
between risk groups

The discrepancies presented in tumor infiltrating immune
cells in the TCGA cohort among the high- and low-risk
groups were explored to reveal the correlation between the
tumor immune microenvironment and the FRGs-based
prognostic signature. The results illustrated that abundances
of resting memory CD4+ T cells, resting natural killer (NK)

cells, monocytes, activated dendritic cells, and neutrophils
were significantly enriched (p < 0.05) in the high-risk group
compared to the low-risk group. In contrast, the abundances
of naive B cells, CD8+ T cells, activated memory CD4+ T
cells, follicular helper T cells, and M1 macrophages in the
high-risk group were markedly lower than the low-risk
group (p < 0.05) (Figure 5(c)).

Construction and performance assessment of
the nomogram based on the ferroptosis-related
gene signature

The risk score generated from the FRGs-based signature and
other clinical candidate predictors were tested using the
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univariate and multivariate Cox regression algorithm in the
training set. All variables that were significant (p < 0.05) in
the multivariate analysis were included in the model. Forest
plots were performed to visualize the p-value, confidence
interval (CI), and hazard ratio (HR) generated from Cox
regression analyses (Figure 6(a),(b)). Finally, we developed a
nomogram to predict the 3- and 5-year overall survival
using the risk score calculated from the FRGs-based signa-
ture and the T stage based on the American Joint Commit-
tee on Cancer (AJCC) TNM staging system (Figure 6(c)).

Based on the median risk score calculated from the
nomogram, patients from the TCGA cohort were stratified
into high- and low-risk groups. Figure 7(a) indicated that
patients in the high-risk group had significantly shorter OS
than those of the low-risk group (p < 0.001), and was con-
firmed in the validation set (p < 0.001, Figure 7(b)).

ROC analyses indicated adequate discrimination power
with an AUC of 0.717, and 0.685 at 3- and 5-year follow-up
(Figure 8(a)). Additionally, the calibration plot demon-
strated good agreement between the model prediction and
actual observation in the training set (Figure 8(b),(c)). Fur-
thermore, the results of DCA showed that most part of the
dashed curve was above the two solid lines (gray and black),
demonstrating higher net benefits (Figure 8(g)). In other
words, the nomogram demonstrated promising value as a
clinical decision-making tool. Likewise, this prognostic
model also showed satisfying discrimination, calibration,
and clinical usefulness in the GEO cohort (Figure 8(d)–
(f),(h)).
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F I G U R E 3 Development of the prognostic signature based on 16 ferroptosis-related genes (FRGs) in the training set. (a,b) LASSO regression analysis
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T A B L E 1 The characteristics of ferroptosis-related genes in LUSC
(univariate Cox regression analysis)

Gene HR HR.95L HR.95H pa

CP 1.005 1.001 1.010 0.011

CAV1 1.004 1.001 1.007 0.009

ATF3 1.007 1.001 1.013 0.025

HELLS 0.875 0.797 0.961 0.005

PLIN2 1.013 1.001 1.026 0.030

TFRC 0.999 0.997 1.000 0.036

RRM2 0.987 0.976 0.999 0.032

MUC1 1.003 1.000 1.006 0.022

ARRDC3 1.011 1.001 1.020 0.029

ACSL5 1.015 1.002 1.029 0.021

DUSP1 1.002 1.001 1.003 0.007

JUN 1.004 1.001 1.007 0.004

EPAS1 1.005 1.000 1.009 0.032

ROS1 1.040 1.012 1.06 0.004

MAP1LC3C 1.236 1.076 1.420 0.003

ENPP2 1.022 1.001 1.044 0.037

ALOX5 1.017 1.004 1.029 0.008

TP63 0.997 0.994 1.000 0.028

SLC39A8 1.020 1.006 1.035 0.006

SLC7A5 1.002 1.000 1.005 0.030

Abbreviations: HR, hazard ratio; LUSC, lung squamous cell carcinoma.
ap-values were obtained from the univariate Cox regression analysis of overall survival
(OS) in The Cancer Genome Atlas (TCGA) cohort.
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terms. (b) GSEA in gene ontology (GO) terms. (c) The difference of tumor-infiltrating immune cells among risk groups as defined by the FRG-based
signature

