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Self-association of the APC tumor suppressor is 
required for the assembly, stability, and activity 
of the Wnt signaling destruction complex
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aDepartment of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213; bDepartment of Biology, 
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ABSTRACT  The tumor suppressor adenomatous polyposis coli (APC) is an essential negative 
regulator of Wnt signaling through its activity in the destruction complex with Axin, GSK3β, 
and CK1 that targets β-catenin/Armadillo (β-cat/Arm) for proteosomal degradation. The de-
struction complex forms macromolecular particles we termed the destructosome. Whereas 
APC functions in the complex through its ability to bind both β-cat and Axin, we hypothesize 
that APC proteins play an additional role in destructosome assembly through self-association. 
Here we show that a novel N-terminal coil, the APC self-association domain (ASAD), found in 
vertebrate and invertebrate APCs, directly mediates self-association of Drosophila APC2 and 
plays an essential role in the assembly and stability of the destructosome that regulates β-cat 
degradation in Drosophila and human cells. Consistent with this, removal of the ASAD from 
the Drosophila embryo results in β-cat/Arm accumulation and aberrant Wnt pathway activa-
tion. These results suggest that APC proteins are required not only for the activity of the 
destructosome, but also for the assembly and stability of this macromolecular machine.

INTRODUCTION
Canonical Wnt signal transduction is an evolutionarily conserved 
pathway from hydra to humans that plays essential roles in 
embryonic development and adult tissue maintenance by regu-
lating cellular differentiation, proliferation, and morphogenesis 
(Logan and Nusse, 2004; Guder et al., 2006). Loss or constitutive 
activation of the pathway is lethal during embryogenesis due to 

defects in proliferation and differentiation (Logan and Nusse, 
2004). In humans, inappropriate activation of Wnt signaling is as-
sociated not only with various types of cancer (colon, breast, and 
ovarian) but also with a myriad of other diseases, including dia-
betes, Alzheimer’s disease, and osteoporosis (Logan and Nusse, 
2004; Welters and Kulkarni, 2008; Clevers and Nusse, 2012; Kim 
et  al., 2013; Oliva et  al., 2013). Thus the tight control of Wnt 
signaling is critical for both normal development and tissue 
homeostasis.

In the absence of a Wnt ligand, the pathway is negatively regu-
lated by a complex of proteins called the destruction complex, 
which phosphorylates the key effector of the pathway, β-catenin 
(Armadillo in Drosophila; Cadigan and Peifer, 2009). Phosphorylated 
β-catenin (β-cat) is ubiquitinated by the β-TrCP ubiquitin E3 ligase to 
be degraded by the proteosome. Binding of the Wnt ligand to the 
coreceptor complex of Frizzled and LRP5/6 inactivates the destruc-
tion complex, allowing the accumulation and nuclear translocation 
of β-cat. Together with TCF/LEF-family transcription factors, β-cat 
activates transcription of Wnt target genes. Loss-of-function muta-
tions in components of the destruction complex lead to ligand-inde-
pendent accumulation of β-cat and the constitutive activation of 
Wnt target genes that play roles in proliferation, cell survival, and 
differentiation (Fodde, 2002; van de Wetering et  al., 2002; Chen 
et al., 2003; Komori et al., 2014).
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2012). Vertebrate APC (vAPC) can self-as-
sociate via multiple mechanisms and do-
mains. However, the precise role of APC 
self-association in normal destruction com-
plex function and the affects this has on 
cancer initiation and progression are un-
clear. Two self-association domains C-ter-
minal to the Armadillo (Arm) repeats in 
vAPC have been clearly implicated in APC’s 
normal cytoskeletal functions. The di-
merization coil ANS2 (Figure 1A) within the 
basic domain is required for APC’s actin 
nucleation function (Okada et  al., 2010), 
whereas a second oligomerization domain 
(OD-2; Figure 1A) can modulate the clus-
tering of APC at microtubule plus ends at 
the tips of membrane protrusions (Li et al., 
2008). N-terminal to the Arm repeats, vAPC 
can form coiled-coil–based dimers through 
an N-terminal coil (OD-1; Figure 1A), but 
the precise role of OD-1 in normal APC 
function is not well understood. The pres-
ence of multiple self-association sites within 
vAPC suggests that the protein may have 
the ability to form large oligomers in addi-

tion to dimers, although it is not clear whether this occurs in vivo.
The complexity of vAPC self-association prompted us to investi-

gate the role of APC self-association in the destructosome using the 
simpler and more tractable Drosophila APC2 as a model. Although 
neither Drosophila APC1 nor APC2 contains sequence homology to 
any of vAPC’s self-association domains, we and others have shown 
that Drosophila APC proteins do self-associate through an N-termi-
nal domain (Mattie et al., 2010; Zhou et al., 2011; Roberts et al., 
2012). Consistent with this, high levels of APC2 mutants lacking the 
central β-cat interaction domains (the 15– and 20–amino acid re-
peats) act as dominant negatives in Wnt signaling in the embryo 
(Roberts et al., 2011; Kunttas-Tatli et al., 2012). We predicted that 
this is because these mutants could associate with wild-type APC2 
through the N-terminal domain and compete for Axin binding 
through their intact SAMP repeats. Finally, our data suggested an 
unanticipated cooperativity between APC2 and APC1 in the de-
struction complex, which may be mediated through hetero-oli-
gomerization (Kunttas-Tatli et al., 2012).

To test the role of APC self-association in destruction complex 
function, we identified a novel N-terminal self-association domain in 
Drosophila APC proteins that appears to be conserved in all other 
APC proteins examined. Here we demonstrate that this APC self-
association domain (ASAD) is necessary for the assembly and stabil-
ity of the destructosome both in Drosophila S2 cells and in human 
SW480 colorectal cancer cells, and which in turn is essential for β-
cat/Arm degradation. Furthermore, we show that loss of APC2 self-
association in the Drosophila embryo leads to inappropriate activa-
tion of the Wnt signaling pathway due to loss of destructosome 
activity. These results suggest a novel role for APC proteins in the 
assembly and stability of the destructosome, in addition to their 
more established role in destructosome activity.

