
RESEARCH ARTICLE

Ischemia-reperfusion injury in a rat

microvascular skin free flap model: A

histological, genetic, and blood flow study

Alberto Ballestı́nID
1*, Javier G. Casado2, Elena Abellán1, F. Javier Vela1,
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Abstract

Ischemia reperfusion injury is associated with tissue damage and inflammation, and is one

of the main factors causing flap failure in reconstructive microsurgery. Although ischemia-

reperfusion (I/R) injury is a well-studied aspect of flap survival, its biological mechanisms

remain to be elucidated. To better understand the biological processes of ischemia reperfu-

sion injury, and to develop further therapeutic strategies, the main objective of this study

was to identify the gene expression pattern and histological changes in an I/R injury animal

model. Fourteen rats (n = 7/group) were randomly divided into control or ischemia-reperfu-

sion group (8 hours of ischemia). Microsurgical anastomoses were objectively assessed

using transit-time-ultrasound technology. Seven days after surgery, flap survival was evalu-

ated and tissue samples were harvested for anatomopathological and gene-expression

analyses.The I/R injury reduced the survival of free flaps and histological analyses revealed

a subcutaneous edema together with an inflammatory infiltrate. Interestingly, the Arginase 1

expression level as well as the ratio of Arginase 1/Nitric oxide synthase 2 showed a signifi-

cant increase in the I/R group. In summary, here we describe a well-characterized I/R ani-

mal model that may serve to evaluate therapeutic agents under reproducible and controlled

conditions. Moreover, this model could be especially useful for the evaluation of arginase

inhibitors and different compounds of potential interest in reconstructive microsurgery.

Introduction

Microsurgical free-tissue transfer has become a common practice in reconstructive surgery to

provide an efficient approach to restore the form and function after complex tissue defects due

to trauma injuries or after oncological resections. The loss of skin, muscle and even bone espe-

cially after avulsion or amputation injuries or after tumor resections in the head, neck, trunk

or extremities, represent reconstructive challenges for surgeons. Microsurgical reconstructions

with composite or single free-tissue transfers are ideal options to cover these three-dimen-

sional defects [1,2]. Well-perfused tissues are required to fill the defect, providing functional

and aesthetic outcomes.
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Although literature from previous studies shows that the final success rate of microsurgical

free flap transfer is 90–95% [3,4,5,6,7,8,9], up to 25% of transferred flaps need revision because

of complications [10,11,12,13]. These postoperative complications can be due to surgical prob-

lems (i.e., technical errors, prolonged tissue ischemia or venous congestion) [14,15], or the

pathological condition of the patient (i.e., diabetes, hypertension or radiated patient)

[16,17,18].

One of the most studied biological processes affecting flap survival is ischemia-reperfusion

injury [3,4,19], which may lead to complete flap failure. In fact, it is important to note that,

even partial flap necrosis leads to suboptimal aesthetic and functional results [20].

During last two decades, several research studies attempted attenuation of ischemia-reper-

fusion injury using different compounds and molecules [21,22,23,24,25,26]. Most of the stud-

ies have shown positive or promising results in preclinical settings [21,22,27,28] and some

clinical trials are being conducted in this field (clinicaltrials.gov identifiers NCT01905501 and

NCT03535623).

Any free flap transfer includes a period of ischemia followed by reperfusion. The ischemic

interval lasts from completion of flap harvesting till the end of the microvascular anastomoses.

When the ischemic period exceeds the tolerance of the tissue, an apoptotic/necrotic process is

initiated. Additionally, a wide range of pathophysiological events occurs within the tissue after

reperfusion [6,19,23]. Reactive oxygen species have been shown to trigger reperfusion injury

and lead to recruitment of proinflammatory neutrophils in ischemic tissues [20].

The incidence of complications after flap transfer necessitates better understanding of the

pathophysiological processes of ischemia reperfusion injury, which are associated with differ-

ent biological/physiological processes such as metabolic dysfunction, cell death, hypoxia,

inflammation and apoptosis or necrosis [29]. Gene expression analysis of a translational I/R

model is crucial for evaluation of these biological processes and potential targets for therapeu-

tic interventions.