3242 DIAO ET AL.



DISCUSSION

Over the past several years, ferroptosis has gained con-
siderable attention from researchers. This newly discov-
ered type of cell death process is characterized by the
excessive accumulation of iron-dependent lipid hydro-
peroxides.17 Dysregulation in iron hemostasis leads to
excessive iron accumulation in cells and may activate fer-
roptosis.33 Over these years, this unique pattern of
programmed cell death has become the focus of numer-
ous studies and increasing evidence has illustrated that
this process is highly recognized as a promising thera-
peutic strategy for various kinds of cancer types, includ-
ing ovarian cancer and hepatocellular carcinoma.34,35

However, limited studies have focused on the specific

role of ferroptosis in LUSC as well as its potential mecha-
nism and biological function.

In the present study, 278 ferroptosis-related genes and
two mRNA expression profiles of LUSC patients (TCGA-
LUSC and GSE73403) were identified. In the TCGA cohort,
111 ferroptosis-related DEGs were identified between LUSC
samples and normal samples. Then, univariate Cox regres-
sion analysis indicated that there were 20 genes associated
with OS among the DEGs, and LASSO regression finally
identified 16 FRGs (CP, CAV1, ATF3, HELLS, PLIN2,
TFRC, RRM2, ARRDC3, ACSL5, JUN, ROS1, MAP1LC3C,
ENPP2, ALOX5, TP63, and SLC7A5) which were used to
develop the ferroptosis-related gene signature. The potential
mechanism of these FRGs were diverse, for example, deple-
tion of CP promoted erastin- and RSL3-induced
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ferroptosis.36 Overexpression of CAV1 led to augmented
ferroptosis susceptibility through high extracellular regu-
lated kinases (ERK) pathway activation.37 Knockout of
ATF3 suppressed erastin-induced ferroptosis and lipid per-
oxidation.38 HELLS inhibited ferroptosis by activating lipid
metabolism-associated genes.22 Knockdown of PLIN2 facili-
tated ALOX15 higher expression and acceleration of fer-
roptosis.39 Upregulation of TRFC promoted ferroptosis by
increasing the intracellular iron load.40 RRM2, JUN, and
TP63 were found to increase cellular resistance against fer-
roptosis by regulating the synthesis, utilization, and regener-
ation of glutathione.41–43 A previous study indicated that
overexpression of ENPP2 could inhibit erastin-induced

ferroptosis.44 ALOX5 led to ferroptosis through mediating
lipid peroxidation.45 Solute carrier family 7 member
5 (SLC7A5) belongs to the solute carrier family, which could
induce ferroptosis by selective oxidation of esterified phos-
phatidylethanolamines.46 Subsequent Kaplan–Meier survival
analyses verified the prognostic value of the 16 FRGs signa-
ture in the training set and validation set. The survival rates
between the two risk groups stratified according to the prog-
nostic signature were remarkably different. Moreover, the
signature also showed adequate discriminatory accuracy for
patients with LUSC.

To explore the potential mechanisms by which the
FRGs-based signature effectively stratifies LUSC patients,

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1−Specificity

Se
ns

it
iv

it
y

 AUC of 3 year OS: 0.717
AUC of 5 year OS: 0.685

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Nomogram-Predicted Probability of 3-Year OS

A
ct

ua
l 3

−Y
ea

r 
O

S

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Nomogram-Predicted Probability of 5-Year OS

A
ct

ua
l 5

−Y
ea

r 
O

S

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1−Specificity

Se
ns

it
iv

it
y

AUC of 3 year OS: 0.770
AUC of 5 year OS: 0.861

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Nomogram-Predicted Probability of 3-Year OS

A
ct

ua
l 3

−Y
ea

r 
O

S

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Nomogram-Predicted Probability of 5-Year OS

A
ct

ua
l 5

−Y
ea

r 
O

S

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Threshold probability

N
et

 b
en

efi
t

None
All
Nomogram

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Threshold probability

N
et

 b
en

efi
t

None
All
Nomogram

a b c

d e f

g h

F I G U R E 8 Assessment of a nomogram based on selected clinical factors and the risk scores generated from the ferroptosis-related gene signature.
(a) Time-dependent receiver operating characteristic (ROC) curve for predicting overall survival (OS) of the nomogram in the training set. (b,c) Calibration
curve evaluating the predictive accuracy of the nomogram in the training set at 3-year survival (b) at 5-year survival (c). (d) Time-dependent ROC curve for
predicting OS of the nomogram in the validation set. (e,f) calibration curve evaluating the predictive accuracy of the nomogram in the validation set at 3-year
survival (e) at 5-year survival (f). (g) Decision curve analysis (DCA) evaluating the clinical usefulness of the nomogram in the training set. (h) DCA
evaluating the clinical usefulness of the nomogram in the validation set