RESULTS
An N-terminal coil mediates the self-association 
of Drosophila APC proteins
To dissect the role of APC self-association in destructosome struc-
ture and function, we identified a novel self-association domain in 

Adenomatous polyposis coli (APC) is a colon cancer tumor sup-
pressor and an essential component of the destruction complex 
(McCartney and Näthke, 2008). Approximately 80% of all inherited 
and sporadic forms of colon cancer are associated with APC mutation 
(Polakis, 2012). The initiation of APC-dependent colorectal cancer is 
primarily due to the loss of destruction complex activity and the inap-
propriate activation of Wnt targets (Polakis, 2007), but APC’s roles in 
cytoskeletal regulation may also contribute. APC is a core compo-
nent of the destruction complex together with Axin and the kinases 
GSK3β and CK1. The cytoplasmic destruction complex appears to 
form macromolecular particles, or puncta, we termed the “destructo-
some” (Kunttas-Tatli et al., 2012; also known as the degradasome, 
Mendoza-Topaz et al., 2011; or Axin complex, Li et al., 2012). Despite 
its functional significance and abundant study, the inner workings of 
the destructosome and the precise role of APC in this molecular ma-
chine are enigmatic. Several hypotheses for APC’s destruction com-
plex function have been proposed. Owing to its large size and the 
presence of many putative protein–protein interaction domains, APC 
was initially believed to act as a scaffold. However, because Axin can 
bind directly to all of the core components of the destruction com-
plex, including APC, β-cat, GSK3β, and CK1, as well as Dishevelled 
and the LRP5/6 coreceptor (Hart et  al., 1998; Ikeda et  al., 1998; 
Kishida et al., 1999; Mao et al., 2001; Ha et al., 2004), it is a stronger 
candidate for scaffolding function. Later studies proposed that APC–
β-cat interactions are required 1) for phosphorylated β-cat to be rec-
ognized by the ubiquitination complex as a part of a catalytic cycle 
(Kimelman and Xu, 2006), 2) to protect β-cat from rapid dephospho-
rylation by PP2A upon β-cat release from the destruction complex (Su 
et al., 2008), and 3) to increase the activity of the destruction complex 
when cellular levels of β-cat are high (Ha et al., 2004). However, re-
cent work has also called into question the importance of a direct 
APC–β-cat interaction for destruction complex function altogether 
(Yamulla et al., 2014). It has also been suggested that APC functions 
downstream of β-cat phosphorylation by mediating β-cat’s ubiquit-
ination by β-TRCP (Yang et al., 2006; Li et al., 2012).

In addition, APC self-association may contribute to both de-
struction complex function and dysfunction (Kunttas-Tatli et  al., 

FIGURE 1:  The ASAD is a conserved N-terminal coil. (A) Schematic representation of human 
APC and Drosophila APC2. ANS2, actin nucleation sequence 2; Arm repeats, Armadillo repeats 
(blue); ASAD, APC self-association domain (orange); MCR, mutation cluster region; 15Rs, 
15–amino acid repeats (pink); 20Rs, 20–amino acid repeats (purple). (B) Sequence alignment of 
ASAD between human, Xenopus, and Drosophila APC proteins (*identical; [:], conserved 
substitution; [.], semiconserved substitution). (C) The ASAD coil fits into the classic heptad 
repeat (abcdefg) motif, where a and d are hydrophobic, e and g are charged, and b, c, and f 
tend to be polar amino acids (Gruber and Lupas, 2003). The four residues changed to proline in 
the APC2-ASADPro mutant are indicated.
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Neither mCh-APC2-∆ASAD nor mCh-APC2-ASADPro was able to 
coprecipitate untagged APC2-FL, demonstrating that the N-termi-
nal coil is necessary for self-association (Figure 2B). Because human 
OD-1 mediates dimer formation through a direct protein–protein 
interaction (Joslyn et al., 1993), we asked whether ASAD mediates 
direct APC2–APC2 binding. Consistent with that model, APC2-N 
(Figure 2A) self-associated in a yeast two-hybrid (Y2H) assay, and this 
interaction was disrupted in both ASAD mutants (APC2-N-ΔASAD 
and APC2-N-ASADPro; Figure 2C).

Previous work from our lab and others indicated that both human 
and Drosophila APCs (APC&APCL and APC1&APC2, respectively) 
can heteroassociate through an N-terminal domain and that this 
complex may collaborate in the destructosome (Mattie et al., 2010; 
Kunttas-Tatli et al., 2012; Schneikert et al., 2013). Because Drosophila 
APC1 also lacks OD-1 but contains the ASAD (Figure 1B), we asked 
whether the ASAD could mediate the association between 
Drosophila APC1 and APC2. Consistent with this hypothesis, mCh-
APC1-N (aa 1–904) coprecipitated APC2-FL but not APC2-∆ASAD 
(Figure 2D). In contrast, a point mutation in the second Arm repeat 
of APC2 (N175K) that disrupts protein binding to the Arm repeats in 
human APC (hAPC; Watanabe et al., 2004), did not interfere with 
APC1–APC2 complex formation (Figure 2D).

Given the close proximity of the ASAD to the highly structured 
Arm repeats (Figure 1A), we asked whether deleting the ASAD do-
main disrupts the folding of these repeats. The crystal structure of the 
human APC Arm repeats was unaffected by the absence of sequences 
containing the ASAD (Zhang et al., 2012), suggesting that deletion of 
the ASAD alone is unlikely to disrupt Arm-repeat binding interac-
tions. To test this directly, we examined the interaction between the 
Drosophila homologue of a known human APC Arm-repeat-binding 
protein, kinesin-associated protein 3 (KAP3; Jimbo et al., 2002), and 

the N-terminal half of Drosophila APC2. Previously we demonstrated 
that the N-terminal region of APC2 containing the Arm repeats 
(amino acids [aa] 1–490) mediates self-association (Zhou et al., 2011; 
Roberts et al., 2012), although it does not share sequence conserva-
tion with either OD-1 or OD-2 of human APC (Figure 1A). OD-1 
mediates the formation of homodimers through a parallel coiled-
coil (Joslyn et  al., 1993). On this basis, we predicted that the 
Drosophila APC proteins would contain an N-terminal coil to pro-
mote self-association. We scanned the region of APC2 N-terminal 
to the Arm repeats (aa 1–112) using COILS to identify sequences 
likely to adopt a coiled-coil conformation (Lupas et al., 1991). Using 
these predictions and the recently solved crystal structure of the re-
gion in vAPC (Morishita et al., 2011; Zhang et al., 2012), we identi-
fied a putative coil fitting the classic heptad repeat model (Figure 
1C; Gruber and Lupas, 2003) residing immediately N-terminal to the 
Arm-repeats (aa 70–100; Figure 1, A and B). Of interest, this N-ter-
minal coil appears to be conserved in all bilateria APC proteins ex-
amined, whereas OD-1 was primarily present in the deuterostome 
lineage (Figure 1B and Supplemental Figure S1). Thus we desig-
nated this novel N-terminal coil the ASAD and hypothesized that it 
could mediate self-association of Drosophila APC proteins.

To test this hypothesis, we generated a mutant version of 
Drosophila APC2 lacking this region (APC2-∆ASAD; Figure 2A). In 
addition, we disrupted potential coiled-coil formation by changing 
four key hydrophobic leucine residues to proline (APC2-ASADPro; 
Figures 1C and 2A). To determine whether this domain is necessary 
to mediate APC2 self-association, we performed immunoprecipita-
tion assays from transiently transfected Drosophila S2 cells. Previ-
ously we showed that mCherry-tagged (mCh) APC2-FL (full length) 
and APC2-N (aa 1–490) could coprecipitate untagged APC2-FL, 
unlike mCh-APC2-C (aa 491–1067; Zhou et al., 2011; Figure 2B). 