Animal models are of major importance in understanding the pathophysiology of various

biological processes in humans at the cellular and molecular levels [30,31]. Appropriate animal

models are essential to predict the value and effect of novel therapeutic approaches and to

assess the efficacy of new drugs [32]. With this background, the main objective of this study

was to describe a clinically relevant model appropriate to conduct preclinical studies in the

field of ischemia-reperfusion injury in reconstructive microsurgery.

Aiming at this, we firstly optimized the microsurgical and anatomical approach to harvest

the free flap model. Secondly, the patency of the microvascular anastomoses was assessed

using transit-time ultrasound technology. Third, post-mortem analyses were carried out to

evaluate the histological changes. Finally the gene expression analysis was performed for a set

of genes involved in inflammation, oxidative stress, angiogenesis and apoptosis.

The analysis of inflammatory-related genes was focused on Th1/Th2 cytokines (Interleukin

1 beta, Interleukin 6, Interleukin 10, Tumor Necrosis Factor) as well as on M1/M2-related

mRNA expression (Arginase 1, Nitric Oxide Synthase 2), which has been found to be closely

involved with ischemia reperfusion [33] and ischemic heart failure [34]. In the case of angio-

genesis, this analysis was limited to the quantification of angiopoietin-2 (widely described in

myocardial infarction and cerebral ischemia) [35,36], Fibroblast growth factor 2 and Vascular

endothelial growth factor A (both related to hindlimb ischemia models) [37,38]. For oxidative-

stress related genes, the analysis was focused on Superoxide dismutase 1 and Hypoxia-induc-

ible factor 1, alpha subunit. In the case of Hypoxia-inducible factor 1, alpha, it has been shown

to be differentially expressed in the context of microsurgical free muscle tissue transfer [39,40]

and Superoxide dismutase 1 has been evaluated in an animal model for flap survival evaluation

[41]. Finally, the analysis of apoptosis-related genes included the analysis of Caspase 3, Caspase
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9, B-cell CLL/lymphoma 2. These proteins have a key role in the regulation of apoptosis

[42,43], being frequently used to evaluate ischemia induction in animal models [44,45,46].

In summary, here we describe a well-characterized I/R animal model for the evaluation of

therapeutic agents under reproducible and controlled conditions. This model could be espe-

cially interesting in reconstructive microsurgery and preclinical studies.

Materials and methods

Experimental design

Adult male Wistar rats (n = 14), weighing 290–350 g, were used in this study. The experimen-

tal procedures were approved by the ethical committee of animal experimentation of the Jesús

Usón Minimally Invasive Surgery Center and were in accordance with the welfare standards of

the regional government which are based on European legislation.

Previous to surgery, the rats were acclimatized in cages at 22–25˚C with food and water ad

libitum. All surgical procedures were performed under general inhalation anesthesia using

sevoflurane. Enrofloxacin (7.5 mg/kg/day during 5 days), a broad spectrum antibiotic, and

Meloxicam (1 mg/kg/day during 5 days), an anti-inflammatory and analgesic drug, were

injected subcutaneously in all the animals after completion of the procedures. All animals were

individually housed after surgery and postoperative protectors (patent number P201400272,

Spanish Patent and Trademark Office) were placed on them to impede self-mutilation and

injuries.

We used a caudal superficial epigastric skin free flap (3 × 6 cm) in our study. The surgical

procedures were performed in 14 animals, randomly divided into two groups. The raised flaps

in the animals of the control group (n = 7) did not suffer any ischemic insult (the vascular ped-

icle was not cut). The raised flaps in the ischemia-reperfusion group (n = 7) were subjected to

ischemia for 8 hours prior to revascularization (detailed in the flap model section).

Blood flow of the flap pedicle was measured using a transit-time ultrasound flowmeter and

microvascular probes (Transonic Systems Inc., Ithaca, NY) prior to repositioning of the skin

to its original site using 4/0 silk sutures following a simple interrupted pattern. Microsurgical

arterial and venous anastomoses were performed using 10/0 nylon sutures in the animals of

the ischemia-reperfusion group (I/R Group). After the surgery, pictures were taken for plani-

metric analysis.

