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Abstract

Airway diseases, including cigarette smoke-induced chronic bronchitis, cystic fibrosis, and 

primary ciliary dyskinesia are associated with decreased mucociliary clearance (MCC). However, 

it is not known whether a simple reduction in MCC or concentration-dependent mucus adhesion to 

airway surfaces dominates disease pathogenesis or whether decreasing the concentration of 

secreted mucins may be therapeutic. To address these questions, Scnn1b-Tg mice, which exhibit 

airway mucus dehydration/adhesion, were compared to and crossed with Muc5b- and Muc5ac-

deficient mice. Absence of Muc5b caused a 90% reduction in MCC, whereas Scnn1b-Tg mice 

exhibited an ~50% reduction. However, the degree of MCC reduction did not correlate with 

bronchitic airways pathology, which was observed only in Scnn1b-Tg mice. Ablation of Muc5b 
significantly reduced the extent of mucus plugging in Scnn1b-Tg mice. However, complete 

absence of Muc5b in Scnn1b-Tg mice was associated with increased airway inflammation, 

suggesting that Muc5b is required to maintain immune homeostasis. Loss of Muc5ac had few 

phenotypic consequences in Scnn1b-Tg mice. These data suggest that: (1) mucus 
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hyperconcentration dominates over MCC reduction alone to produce bronchitic airways 

pathology; (2) Muc5b is the dominant contributor to the Scnn1b-Tg phenotype; and (3) therapies 

that limit mucin secretion may reduce plugging, but complete Muc5b removal from airway 

surfaces may be detrimental.
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INTRODUCTION

Secretion and clearance of mucus constitute a conserved mechanism for host protection 

across species. Airway mucus, a heterogeneous mixture of water, mucins, proteins, salts, and 

lipids, is traditionally listed among lung innate defenses due to its ability to trap and mediate 

swift removal of inhaled particles/pathogens by mechanical clearance 1. Effective mucus 

clearance is essential for respiratory health, as illustrated by the poor prognosis of lung 

diseases characterized by airway mucus stasis, e.g., cystic fibrosis (CF), primary ciliary 

dyskinesia (PCD), the bronchitis associated with chronic obstructive pulmonary disease 

(COPD), and bronchiectasis. Regardless of etiology, all of these bronchitic diseases share 

the common hallmarks of abnormal sputum production and an airway pathology reflecting 

epithelial remodeling, mucus accumulation, and inflammation. Increasing efforts have been 

focused on understanding airway mucus biology and, in particular, how the abnormal 

structure and function of mucus may produce disease. A complex picture is emerging, where 

the particular features of diseased mucus might include abnormal concentration 

(“hydration”) 2-4, biogenesis and pH 5-8, macromolecular organization 9,10, and/or functional 

relationships with other components of the host defense, including inflammatory cells 11-13.

The gel-forming mucins MUC5AC and MUC5B, as well as their murine homologs Muc5ac 

and Muc5b, are the principal macromolecular components of airway mucus and dominate its 

biophysical properties14-16. Once secreted into the extracellular space, gel-forming mucins 

are found as mucin/protein complexes with seemingly organized structures 10. MUC5AC 

and MUC5B are different in terms of domain structure, glycosylation, assembly, and 

secretion sites 17, and are thus predicted to have different functions. In humans, cigarette 

smoke-induced chronic bronchitis, CF, and PCD are characterized predominately by 

increases in MUC5B, whereas MUC5AC may be the predominant mucin expressed in 

asthma 3,15,18. Recent reports have identified Muc5b as essential for mucociliary 

clearance 19 and Muc5ac hypersecretion as a major determinant of hyperreactivity to inhaled 

methacoline in allergen-challenged mouse airways20. However, the functional significance 

of these two mucins in the pathogenesis of bronchitic lung diseases remains to be fully 

elucidated.

Defective mucus clearance has been experimentally generated in Scnn1b-transgenic 

(Scnn1b-Tg) mice by airway-targeted overexpression of the epithelial Na+ channel β subunit 

(βENaC, encoded by the Scnn1b gene)21. Expression of the Scnn1b transgene causes airway 

surface dehydration with a consequent increase in mucus concentration, which leads to 
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osmotic compression of cilia, mucus adhesion, and airway obstruction. As noted above, 

airway clearance is also reduced in Muc5b knock-out (Muc5b−/−) mice19, but because these 

two mouse models have been studied independently, the relative contributions of “low” vs 

“high” mucin concentration mechanisms that degrade mucus clearance to the pathogenesis 

of bronchitic lung diseases are unknown.

The overall goal of the present study was to test which specific defect(s) in the mucus 

clearance system, i.e., mucus hyperconcentration/adhesion as observed in the Scnn1b-Tg 

model, or selective reduction in mucus flow, as observed in the Muc5b−/− model, produce 

the pathologic correlate of bronchitis, e.g., airway remodeling, inflammation, and mucus 

accumulation. Further, we investigated which of the major secreted mucins (Muc5ac or 

Muc5b) dominates the muco-obstructive phenotype of Scnn1b-Tg mice and whether genetic 

reductions in mucin concentration might be advantageous. To address these questions, we 

crossed Muc5b−/− mice or Muc5ac−/− mice with Scnn1b-Tg mice and characterized the 

phenotype of the progeny.