FIGURE 2:  Removal of ASAD disrupts APC self-association. (A) Schematic representation of Drosophila APC2 and APC1 
constructs used in the study. (B) mCherry (mCh)-tagged full-length APC2 protein (red arrow) coimmunoprecipitates 
untagged full-length protein (black arrow). mCh-APC2 ASAD mutants (both deletion and point mutant) and mCh-
APC2-C (red arrows) fail to coimmunoprecipitate untagged APC2-FL (black arrows in 2–4). (C) Yeast two-hybrid 
experiments demonstrated that APC2-N can interact directly with APC2-N. Deletion of the ASAD (APC2-N-ΔASAD) or 
disruption of the potential coiled coil (APC2-N-ASADPro) abolishes this interaction. (D) mCh-APC1-N 
coimmunoprecipitates untagged APC2-FL protein but fails to coimmunoprecipitate the APC2-ΔASAD mutant (black 
arrow). APC2-N175K contains a mutation in the Arm repeats and retains the mCh-APC1-N interaction. (E) mCh-KAP3 
coimmunoprecipitates both full-length APC2 and the APC2-ΔASAD mutant (black arrows). CL, cell lysate; DL, depleted 
lysate; P, pull down.
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by 96 h postinduction. This suggests that APC2 primarily promotes 
puncta assembly rather than accelerates their growth rate.

To determine whether the APC2 ASAD mediates puncta assem-
bly, we coexpressed the APC2 self-association mutants (APC2-
∆ASAD and APC2-ASADPro) with Axin-GFP (Figure 3A, 5 and 6). 
Expression of these self-association mutants produced a dramatic 
change in destructosome morphology. Puncta that incorporated the 
APC2 self-association mutants appeared smaller, fragmented, and 
dispersed throughout the cytoplasm (Figure 3A, 5 and 6, and B). 
The striking alteration in destructosome morphology precluded 
quantification of their size at medium and high expression levels 
(Supplemental Figure S3).

To rule out the possibility that this is a cell type–specific effect, 
we examined the role of APC2 in destructosome assembly in SW480 
human colon cancer cells. Similar to Drosophila S2 cells, expression 
of Axin-GFP in SW480 cells led to the formation of discrete cyto-
plasmic puncta (Figure 4A1; Fiedler et al., 2011). In the presence of 
Drosophila APC2-FL, Axin-GFP puncta decreased in number and 
increased in size (Figure 4A, 1 and 2, and B), suggesting that the role 
of APC proteins in destructosome assembly is conserved in human 
cells. Consistent with this hypothesis, expression of APC2-∆ASAD 
resulted in fragmented, dispersed Axin-GFP puncta (Figure 4A3), 
suggesting that APC2 self-association is also required for destructo-
some assembly in human cells.

APC2 self-association is necessary for destructosome 
activity in SW480 cells
Next we asked whether the defects in destructosome assembly and 
morphology affect destructosome function. SW480 cells express a 
truncated version of human APC (Nishisho et al., 1991), resulting in 
elevated levels of β-cat due to loss of destruction complex activity 
(Munemitsu et al., 1995). This has made SW480 cells a useful tool to 
investigate the mechanisms of destructosome function. Expression 
of Drosophila APC2-FL can compensate for the loss of hAPC function 
and suppress the elevated levels of β-cat (Figure 4, C and D; Roberts 
et al., 2011). Although APC2-∆ASAD still contains all other domains 
required for APC’s destructosome function, including the β-cat and 
Axin interaction domains (20Rs and SAMP repeats; Roberts et al., 
2011), it only moderately suppressed the high levels of β-cat protein 
(Figure 4, C3 and D). This suggests that the fragmented destructo-
somes do not effectively target β-cat for destruction, and APC self-
association is required for proper destruction complex activity. In 
SW480 cells expressing APC2-∆ASAD, β-cat levels appear to de-
crease in both the cytoplasm and the nucleus (Figure 4C3). Although 
APC2-∆ASAD–mediated destruction is likely decreasing the overall 
level of β-catenin protein, APC2-∆ASAD may also be reducing nu-
clear β-cat by tethering it in the cytoplasm (Roberts et al., 2011).

Owing to elevated β-cat levels, SW480 cells also display high 
levels of Wnt target gene expression, which can be detected using 
the well-established TOP-Flash luciferase assay (Korinek et  al., 
1997). Expression of Drosophila APC2-FL significantly reduced the 
high level of reporter gene expression in SW480 cells (Figure 4E; 
Roberts et al., 2011), consistent with the strong reduction in β-cat 
levels (Figure 4, C and D). APC2-∆ASAD and APC2-ASADPro were 
significantly impaired in their ability to suppress β-cat–mediated 
transcription (Figure 4E and unpublished data). Collectively these 
results suggest that APC2 self-association plays a functionally sig-
nificant role in destructosome activity in SW480 cells.

APC2 self-association stabilizes the destructosome
One simple model for the role of APC self-association in destructo-
some assembly and morphology is that APC–APC interactions, 

APC2-∆ASAD. Deletion of the ASAD did not interfere with the ability 
of KAP3 to coprecipitate with APC2 (Figure 2E). In fact, KAP3 ap-
peared to coprecipitate better in the absence of APC2 self-associa-
tion, suggesting that APC2 self-association may negatively regulate 
Arm-repeat–mediated protein–protein interactions.

Disruption of APC2 self-association leads to defects in the 
assembly of destructosome puncta in both Drosophila and 
human cells
The destructosome is typically visualized as cytoplasmic Axin puncta 
that are observed both endogenously and when Axin is overex-
pressed in cell culture and intact tissues (Fagotto et  al., 1999; 
Schwarz-Romond et al., 2007b; Faux et al., 2008; Fiedler et al., 2011). 
Overexpressed Axin tagged with green fluorescent protein (GFP), 
FLAG, red fluorescent protein, myc, or hemagglutinin (HA) localizes 
to cytoplasmic puncta in a variety of vertebrate and fly cultured cells, 
including S2, SW480, HeLa, MDCK, and Cos-7. Overexpressed Axin 
has been shown to rescue β-cat destruction in colorectal cancer cell 
lines (Behrens et al., 1998; Hart et al., 1998; Nakamura et al., 1998; 
Roberts et al., 2011), and in Drosophila embryos, cytoplasmic Axin-
GFP puncta become cortical when cells activate the Wnt pathway, 
suggesting that these overexpression puncta are responsive to Wnt 
pathway activation (Mendoza-Topaz et al., 2011). Axin can self-asso-
ciate via its C-terminal DIX domain (also called DAX), which is essen-
tial for its function in β-cat destruction and for its ability to form 
puncta (Schwarz-Romond et al., 2007a,b). It was recently shown that 
APC is essential for destructosome assembly, as in the absence of 
APC, Axin failed to form functional destructosomes (Mendoza-Topaz 
et al., 2011). Like Axin, we predicted that APC2 contributes to the 
formation of the destructosome through its ability to self-associate 
and form larger macromolecular assemblages (Kunttas-Tatli et  al., 
2012). To test this hypothesis, we coexpressed Axin and APC2 in 
Drosophila S2 cells. When expressed alone, both Axin-GFP (Figure 
3A1) and Axin-HA (Supplemental Figure S2A) formed cytoplasmic 
puncta, albeit smaller in the case of Axin-HA. Thus the GFP tag may 
have a slight effect on puncta size. On the other hand, mCh-APC2-FL 
localized primarily to the cell cortex (Figure 3A2; Zhou et al., 2011). 
When coexpressed with Axin-GFP, mCh-APC2-FL redistributed and 
localized primarily in the cytoplasmic Axin puncta (Figure 3A3). Dele-
tion of the Axin-binding SAMP repeats from APC2 (APC2-∆SAMP) 
restored cortical localization of APC2 (Figure 3A4), indicating that 
the primary mechanism for APC2’s incorporation into Axin puncta is 
its direct association with Axin (Roberts et al., 2011).