Seven days post-surgery the rats were anesthetized again. Macroscopic pictures were taken

to assess the survival area of the flaps, then the flaps were raised again, the blood flow was eval-

uated, and the flaps were divided for histopathological and quantitative reverse transcription

polymerase chain reaction (RT-qPCR) analysis. Then, the animals were euthanized by rapid

intracardiac injection of KCl (2 meq/kg, KCl 2M), under general inhalation anesthesia, accord-

ing to the ethical committee recommendations. A schematic representation of the experimen-

tal design is shown in Fig 1.

Flap model

The experimental study was based on a free inguinal cutaneous flap [47]. A 3 x 6-cm skin flap

was raised, being perfused by the left superficial caudal epigastric vessels. After dissection of

the vascular pedicle, ligatures with 8/0 nylon sutures were performed on the proximal caudal

femoral vessels, on the lateral circumflex femoral vessels and on the saphenous artery and vein

[48] (Fig 2).

After completing the dissection, the flaps of the control group were relocated free of ische-

mia in their original site. The ischemia was induced in I/R group by cutting the artery and vein

of the axial pattern flaps. Heparinized saline solution was used to perfuse the flap and thus
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remove stagnant blood from the microcirculation. Then, microsurgical anastomoses were

Fig 1. Experimental design.

https://doi.org/10.1371/journal.pone.0209624.g001

Fig 2. Flap model. A) Ligatures of lateral circumflex femoral artery and vein. B) Ligatures of proximal caudal femoral

artery and vein. C) Ligatures of saphenous artery and vein. Dotted lines represent the microsurgical anastomoses sites.

https://doi.org/10.1371/journal.pone.0209624.g002

Ischemia-reperfusion injury in a rat microvascular skin free flap model

PLOS ONE | https://doi.org/10.1371/journal.pone.0209624 December 27, 2018 4 / 16

https://doi.org/10.1371/journal.pone.0209624.g001
https://doi.org/10.1371/journal.pone.0209624.g002
https://doi.org/10.1371/journal.pone.0209624


performed (10/0 nylon suture) and removal of the clamps was done after the 8h of ischemia

period.

Vascular patency assessment using transit-time ultrasound technology

Transit-time ultrasound flowmeter and microvascular probes (Transonic Systems Inc., Ithaca,

N.Y.) were used to verify blood flow patency intraoperatively after the end-to-end anastomoses

performed in the animals of the I/R group and also to verify again the blood flow one week

after the procedure. Blood flow was also measured in the control group the day of the surgery

and at the end of the study.

Macroscopic measurement of the flap survival

A macroscopic follow-up of the flaps was carried out evaluating the changes. Seven days after

surgery, the surviving flap areas were measured by image analysis using the ImageJ software

(program designed for scientific multidimensional images). The areas of survival and necrosis

were measured in cm2 and the percentage of viable area was calculated as: (cm2 of viable area/

cm2 of total flap area) x 100.

Sample harvesting

On day 7, animals were anesthetized for tissue sample harvesting. All flaps were divided in 6

quadrants of 2 cm x 1.5 cm (Fig 3). Tissue samples from quadrants Q1 were fixed with 4%

paraformaldehyde and were paraffin-embedded. Tissues were sliced at 4 μm for histological

analysis. Tissue samples from quadrants Q4 were cryopreserved at -80˚C till tested for RT-

qPCR analysis. Greater tissue damage was found in the distal area of flaps. We focused our

analyses on Q1 and Q4, which are the more distal quadrants to the flap vascular pedicle.

Histological analysis

Paraffin-embedded samples were processed for hematoxylin/eosin staining and for Masson’s

Trichrome staining. All preparations were visualized, scored and evaluated under light micros-

copy. A blinded histopathological evaluation of all samples was done.

Fig 3. Tissue sampling diagram. The quadrants Q1 were excised and fixed in 4% paraformaldehyde for further

histological analysis. The quadrants Q4 were cryopreserved at -80˚C for gene expression analysis.

https://doi.org/10.1371/journal.pone.0209624.g003
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The severity of inflammation for each sample was scored according to the presence of neu-

trophils, eosinophils, lymphocytes, plasma cells, macrophages, mastocytes and giant cells as

follows: (1) Mild/without formation of aggregates, (2) Moderate/occasional aggregates, (3)

Intense/packed. The severity of tissue damage was scored for necrosis, edema, hemorrhage

and thrombosis as follows: (0) absent, (1) mild, (2) moderate, (3) intense. Fibrosis and vascular

proliferation were assessed from the Masson’s Trichrome slides and scored as follows: (1)

mild, (2) moderate and (3) intense.