3244 DIAO ET AL.



GSEA analysis demonstrated significant activity of multiple
pathways mediated by FRGs incorporated in the signature.
KEGG pathway analysis illustrated that FRGs were signifi-
cantly enriched in the ferroptosis, PPAR signaling pathway,
fluid shear stress, and atherosclerosis as well as NOD-like
receptor signaling pathway, with the exception of mitophagy
in animals. Ferroptosis is recognized as a novel treatment
strategy to inhibit tumor development in various tumors
including lung cancer. Because of the association between
ferroptosis regulators and chemotherapy resistance or
immunotherapeutic effects, it is reasonable to utilize
ferroptosis-related drugs to assist tumor therapy. The FRGs
identified in this study may serve as promising targets in
treating patients with solid malignant tumors.47 Addition-
ally, PPARs involve in specific biological functions such as
metabolic homeostasis, differentiation, cell proliferation,
and apoptosis.48 PPAR-γ ligands could inhibit tumor growth
and induce apoptosis of lung cancer cells.49 Furthermore,
NOD-like receptors may play an important role in the
innate immune system and are considered as promising tar-
gets in cancer immunotherapy.50 Moreover, GO analysis of
these selected FRGs showed that genes were mainly enriched
in the following biological functions: response to endoplas-
mic reticulum stress, positive regulation of lipid localization,
positive regulation of apoptotic signaling pathway, cellular
response to starvation, DNA-binding transcription activator
activity, and cargo receptor activity. Despite the numerous
evidence of ongoing endoplasmic reticulum stress in many
forms of cancer, whether these processes ultimately inhibit
or promote tumor growth in patients remains a field of fur-
ther research.51 Besides, localization and accumulation of
lipid droplets in cancers suggest related organelles as poten-
tial targets for cancer therapy and are also associated with a
poor outcome in cancer patients.52,53

When investigating the correlation of the FRGs-based
signature with the immune status of tumors, we found that
the abundances of naive B cells, CD8+ T cells, activated
memory CD4+ T cells, follicular helper T cells, and M1
macrophages were significantly lower in the high-risk group
compared to the low-risk group, suggesting that the LUSC
patients in the high-risk group may have worse immune
function and immune status. A previous study indicated
that CD8+ T cells could induce ferroptosis in tumor cells,
and the immune system can regulate ferroptosis susceptibil-
ity to suppress tumorigenesis.25 Broderick et al. also revealed
that memory CD4+ T cells which constitutively present in
the microenvironment of lung cancer could be mobilized by
IL-12 to proliferate and kill tumor cells.54 Furthermore,
since M1 macrophages may possess inflammatory and anti-
tumorigenic features, high abundance of M1 macrophages
in tumor could indicate increase OS in patients with
NSCLC.55 In general, the dysregulation of tumor immune
microenvironment may take responsibility for the discrep-
ancy in survival prognosis among the risk groups identified
by the prognostic FRGs-based signature.

In the present study, we also developed a nomogram
based on selected clinical factors and the risk scores which

were generated from FRGs-based signature to better predict
prognosis in LUSC patients. The performance of this model
was evaluated and externally validated. To our best knowl-
edge, this has been the first study that developed FRGs-
based signature and nomogram to predict prognosis in
LUSC. However, several limitations in our study should be
considered. First, it was a retrospective study based on the
data from public databases, some information may be
unavailable. Second, the molecular mechanisms of LUSC
could not be fully demonstrated without in vitro and in vivo
experiments. Therefore, further research is urgently
warranted to validate these findings.

In conclusion, a signature based on ferroptosis-related
genes was constructed and provide potential biomarkers for
prognostic prediction in LUSC. The treatment targeting fer-
roptosis might be a novel promising therapeutic alternative
for patients with LUSC.
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