Consistent with the hypothesis that APC proteins promote the 
assembly of the destructosome, coexpression of Axin-GFP with 
mCh-APC2-FL resulted in the formation of fewer, larger Axin-GFP 
puncta (Figure 3B). Because expression levels could influence this 
effect, we used FACS to sort the cells into three different groups 
based on expression of Axin-GFP (high, medium, and low) and as-
sessed puncta size and number. Consistent with our observations, 
Axin formed fewer, larger puncta in the presence of APC2-FL at all 
three expression levels (Figure 3B). To test the hypothesis that APC2-
FL promotes the formation of larger puncta by increasing the rate of 
puncta growth, we examined puncta from cells expressing Axin-GFP 
alone or coexpressed with APC2-FL over time (Supplemental Figure 
S2B). Axin-GFP expressed alone formed puncta even at the lowest 
detectable expression level a few hours after induction, suggesting 
that puncta formation is not the result of significant overexpression. 
Cells expressing Axin-GFP alone contained puncta that reached 
their maximum size by 24–48 h postinduction, and at 96 h, these 
cells contained many smaller puncta. In contrast, cells coexpressing 
Axin and APC2 displayed large, and often single, misshapen puncta 
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turnover of Axin-GFP is higher with a smaller immobile fraction of 
Axin-GFP.

For these FRAP experiments, we chose similarly sized puncta for 
each condition and kept the bleached area constant. For the ∆ASAD 
mutant, where the puncta can be interconnected at higher expres-
sion levels, we chose cells with relatively low expression, for which 
we could see isolated, individual puncta. To compare the Axin-GFP 
fluorescence recovery among the three conditions, we first normal-
ized for the starting postbleach fluorescence by calculating ∆F/F for 
each time point in each condition and plotted this over time 
(Figure 5, A–C). To compare the rates of recovery, we compared the 
mean slope of the regression lines for each condition (Figure 5D). 
Axin-GFP/APC2-∆ASAD puncta displayed a significantly greater 
slope than either Axin-GFP alone or Axin-GFP/APC2-FL puncta. 
Conversely, Axin-GFP/APC2-FL puncta exhibited a significantly 

together with APC–Axin interactions, provide stability to the com-
plex. When APC self-association is blocked but APC retains its in-
teraction with Axin and the complex, destructosome stability is re-
duced, leading to both fragmentation and loss of activity. To test 
this hypothesis, we used fluorescence recovery after photobleach-
ing (FRAP) to assess the turnover of Axin-GFP within the puncta in 
S2 cells. If this hypothesis is correct, we predicted that cells ex-
pressing both Axin and APC2-FL would have a relatively large im-
mobile fraction and a relatively small free mobile pool of Axin-GFP 
within the puncta. We expected that cells expressing Axin-GFP and 
only endogenous APC2 would exhibit Axin-GFP dynamics similar 
to that of cells overexpressing APC2-FL, although we may observe 
a larger immobile fraction of Axin-GFP in cells with additional 
APC2-FL. Conversely, we predicted that cells expressing Axin and 
APC2-∆ASAD would have a larger mobile fraction, as the rate of 

FIGURE 3:  Disruption of APC2 self-association leads to defects in destructosome assembly in live Drosophila S2 cells. In 
all cases, Axin is GFP tagged and APC2 is mCherry tagged. Dotted lines indicate cell boundaries. (A) When expressed 
alone in S2 cells, Axin-GFP oligomers can be visualized as cytoplasmic puncta (1), and mCh-APC2-FL (2) is primarily 
cortical. When coexpressed, mCh-APC2-FL colocalizes in cytoplasmic puncta with Axin-GFP (3). Removal of APC2’s Axin 
interaction domains (APC2-∆SAMP) disrupts this colocalization (4). ASAD mutants (both ΔASAD and ASADPro) 
colocalize with Axin-GFP, but cells coexpressing these proteins exhibit defects in puncta assembly and morphology 
(5, 6). (B) Quantification of puncta size in S2 cells expressing Axin alone and coexpressing Axin and APC2 in cells sorted 
into three expression level categories (high, medium, and low) by FACS using Axin-GFP. Images were taken under the 
same imaging conditions, and puncta size was determined using Imaris. Puncta were then divided into three classes 
based on area (micrometers squared). Coexpression with APC2-FL is associated with fewer, larger puncta at all three 
expression levels (see puncta/cell ratios). Coexpression with the ASAD mutants showed increase in the number of small 
puncta only in the low category. Owing to the disrupted puncta morphology in ASAD mutants, we were only able to 
assess the puncta size in this category. Two-tailed z test demonstrates significant differences between different groups. 
Scale bar, 10 μm.
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hand, disrupting APC2 self-association appears to drive Axin-GFP 
toward the opposite end of its dynamic spectrum (Figure 5D).

After ∼400 s postbleach, Axin-GFP in Axin-GFP/APC2-∆ASAD 
puncta had recovered the greatest fluorescence, reflecting a rela-
tively large mobile pool (Figure 5E). although the degree of fluores-
cence recovery was more similar between Axin-alone puncta and 
Axin-GFP/APC2-FL puncta, they were significantly different, with 
Axin-GFP/APC2-FL puncta displaying the weakest recovery and 
therefore the smallest mobile fraction. Taken together, these data 
suggest that APC2 promotes stability of the destructosome through 
its ability to self-associate.

reduced slope compared with the other conditions (Figure 5D). Axin-
alone puncta exhibited the greatest variation in rate of recovery; 
some puncta displayed Axin-GFP/APC2-FL–like properties, whereas 
others exhibited Axin-GFP/APC2-∆ASAD–like properties (Figure 5A). 
Cells expressing Axin-GFP alone express significantly more Axin 
than the low level of endogenous APC2 in these cells (Zhou and Mc-
Cartney, unpublished data). This suggests that at a high Axin:APC2 
ratio, Axin turnover rates are not well controlled and fluctuate as a 
consequence. When the Axin:APC2 ratio is closer to 1, as in the case 
of Axin-GFP/APC2-FL puncta, Axin-GFP is stabilized, and the overall 
rates of recovery decrease significantly (Figure 5D). On the other 