Methodological gene selection

The selection of genes was performed according to Gene Ontology classification [49,50]. The first

selection criteria was based on the rat (Rattus norvegicus) genes that were involved in the following

biological processes with proved experimental evidence: response to ischemia (GO:0002931), reg-

ulation of inflammatory response (GO:0050729), regulation of angiogenesis (GO:0045766), regu-

lation of necrotic cell death (GO:0010940), regulation of execution phase of apoptosis (GO:1900

117), regulation response to oxidative stress (GO:0036473, GO:1902883, GO:1902884) and corni-

fication (GO:0070268). A total of 165 genes were obtained. Then, we investigated these genes that

regulate the same biological processes in humans (with proved experimental evidence), which

lead to selection of 55 genes. From those, we selected Arginase, iNOS, TNF-α, IL-1β, IL6 and IL10

for monitoring the inflammatory response. In order to analyze the regulation of angiogenesis, we

quantified VEGF, FGF and angiopoietin-2. Finally, HiF, SOD1, Bcl-2, Cas3 and Cas9 were used

to assess the necrosis/apoptosis and oxidative stress processes. Gusb and 18S ribosomal RNA were

used as housekeeping genes. Gene symbol, gene name, gene ID, Rat Genome Database (RGD) ref-

erence and ThemoFisher Assay ID Genes IDs are listed in Table 1.

RNA isolation, reverse transcription and real time polymerase chain

reaction

Tissues were disrupted and homogenized in 1 ml of TRI-Reagent (Sigma, St. Louis, MO,

USA). Then, chloroform was added and samples were incubated for 5–10 min at room

Table 1. List of selected genes belonging to inflammatory response, angiogenesis, necrosis/apoptosis and oxidative stress pathways.

Gene symbol (Gene name) Gene ID RGD ThemoFisher Assay ID

Angpt2 (Angiopoietin 2) Rn.138360 RGD:621861 Rn01756774_m1

Arg1 (Arginase 1) Rn.9857 RGD:2150 Rn00691090_m1

Bcl2 (B-cell CLL/lymphoma 2) Rn.9996 RGD:2199 Rn99999125_m1

Casp3 (Caspase 3) Rn.10562 RGD:2275 Rn00563902_m1

Casp9 (Caspase 9) Rn.32199 RGD:61867 Rn00581212_m1

Fgf2 (Fibroblast growth factor 2) Rn.31808 RGD:2609 Rn00570809_m1

Gusb (Glucuronidase, beta) Rn.3692 RGD:2772 Rn00566655_m1

Hif1a (Hypoxia-inducible factor 1, alpha subunit) Rn.10852 RGD:61928 Rn01472831_m1

IL1b (Interleukin 1 beta) Rn.9869 RGD:2891 Rn00580432_m1

IL6 (Interleukin 6) Rn.9873 RGD:2901 Rn01410330_m1

IL10 (Interleukin 10) Rn.9868 RGD:2886 Rn01644839_m1

Nos2 (Nitric oxide synthase 2, inducible) Rn.10400 RGD:3185 Rn00561646_m1

Rn18s (18S ribosomal RNA) Rn.1868 RGD:2189 Rn03928990_g1

Sod1 (Superoxide dismutase 1, soluble) Rn.6059 RGD:3731 Rn00566938_m1

Tnf (Tumor necrosis factor) Rn.2275 RGD:3876 Rn99999017_m1

Vegfa (Vascular endothelial growth factor A) Rn.1923 RGD:619991 Rn01511602_m1

https://doi.org/10.1371/journal.pone.0209624.t001
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temperature. After centrifugation of 15 min at 12,000 g, the aqueous phase was mixed with

500 μl of isopropanol and incubated at -80˚C for 20 min to precipitate the RNA. Consecutive

centrifugations and ethanol washings were performed. Finally, the pellets were resuspended in

RNase-free 0.1% DEPC water (Invitrogen).