FIGURE 4:  APC2 self-association is necessary to degrade β-cat and regulate Wnt target gene expression in SW480 
cells. (A) Similar to S2 cells, Axin-GFP forms cytoplasmic puncta (1) and mCh-APC2 colocalizes with Axin-GFP in SW480 
cells (2). Coexpression of APC2-ΔASAD with Axin-GFP does not disrupt colocalization (3) but is also associated with 
defects in puncta assembly and morphology. (B) Similar to S2 cells, coexpression of Axin with APC2-FL in SW480 cells 
leads to fewer, larger puncta. Two-tailed z test demonstrates significant differences between the two conditions. 
(C, D) Expression of full-length Drosophila APC2 was sufficient to suppress the elevated levels of β-cat (2) (compare to 
the empty vector control [1]) in SW480 cells. The APC2-ΔASAD mutant moderately suppressed the elevated β-cat levels 
(3). (E) In SW480 cells, expression of APC2-FL strongly suppressed activation of Wnt targets as assessed by TOP/Flash 
activity compared with the empty vector control. Expression of the APC2-ΔASAD mutant suppressed target gene 
activation compared with the empty vector control but exhibited significantly less activity than APC2-FL. Student’s t test 
revealed significant differences between the conditions in D and E. (F) mCh-tagged APC2-FL (2) and APC2-ΔASAD (3) 
were expressed at equal levels in SW480 cells used in the TOP/Flash assays. Scale bar, 10 μm.
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FIGURE 5:  APC2 self-association stabilizes the destructosome. (A–C) Plots of ΔF/F for each condition. Similar-sized 
Axin-GFP puncta were selected, and the recovery of individual bleached spots is shown in unique colors for each 
condition. Black lines are regression lines. Regression analysis indicates that the relationship between time and 
fluorescence varies by condition. ANOVA for regression lines, p < 0.0001; Tukey–Kramer HSD posthoc test for each pair, 
p < 0.05. (D) To compare the rate of recovery, we calculated the slope of the regression line for each individual sample 
and compared the means of these slopes for each condition. Means are plotted with SEM whiskers; Tukey–Kramer HSD 
posthoc test for each pair, p < 0.05. (E) To compare the difference in mobile and immobile fractions at the end of the 
experiment, time-zero normalized degree of recovery at our last time point (384.12 s) for the three conditions was 
determined. Means are plotted with SEM whiskers; Tukey–Kramer HSD posthoc test for each pair, p < 0.05. (F) We 
observed a significant difference in the number of puncta merging and separating events (a measure of puncta 
dynamics) between Axin-GFP/APC2-ΔASAD puncta compared with Axin-GFP or Axin-GFP/APC2-FL puncta. This 
behavior is rarely observed in Axin-GFP and Axin-GFP/APC2-FL puncta. Scale bar, 2 μm. Student’s t test, p < 0.001 
between the mutant and either of the other conditions. (G) Axin-GFP/APC2-ΔASAD puncta are highly dynamic. The 
white arrow tracks the merging of two puncta. Time stamp in minutes:seconds.
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Drosophila embryo. We expressed GFP-tagged APC2-FL or APC2-
∆ASAD in the embryo under the native APC2 promoter (McCartney 
et al., 2006) and found that the two tagged proteins are expressed 
at levels comparable to that of the endogenous wild-type protein 
(Figure 6A). As previously shown, APC2-FL protein expressed in 
APC2-null (APC2g10) embryos is enriched at the cell cortex of 
embryonic epithelia similar to endogenous APC2 (McCartney et al., 
1999; Zhou et al., 2011). However, APC2-∆ASAD exhibited limited 
enrichment at the cortex (Figure 6B), consistent with our observa-
tions in S2 cells (Supplemental Figure S4). We previously demon-
strated that the localization of APC2 to the cell cortex requires both 
the N-terminal region (aa 1–490) and the most-C-terminal 30 amino 
acids (C30; Figure 1A; Zhou et al., 2011). Because we have now 
demonstrated that the function of C30 requires APC2 dimerization 

In addition to the increased mobility of Axin-GFP in cells 
coexpressing APC2-∆ASAD, we observed that the fragmented 
puncta themselves were remarkably dynamic (Supplemental Movies 
S1–S3). Furthermore, the fragmented puncta frequently split 
and merged with neighboring puncta (Figure 5, F and G), behavior 
rarely observed in cells expressing Axin alone or Axin and APC2-FL 
(Figure 5F).

APC2 self-association is required for destructosome activity 
in the Drosophila embryo
Because APC2 self-association is necessary for proper β-cat regula-
tion in cultured cells, we asked whether APC2 self-association is also 
necessary for destructosome activity and the negative regulation of 
Wnt signaling in the more physiologically relevant context of the 

FIGURE 6:  APC2 self-association is required to negatively regulate Wnt signaling in the Drosophila embryo. 
(A) Immunoblot of 0- to 6-h embryonic lysates demonstrates that the level of expression of GFP-APC2-FL and GFP-
APC2-ΔASAD is comparable to that of endogenous APC2. (B) GFP-APC2-FL is enriched at the cell cortex with Arm in 
embryonic epithelia, whereas GFP-APC2-ΔASAD is primarily cytoplasmic. Scale bar, 10 μm. (C, D) Expression of 
GFP-APC2-FL rescued the lethality of APC2-null (APC2g10) embryos and restored the wild- type cuticle phenotype, 
whereas the APC2-ΔASAD mutant only moderately rescued the lethality and cuticle phenotype. The numbers in D 
indicate the phenotypic average for each genotype (scoring criteria as in McCartney et al., 2006). Cuticle images are 
shown at the same scale. (E) Representative embryos showing Arm and En protein expression in wild-type (1) and APC2-
null (2) embryos. APC2-FL restored wild-type Arm levels and the En expression domain of APC2-null (APC2g10) 
embryos. APC2-ΔASAD weakly suppressed Arm accumulation and restored a weak Arm stripe pattern in the epidermis. 
The En expression domain remains expanded in APC2-null embryos expressing APC2-ΔASAD. Scale bar, 25 μm.
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exhibited elevated Arm (Figure 6E4), and the en expression domain 
remained expanded (Figure 6E4). In conclusion, the APC2-∆ASAD 
protein supports only weak destructosome activity in the Drosophila 
embryo, consistent with our results in SW480 cells (Figure 4).

Drosophila expresses a splice form of APC2 lacking the ASAD
Although we showed that self-association is necessary for APC2’s de-
structosome function, self-association may interfere with other as-
pects of APC function and may be regulated. Although little is known 
about the regulation of self-association via OD-1 in human APC, 
splice variants of APC that alter that domain have been reported 
(Santoro and Groden, 1997; Carson et al., 2004). In addition, exon 9, 
containing the human ASAD, can be alternatively spliced (Groden 
et al., 1991; Joslyn et al., 1991) Remarkably, we identified a splice 
variant of APC2 in the modENCODE database that selectively re-
moves a region within the ASAD. We confirmed at the mRNA level 
that both isoforms are found in 4- to 8-h Drosophila embryos, albeit 
at dramatically different levels (Supplemental Figure S5). These data 
suggest that a monomeric form of APC2 may have a functional role 
during development.