The cDNA was synthesized using iScript Reverse Transcription Supermix (BioRad, Hercu-

les, CA, USA) from 1 μg of RNA in reverse transcription reaction for 20 min at 46˚C, after a

priming period of 5 min at 25˚C and followed by RT inactivation at 95˚C for 1 min. For qPCR

amplification, commercial gene expression assay kits were used (Thermo Fisher Scientific Inc.,

Waltham, MA, USA) according to manufacturer recommendations. The reaction was per-

formed using TaqMan probes in a QuantStudio 3 Real-Time PCR System (Applied Biosys-

tems, Thermo Fisher Scientific Inc.) and the products were quantified by fluorescent method

using 2-ΔCt expression with Gusb as housekeeping gene.

Statistical analysis

Statistical analyses were performed using SPSS 21 software (IBM Corp., Armonk, NY). All

data are expressed as the mean ± standard deviations. Shapiro–Wilk test was used to deter-

mine normality of each variable. For parametric variables, differences between means of two

groups were analyzed by a Student’s t-test and Levene’s test was used to evaluate the homoge-

neity of variance. For non-parametric variables, Mann-Whitney’s U test was used to determine

differences between groups. In all analyses, p-values <0.05 were considered to indicate statisti-

cally significant differences between groups.

Results

Vascular patency assessment using transit-time ultrasound technology

All 28 microsurgical anastomoses were patent 1 week after the surgery day. The results of

blood flow before the closure of the skin on the day of the surgery were 0.69 ± 0.26 mL/min for

arteries and 0.54 ± 0.17 mL/min for veins. One week later, the results were as follows:

0.88 ± 0.45 mL/min for arteries and 0.83 ± 0.45 mL/min for veins. No significant differences in

blood flow were detected between the groups.

Macroscopic measurement of the flap survival

Flap survival area in the control group was significantly higher than that in flaps that suffered 8

h of ischemic insult (p< 0.01). As shown in Fig 4, the flap survival area in control group was

84.11 ± 2.21%. In contrast, the flap survival area in the I/R group was 41.82 ± 15.99%.

Fig 4. Comparison of skin flap survival areas between groups by Student’s t-test (��p< 0.01) and representative

images at 1-week post-surgery.

https://doi.org/10.1371/journal.pone.0209624.g004
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Histological analysis

The histology of the distal flap area (Q1 quadrant from Fig 3) exhibited full-thickness skin

necrosis, structural damage, subcutaneous edema and a large number of infiltrated inflamma-

tory cells in all those flaps that suffered 8 hours of ischemia. In contrast, control skin flaps

showed much less inflammatory cell infiltration (Fig 5).

The histology scores showed that the level of infiltration of neutrophils in the control group

animals was significantly lower than that in the I/R group (p< 0.05). Also, a significant

increase in necrosis severity was found in the I/R group when compared with that in the con-

trol group (p< 0.05) (Table 2).

Gene expression analysis

Expression of genes related with inflammatory response, angiogenesis, necrosis/apoptosis and

oxidative stress was quantified in the harvested tissues (Q4 quadrant from Fig 3). No

Fig 5. Representative histological images. At day 7 post-surgery, the skin flaps of euthanized animals were fixed in 4% paraformaldehyde, paraffin-embedded, and

stained for hematoxylin-eosin (H&E) and Masson’s trichrome (MT). Horizontal bars represent 100 μm. The different skin layers are numbered: epidermis (1), dermis

(2) and adipose tissue (3).

https://doi.org/10.1371/journal.pone.0209624.g005
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significant differences were found between groups when we compared expression of the fol-

lowing inflammation-related genes: IL1b, IL6, IL10, Tnf and iNOS. Significant difference was

found for angiogenesis-related genes: angiopoietin-2, Fgf2 and Vegfa. Similarly, expression of

oxidative stress-related genes (SOD1, HiF1a) and apoptosis/necrosis-related genes (Cas3,

Cas9, Bcl2) did not show significant differences. Interestingly, our results demonstrated that

Arginase 1 as well as the Arginase 1/Nitric Oxide Synthase 2 ratio showed a significant increase

in expression in the I/R group (p<0.01) (Fig 6).

Discussion

Ischemia is inevitable in all microsurgical free flaps performed in reconstructive procedures

[40]. The ischemia period is closely related with an inflammatory response, which is acceler-

ated and augmented when the ischemic tissue is reperfused [4]. The process is dependent on a

complex interaction between a variety of inflammatory mediators [51].