DISCUSSION
As core members of the β-cat destruction complex, APC proteins are 
indispensable negative regulators of Wnt signaling. APC loss leads 
to unregulated accumulation of β-cat and Wnt pathway activation. 
Previous studies focusing on APC’s binding to β-cat and Axin demon-
strated the importance of these interactions for APC’s destructosome 
activity (Roberts et al., 2011; Kunttas-Tatli et al., 2012). Here we re-
veal a novel role for APC proteins in destructosome function by pro-
moting destructosome assembly and stability through self-associa-
tion. Although it has been known for almost 20 yr that APC proteins 
are essential negative regulators of Wnt signaling (Munemitsu et al., 
1995), novel roles for APC in this process are still being uncovered.

Role of APC in the formation 
of the destructosome
Axin is believed to drive destructosome as-
sembly through polymerization via its C-ter-
minal DAX domain (Fiedler et al., 2011). Fur-
thermore, Axin’s direct binding to all other 
core members of the complex suggests that 
its primary function is scaffolding (Luo and 
Lin, 2004). Surprisingly, Mendoza-Topaz et al. 
(2011) demonstrated that APC is essential for 
Axin complex assembly in vivo; without APC, 
Axin failed to form functional destructo-
somes in Drosophila embryos. They sug-
gested two scenarios to explain this. First, 
Axin is unstable without APC, resulting in the 
observed reduction in Axin protein that may 
be below the minimum concentration 
needed for polymerization. Second, APC is a 
cofactor clustering Axin via its multiple Axin 
interaction domains (SAMPs), APC self-asso-
ciation, or both. Our data support the model 
that APC promotes destructosome assembly 
by stimulating Axin polymerization via APC 
self-association (Figure 7). With APC2, Axin 
formed larger and more stable structures in 
cultured cells (Figures 3 and 4). Disrupting 
APC2 self-association by removing the ASAD 
had no effect on APC2–Axin interactions but 

(McCartney and Molinar, unpublished data), it is not surprising that 
the ASAD is necessary for cortical localization. We previously 
showed that cortical localization of APC2 is not required to regulate 
Wnt signaling (Zhou et al., 2011); therefore, lack of APC2-∆ASAD 
cortical localization will not affect its destructosome activity.

Between 4 and 6 h after egg laying, Wnt signaling is activated in 
a subset of ectodermal cells within each developing segment. Cells 
receiving Wnt produce smooth cuticle, whereas cells not receiving 
Wnt produce microtubule- and actin-based apical projections that 
result in the formation of cuticular outgrowths called denticles. Thus 
Wnt signaling results in a segmentally repeated pattern of denticles 
and smooth cuticle on the ventral surface of the embryo (like 
Figure 6D, APC2-FL; APC2g10). This segmentally repeated pattern is 
reflected in the accumulation of Arm in “stripes” of cells receiving 
Wnt (Figure 6E) and in the patterned expression of the Wnt target 
gene engrailed (en; Figure 6E). Embryos activating Wnt signaling 
uniformly throughout the ectoderm, as in the null APC2g10, were 
embryonic lethal (0% hatch rate to the larval stage; Figure 6C), pro-
duced excess smooth cuticle at the expense of denticles (Figure 6D), 
accumulated Arm uniformly across the ectoderm (Figure 6E2), and 
exhibited an expanded expression domain of en (Figure 6E2). Addi-
tion of APC2-FL into the null background rescued all of these de-
fects to a virtually wild-type phenotype (Figure 6, C–E). In contrast, 
expression of APC2-∆ASAD in the APC2 null suppressed, but failed 
to fully rescue, these defects. Whereas 98% of APC2-FL; APC2g10 
embryos hatched (Figure 6C), only 39% of APC2-∆ASAD; APC2g10 
embryos hatched to the larval stage (Figure 6C). The 61% of APC2-
∆ASAD; APC2g10 embryos that failed to hatch exhibited a sup-
pressed phenotype compared with the null alone (Figure 6D); den-
ticle bands were restored but were frequently incomplete, and the 
overall size of the embryo increased but not to the level of APC2-FL 
rescue (Figure 6D). Consistent with the incomplete rescue, cells not 
receiving the Wnt signal in the APC2-∆ASAD; APC2g10 embryos still 

FIGURE 7:  Model for the role of APC self-association in promoting Axin puncta formation. 
(A) Normal Axin polymers form via the weak DAX interactions (thin lines) in the absence of APC. 
(B) Larger Axin polymers form via the stronger interaction between APC’s SAMP repeats and 
Axin’s RGS domains (thick lines) due in part to APC’s ability to self-associate (unknown binding 
affinity; wavy lines). (C) Smaller Axin polymers form in the absence of APC self-association.

A- Normal Axin polymers in the absence of APC

B- Larger Axin polymers in the presence of APC

C- Smaller Axin polymers in the absence of APC self-association 
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both cases, blocking self-association disrupts the assembly of these 
prominent macromolecular assemblages.

It is unclear what role OD1 plays in normal APC function. 
Clinically relevant APC C-terminal truncations forming dimers with 
wild-type APC through OD1 in heterozygous cells may promote 
chromosomal instability and aneuploidy by interfering with microtu-
bule functions (Green and Kaplan, 2003; Green et al., 2005). Of in-
terest, a splice isoform of APC that skips exon-1 encoding OD1 is 
enriched in mouse and human brain and heart (Thliveris et al., 1994). 
A splice variant of hAPC that deletes a portion of the ASAD has also 
been observed (Groden et al., 1991; Joslyn et al., 1991), and there 
are some reports of colorectal cancer–associated mutations in this 
region that may result in increased production of the ASAD-lacking 
isoform (van der Luijt et al., 1995). However, the data are limited 
and the functional consequences unclear. Our intriguing observa-
tion that Drosophila express an alternate splice form of APC2 lack-
ing the ASAD (Supplemental Figure S5) suggests that Drosophila 
may be a relevant and simple system in which to examine the func-
tional consequences of these alternative APC isoforms.

Although the function of APCm is unknown, our observations 
suggest that it may complex more efficiently with Arm repeat–
binding proteins such as KAP3 (Figure 2E). Similarly, the binding of 
OD2 and the C-terminal domains of vAPC (aa 2545–2843) de-
creased Kap3 association with the Arm repeats (Li and Näthke, 
2005). This suggests that APCm may exhibit enhanced binding to 
a broad array of Arm repeat partners, including KAP3, Asef, IQGAP, 
and the PP2A regulatory subunit (Seeling et al., 1999; Kawasaki, 
2000; Jimbo et al., 2002; Watanabe et al., 2004). The cytoskeletal 
functions of the first three suggest that APCm may have enhanced 
cytoskeletal roles. APC’s association with PP2A is believed to be in 
the context of the destructosome (Seeling et al., 1999), suggesting 
that APCm may also have destructosome function.