In this work, we have tried to improve the characterization of an animal model to study

ischemia-reperfusion injury in the field of reconstructive surgery. The use of our refined pre-

clinical model will hopefully instill greater confidence in clinicians when deciding which com-

pounds are worthy of further investigation in preclinical or human clinical trials. The

characterization of this microsurgical model for preclinical research is based on five different

aspects: anatomy, ischemia-reperfusion injury induction, blood flow assessment, histology and

gene expression.

In our ischemia/reperfusion injury animal model, after the anatomical dissections, vascular

ligatures and anastomoses, hindlimb blood flow was not compromised in any animal. Further-

more, we did not observe any resulting pain or limp. In agreement with Kochi et al [48], our

research model left intact three collateral routes through intramuscular networks in the quad-

riceps femoris muscle, biceps femoris muscle and the medial thigh muscles including the

medial hamstring muscles and adductor muscles.

In our study, the surgical procedure was performed by microsurgical anastomoses to

induce I/R injury. Although it is a time-consuming procedure that requires fine microsurgical

skills, flaps undergoing anastomoses are more resistant to ischemia than those undergoing

clamping [52]. Moreover, our surgical methodology is more translatable to a clinical scenario

in free flap surgery.

Table 2. Histological scores in control and I/R groups. Differences were statistically analyzed using Student’s t-test for variables with a parametric distribution and

Mann-Whitney’s U-test for non-parametric variables. �p-values<0.05 were considered to indicate statistical significance.

Control I/R

Inflammatory-related cells Neutrophils 1.571 ±0.787 2.714 ±0.488 �

Eosinophils 1.000 ±0.000 1.000 ±0.000

Lymphocytes 1.429 ±0.535 1.143 ±0.378

Plasma cells 1.000 ±0.000 1.000 ±0.000

Macrophages 2.000 ±0.000 1.429 ±0.535

Mastocytes 1.143 ±0.378 1.000 ±0.000

Giant cells 1.286 ±0.488 1.143 ±0.378

Tissue damage parameters Necrosis 0.143 ±0.378 2.286 ±1.254 �

Edema 1.143 ±0.690 1.429 ±0.787

Hemorrhage 0.714 ±0.951 1.429 ±1.397

Thrombosis 0.286 ±0.488 0.857 ±0.900

Collagen deposition Fibrosis 1.571 ±0.535 1.714 ±0.756

Vascular proliferation 2.714 ±0.488 2.143 ±0.900

https://doi.org/10.1371/journal.pone.0209624.t002
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Fig 6. Quantitative expression of ischemia-reperfusion-related genes. At day 7 post-surgery, total RNA from the

skin flaps was isolated and qRT-PCR products were quantified by the 2-ΔCt method. Graphs represent the mean ± SD

of independently performed experiments. The results were organized by groups of genes related with the following

biological processes: A) Inflammatory response, B) Oxidative stress, C) Angiogenesis, and D) Necrosis/Apoptosis.

Data were statistically analyzed using Student’s t-test for variables with a parametric distribution and Mann-Whitney’s

U Test for non-parametric variables. Horizontal bars represent statistically significant differences (��p<0.01).

https://doi.org/10.1371/journal.pone.0209624.g006
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During the surgical procedures, we have measured the blood flow using transit-time ultra-

sound technology, which is a novel and objective method of evaluation of microsurgical anas-

tomoses [53,54]. Blood flow measurement is of crucial importance in microsurgery [55], as

part of the tissue damage due to ischemia is responsible for slowing down blood flow and caus-

ing thrombosis [56]. The widely used manual patency test demonstrates whether there is

blood flow through anastomoses sites, but it does not demonstrate the quality of the blood

flow [57]. Transit-time flow measurement allows a quantitative and objective assessment of

vascular function and helps to prevent failure of anastomoses [54,58,59]. Our research model

ensured in all animals a good microvascular perfusion after 8 hours of ischemia (no statistical

differences were observed). This test objectively demonstrated that our macroscopic, histologi-

cal and genetic results were neither influenced by blood perfusion differences nor by the

microsurgical technique, which is is essential to delineate valuable conclusions from our ische-

mia/reperfusion study.

The anatomopathological analysis of the free flaps at day 7 revealed infiltration of leuko-

cytes, structural damage and edema in all those flaps that suffered 8 hours of ischemia. Control

skin flaps had lower inflammatory cell infiltration than in the animals of I/R group (p< 0.05).

Furthermore, a significant increase in necrosis severity was found in I/R group when com-

pared with that in the control group (p< 0.05). These results are in agreement with those of

previous studies in the area of ischemia/reperfusion injury [20,47,60].

Once we identified the histological changes, we next aimed to characterize the gene expres-

sion pattern of tissue samples from the control and I/R groups. The main goals of this analysis

were to obtain an overview of the pathophysiology of ischemia reperfusion injury and to iden-

tify molecular biomarkers for preclinical studies and drug testing.

Interestingly, our analysis revealed the absence of significant changes in Th1/Th2 cytokine

levels, which may indicate that most probably that other Th1/Th2 cytokines (i.e., IFN-γ, IL-2

or IL-4) may have differences but they were initially excluded from this study. Regarding to

M1/M2–related mRNAs, the expression of Arginase 1 as well as the ratio Arginase 1/Nitric

Oxide Synthase 2 showed a significant increase in the I/R group. Arginase 1 is released by M2

macrophages to metabolize L-arginine into ornithine and urea, and its expression is widely

used as a classic M2 marker [61]. The significant increase of Arginase 1 expression may reflect

a macrophage polarization towards and anti-inflammatory phenotype, however, it is interest-

ing to note that the anatomopathological analysis demonstrated a decrease in the number of

infiltrated macrophages in the I/R group. Considering these two changes (decrease in the

number of infiltrating macrophages and increase of Arginase-1 expression), here we hypothe-

size that, in our experimental model, the I/R injury triggered the migration of M1 macro-

phages towards apoptotic and necrotic areas. Simultaneously, the viable tissue counteracted

the necrotic response retaining pro-regenerative M2 cells to promote tissue regeneration.

Additionally, the analysis of Arginase-1 expression in this I/R model could also be considered

a useful biomarker for proof of concept studies and for the development of efficient therapies,

but this aspect will be further discussed.

Apart from inflammatory-related genes, this study was also focused on three biological pro-

cess associated with I/R injury: angiogenesis, oxidative stress and apoptosis. As shown in the

results section, any significant difference was observed when these genes were compared

between groups. The absence of significant differences among groups could reflect the mainte-

nance of tissue homeostasis during ischemic insult in this I/R model. However, taking into

account our macroscopic and histopathological results in this animal model, we should also

consider the possibility that there are myriad genes that may have a key role in angiogenesis,

oxidative stress or apoptosis and were not included in the selected panel of genes in this study.
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Finally, it is important to highlight the relevance of the differential expression of Arginase 1

in the I/R free flap model. It is well known that the induction and activation of arginase is a

common event that occurs in the initial stage of ischemic events [62,63].

The hypoxia and ischemic conditions shift arginine to be metabolized to ornithine and

urea. This shift has been previously described in ischemic heart disease [63], renal ischemia-

reperfusion injury [64] as well as in neurovascular injury after retinal I/R [65].

Given that arginase and iNOS is tightly regulated by direct protein modification or by

induction of enzyme expression, our study was also focused on the simultaneous quantifica-

tion of iNOS and their ratio.

Conclusion

Our results demonstrated an imbalance of arginase/iNOS ratio (with a predominant arginase

activity), that could be interpreted as a biomarker to identify the initial phase of I/R injury in

the tissue. It is important to note the limitations of this study lies in the fact that there are

numerous genes that were not included in the qPCR analysis. In this sense, we should not

exclude the importance of other biomarkers such as miRNAs or siRNAs with key role in

angiogenesis, oxidative stress or apoptosis.

Additionally, it is important to point out the importance of this animal model to evaluate

different therapies to counteract ischemia-reperfusion injury in skin free flaps. In particular,

considering that arginase inhibition has been hypothesized as a promising therapeutic strategy

for the treatment of I/R injury [66,67], this animal model could be especially useful for preclin-

ical studies focused on the evaluation of arginase inhibitors such as NO scavengers or NOS

inhibitors for a clinically safe ischemia time in free flap surgery.
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