MATERIALS AND METHODS
Constructs and molecular biology
Site-directed mutagenesis primers were designed, and a standard 
PCR-based mutagenesis protocol was followed. The resulting APC2 
mutants were cloned into the pGEM-T Easy (Promega, Madison, WI) 
shuttle vector and then into the EcoRI site in pRmHa-3 (metallothion-
ein promoter vector for S2 cells), pCS2(+) (cytomegalovirus promoter 
vector for SW480 cells), and pCaSpeR-2 modified to contain the na-
tive APC2 promoter and GFP for expression in whole Drosophila 
(McCartney et al., 2006). The mutant constructs were confirmed by 
sequencing. The specific amino acid positions of the Drosophila APC2 
(FlyBase annotation symbol, CG6193) fragments are as follows: APC2-
ΔASAD, 1–69 plus 100–1067; APC2-ASADPro, Pro81Leu, Pro84Leu, 
Pro94Leu, Pro98Leu; APC2-N175K, Asn175Lys APC2-N, 1–490; 
APC2-C, 491–1067; APC2-ΔSAMP, 1–930 plus 1037–1067; APC1-N, 
1–904. Full-length Kap3 (aa 1–945) was PCR amplified from DGRC 
cDNA clone LD13052 and shuttled through pGEM-T Easy to EcoR1 
of pRmHa-3. For the Axin-GFP construct, GFP-Gateway-3X STOP cas-
sette was inserted downstream of the pMT promoter in pMT V5/His 
(Invitrogen, Carlsbad, CA). Full-length Axin was then cloned into the 
pCR8 Gateway entry vector and Gateway cloned into the pMT GFP-
W destination vector. For the Axin-HA construct, 3XHA-Gateway-3X 
STOP cassette was inserted downstream of the pMT promoter in pMT 
V5/His (Invitrogen), and full-length Axin was then cloned into the 
EcoRI and Xho sites of the pMT HA destination vector.

For validation of the newly identified APC2 isoform, forward 
(5′-GCACAACATCGTCCACAATAATCC-3′) and reverse (5′-GCTC-
CCAGTTCGCACATAGTCTG-3′) primers were used to amplify 
the region of APC2 containing the putative intron encompassing 

resulted in fragmented and significantly more dynamic Axin puncta 
(Figures 3–5). One might expect that loss of APC2 self-association 
would result in Axin-GFP puncta similar to those in cells lacking ad-
ditional APC2. We predict that APC2-∆ASAD fragments the Axin 
puncta because monomeric APC2 (APC2m) retains its interaction 
with Axin and interferes with Axin polymerization (Figure 7). This 
might be due to the stronger APC–Axin interaction (KD = 50 nM in 
vitro) versus the weaker Axin–Axin interaction (KD = 5–20 μM in vitro; 
Lee et al., 2003; Schwarz-Romond et al., 2007b). This dramatic affinity 
difference further supports the idea that a cofactor like APC is re-
quired to efficiently polymerize the less abundant Axin (Figure 7; Lee 
et al., 2003).

Our data also suggest that once APC drives Axin polymerization, 
it stabilizes Axin in the complex (Figure 5). Because of Axin’s ability 
to bind the other core components of the complex, stabilized Axin 
may in turn stabilize the presence of GSK3β and CK1, leading to 
more efficient β-cat phosphorylation and degradation. This is con-
sistent with our functional data in cultured cells and during 
Drosophila embryogenesis; the expression of APC2m resulted in 
significant reduction, but not complete loss, of destructosome ac-
tivity (Figures 4 and 6). The low level of APC1 in the embryo does 
support destructosome function (Ahmed et al., 2002; Akong et al., 
2002; Kunttas-Tatli et al., 2012), and we predict that this activity is 
due in part to APC1’s association with the more abundant APC2 
through the ASAD and through APC1’s self-association. Taken to-
gether, we conclude that whereas APC self-association is not strictly 
essential for destructosome activity, it is necessary for normal func-
tion. Because even slight elevations in Wnt signaling due to the 
reduction of negative regulation can lead to dramatic defects 
(McCartney et al., 2006; Komori et al., 2014), we predict that maxi-
mally efficient destructosome activity is essential for both normal 
development and to prevent Wnt signaling–mediated cancers.

Our findings appear to contrast with some previous work about 
the role of APC’s N-terminal domains in destructosome function. 
Overexpression of hAPC internal fragments containing at least three 
20Rs but lacking OD1, OD2, and the Arm repeats rescues β-cat de-
struction in SW480 cells (Rubinfeld et al., 1997; Roberts et al., 2011; 
Li et al., 2012). This appears to suggest that APC’s N-terminal do-
mains are dispensable. In contrast, overexpression of analogous 
dAPC2 fragments or dAPC2 N-terminal deletions failed to rescue 
destructosome function in SW480 cells (Roberts et al., 2011; un-
published data). Consistent with these results and our findings here, 
we previously demonstrated that the N-terminus of APC2 is essen-
tial in vivo (Roberts et  al., 2011, 2012). Moreover, hypomorphic 
point mutations in the Arm repeats of dAPC2 (McCartney et  al., 
1999, 2006) and mouse studies of colon cancer (Crist et al., 2010) 
suggest that the N-terminus is functionally important. It is unclear 
how internal fragments of hAPC rescue destruction, whereas the 
analogous Drosophila fragments do not; however, this collection of 
in vivo data provides a compelling argument that the N-terminus of 
APC is essential for β-cat destruction in Drosophila and mammals.

The self-association of APC proteins significantly affects 
their functions
Previously the only functions ascribed to APC dimerization were in 
cytoskeletal regulation. ANS2 in the basic domain is necessary for 
dimerization and APC’s actin nucleation activity (Okada et al., 2010). 
Phosphorylation enhances OD-2 dimer formation, which in turn en-
hances the assembly of microtubule-associated APC clusters at the 
cell periphery (Li et al., 2008). Dispersing these APC clusters by dis-
rupting OD-2 reduced cell migration. The potential parallels in APC 
function in these clusters and in destructosomes are intriguing; in 
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SW480 cell culture, transfections, and immunofluorescence
SW480 cells were cultured in DMEM with high glucose (DMEM-H) 
supplemented with 10% heat-inactivated and 1× Pen/Strep/glu-
tamine. Cells were maintained at 37°C and 5% CO2. For transfec-
tions, SW480 cells were plated at a density of 2.5 × 105 cells in six-well 
plates and grown overnight. pCS2(+)-APC2 DNA constructs were 
transfected using TurboFect (Thermo Fisher) according to the manu-
facturer’s instructions. For immunofluorescence, cells were plated on 
glass coverslips, transfected with 4 μg of the relevant mCherry-tagged 
APC2 DNA construct, and fixed 24 h posttransfection with 4% form-
aldehyde in 1× PBS for 10 min. Cells were washed three times with 1× 
PBS, blocked for 15 min in 1× PBTN (1× PBS containing 1% normal 
goat serum and 0.1% Triton-100), and then antibody stained as previ-
ously described (Roberts et  al., 2011). The primary antibody was 
mouse anti–β-cat (1:1000; 610153; BD Transduction Laboratories), 
and the secondary was goat anti-mouse Alexa 488 (1:1000; Life Tech-
nologies). For quantification of β-cat levels, 30 cell images were taken 
for each condition using identical settings on the spinning disk confo-
cal microscope (see later description). The fluorescence intensities for 
three circular regions of interest (1264 square pixels) were measured 
for each cell (using ImageJ) and averaged for each condition.

TOP/FOP luciferase reporter assay
The TOP/FOPFlash luciferase constructs and the pRL Renilla trans-
fection control were provided by Hans Clevers (Hubrecht Institute, 
Utrecht, Netherlands). Luciferase assays were performed using the 
Dual Glo Luciferase System (Promega) according to the manufactur-
er’s protocol. Briefly, SW480 cells were transiently cotransfected with 
1 μg of either the TOP or FOPFlash luciferase reporter, 1 μg of pRL, 
and 2 μg of the appropriate APC2 construct. At 24 h posttransfection, 
cells were lysed in a hypotonic 0.1× PBS solution and subjected to a 
5-min freeze-thaw at −80°C. Cells were scraped and cellular debris 
pelleted at 3000 × g in a microcentrifuge. Lysates were mixed with 
the provided luciferase substrate, and luciferase activity was mea-
sured using a PerkinElmer EnSpire plate reader. Luciferase signal was 
normalized to Renilla activity and overall values normalized to the 
mCherry-only control. All samples were measured in triplicate per 
experiment, and three independent experiments were performed. 
None of the constructs displayed significant FOPFlash activity.

Fly genetics, hatch rate, and cuticle analysis
Transgenic flies expressing P[endoP-EGFP-APC2-FL] (Zhou et  al., 
2011) and P[endoPEGFP-APC2-ΔASAD] were generated using 
P-element–mediated germline transformation (Model System 
Genomics; Duke University, Durham, NC). Two independent second 
chromosome insertions for each transgene were crossed into the 
APC2g10 (APC2 null) background using standard methods. Embry-
onic cuticles were prepared and hatch rate analysis was performed 
as previously described (Wieschaus and Nusslein-Volhard, 1998). 
Scoring criteria for the cuticle phenotype was previously described 
(McCartney et al., 2006). Cuticle images were taken with darkfield 
illumination at 20× zoom with a Spot RT Color Model 2.2.0 camera 
from Diagnostic Instruments.

Immunohistochemistry in the Drosophila embryo
Embryos were collected 4-6 h at 27ºC and fixed and stained as pre-
viously described (McCartney et al., 1999). Anti-Armadillo (Arm; ms, 
N27A1, 1:250) and anti-Engrailed (En; ms, 4D9, 1:50) were obtained 
from the Developmental Studies Hybridoma Bank at the University 
of Iowa (Iowa City, IA). Anti-GFP (1:5000; Abcam) was preabsorbed 
against w1118 embryos before using for immunohistochemistry. 
Anti-APC2 (rt, 1:1000) was used as previously described (McCartney 

the ASAD. We used 4- to 8-h embryonic cDNA to PCR amplify 
the region, and the unspliced isoform (231 base pairs) and the 
spliced form (168 base pairs) were identified on a GelStar (Lonza, 
Walkersville, MD) agarose gel. The less abundant spliced isoform 
was then isolated from the agarose gel (with some contamination 
from the unspliced form) and reamplified using the same primers. 
Both isoforms were directly sequenced for validation.

Yeast two-hybrid analysis
Yeast two-hybrid (Y2H) analysis was performed using the Match-
maker System (Clontech, Mountain View, CA). Briefly, the pGBKT7 
and pGADT7 yeast vectors were engineered to be Gateway com-
patible by inserting a Gateway-3X STOP cassette downstream of the 
Gal4 DNA-binding domain or Gal4 transcriptional activation do-
main, respectively. APC2 constructs containing the Arm repeats 
were TOPO-TA cloned into the pCR8/GW/TOPO vector (Life Tech-
nologies, Grand Island NY) and Gateway cloned into pGBKT7-W 
and pGADT7-W. Resulting constructs were transformed into the 
Y2HGold and Y187 yeast strains, respectively, using the SC Easy 
Transformation kit (Life Technologies). After transformation and se-
lection, appropriate yeast colonies were mated in 2× Yeast extract-
peptone-dextrose medium + adenine (YPAD) for 24 h and plated on 
double-selection –Leu –Trp plates. Resulting yeast colonies were in-
oculated in liquid –Leu –Trp medium, and β-galactosidase assays 
performed using the Yeast β-galactosidase Assay Kit (Thermo Scien-
tific, Rockford, IL). Several different colonies were tested per experi-
ment, and each experiment was conducted independently three 
times. β-Galactosidase activity was calculated using the equation, 
activity = (1000 × OD420)/(TV × OD660), where T is the duration of the 
reaction in minutes and V is the volume of the reaction in milliliters.

S2 cell culture, transfections, and coimmunoprecipitation 
experiments
S2 cells were cultured at 25°C in Schneider’s Drosophila Medium 
(Lonza) with 10% heat-inactivated fetal bovine serum (FBS) and 1× 
penicillin-streptomycin (Pen/Strep). DNA constructs were trans-
fected into S2 cells using Effectene (Qiagen, Valencia, CA) and stan-
dard protocols at a cell density of 2.5 × 105 cells in six-well plates. 
Expression of constructs was induced 24 h posttransfection with 
CuSO4 (40 mM final concentration) for 14–16 h. Coimmunoprecipi-
tation experiments were performed as described in Zhou et  al. 
(2011). Briefly, cells were lysed and preincubated with Rec-G beads 
(Invitrogen) for 30 min at 4°C. mCherry antibody (632496; Clontech) 
was used to pull down tagged proteins from the precleared lysate. 
Rec-G beads were then added and incubated for 1 h at 4°C. After 
washing the beads several times, SDS–PAGE and immunoblotting 
were performed using standard procedures. Anti-APC2 antibody 
(McCartney et al., 1999) was used to visualize the various APC2 con-
structs. To visualize Axin-HA localization, the same transfection pro-
cedure was applied, and S2 cells were fixed with 4% paraformalde-
hyde 14–16 h after induction and labeled with phalloidin (to label 
cortical actin) and anti-HA (mouse 1:200; gift from Adam Linstedt’s 
lab, Carnegie Mellon University).

Cell sorting
The BD FacsVantage Diva option (laser 488) was used to sort the 
high (33%)-, medium (33%)-, and low (33%)-expressing S2 cells 24 h 
after induction for the indicated constructs. Cells were sorted into 
phosphate-buffered saline (PBS), and images of live cells were taken 
immediately under identical imaging conditions for puncta size 
measurements. Imaris (Bitplane, Zurich, Switzerland) was then used 
to measure the area of the Axin puncta in micrometers squared.
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