RESULTS

Survival and body weights of the Muc5b−/− × Scnn1b-Tg cross progeny

The Muc5b−/− × Scnn1b-Tg cross generated mice of six different genotypes: Muc5b+/+, 

Muc5b+/−, and Muc5b−/− either positive (Scnn1b-Tg) or negative for Scnn1b overexpression 

(See Methods for the mouse nomenclature adopted in the main text and legends). Scnn1b-Tg 

mice exhibited only mild lethality compared to WT littermates (Supplementary Figure 1a), 

regardless of their Muc5b genotype, as expected for mice in a mixed C57BL/6N 22:129/

SV 23 genetic background. At post-natal day (PND) 35 Muc5b−/−Scnn1b-Tg mice exhibited 

a slight reduction in body weight as compared to Muc5b+/+ littermates (Supplementary 
Figure 1b,c), but this finding was not apparent in the progeny of congenic C57 Muc5b−/− × 

Scnn1b-Tg mice (Supplementary Figure 1d-f) .

Mucus hyperconcentration/adhesion is necessary to produce bronchitic lung pathology

To determine whether mucus hyperconcentration/adhesion or reduced mucus flow per se can 

produce bronchitic lung pathology, we first compared Muc5b−/− and Muc5b+/+Scnn1b-Tg 

mice vs. Muc5b+/+ littermates. Histologically, Muc5b−/− mice were indistinguishable from 

Muc5b+/+ littermates (Figure 1a-c). In contrast, Muc5b+/+Scnn1b-Tg mice exhibited a 

severe bronchitic pathology characterized by inflammatory infiltrates, luminal secretions, 

and emphysematous lesions (Figure 1a-c). Airway mucus content was evaluated 

histologically with AB-PAS staining (Figure 1d) and quantified morphometrically as mucus 

volume density (mucus VS, 24) in the airways (epithelial + lumen, Figure 1e) and in the 

epithelia alone (Figure 1f). The mucus content in Muc5b+/+ and Muc5b−/− mice was 

minimal, and mostly confined to the intraepithelial compartment (Figure 1e). In contrast, 

Muc5b+/+Scnn1b-Tg mice exhibited substantial intraluminal mucus accumulation, 

consistent with muco-obstructive lung disease. Secreted mucins were also evaluated by 

western blots of bronchoalveolar lavage (BAL) (Figure 1f,g and Supplementary Figure 2, 
upper panels). Muc5b was absent in Muc5b−/− mice, and the Muc5b BAL content was 

greatly increased in Muc5b+/+Scnn1b-Tg mice, consistent with previous reports25. Parallel 

Livraghi-Butrico et al. Page 3

Mucosal Immunol. Author manuscript; available in PMC 2017 March 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



quantification of Muc5ac content revealed a modest increase in Muc5b−/− mice as compared 

to Muc5b+/+ mice (~3 fold, p<0.05. Figure 1h), in agreement with previous mRNA and 

immunohistological data19. Muc5b+/+Scnn1b-Tg mice exhibited a significant increase in 

Muc5ac (~ 18 fold vs. Muc5b+/+ mice, Figure 1h), in agreement with previous mRNA 

data 24 and suggesting accumulation of Muc5ac due to poor clearance.

Muc5b deletion ameliorates airway mucus obstruction in Scnn1b-Tg mice

The effect of Muc5b genetic deletion on the phenotype of Scnn1b-Tg mice was evaluated by 

comparing Muc5b−/−Scnn1b-Tg and Muc5b+/−Scnn1b-Tg mice vs. Muc5b+/+Scnn1b-Tg 

littermates. Histologically, all three genotypes exhibited prominent airway inflammation 

(Figure 1a,b) and parenchymal remodeling (Figure 1a,c)

Notably, Muc5b−/−Scnn1b-Tg mice exhibited a significant reduction in intraluminal mucus 

as compared to Muc5b+/+Scnn1b-Tg mice, but secretions adherent to airway surfaces were 

still detected (Figure 1d,e). A genotype-dependent reduction in BAL Muc5b content was 

noted in the Muc5b+/−Scnn1b-Tg and Muc5b−/−Scnn1b-Tg mice (Figure 1g), reflecting 

allelic insufficiency and complete deletion of Muc5b, respectively. Also, there was a 

genotype-dependent increase in BAL Muc5ac content in Muc5b−/−Scnn1b-Tg mice (~ 46 

fold vs. Muc5b+/+ mice and ~ 2.5 fold vs. Muc5b+/+Scnn1b-Tg mice, Figure 1h), likely 

contributing to the residual mucus observed in the airways (Figure 1d).

Muc5ac deletion does not ameliorate airway mucus obstruction in Scnn1b-Tg mice

Initial crosses between Muc5ac−/− and Muc5ac+/−Scnn1b-Tg mice in the C57:129 

background generated mice of four different genotypes (Muc5ac+/−; Muc5ac−/−; 

Muc5ac+/−Scnn1b-Tg; and Muc5ac−/−Scnn1b-Tg) in the expected Mendelian proportions, 

and all exhibited high survival (Supplementary Figure 3a). Analyses performed on the 

progeny of congenic C57BL/6N mice bred to generate all six possible genotypes 

(Muc5ac+/− × Muc5ac+/−Scnn1b-Tg) confirmed that Muc5ac deletion did not significantly 

affect survival (Supplementary Figure 3b)or body mass (Supplementary Figure 3c,d).

Similar to the cross with Muc5b−/− mice, only Scnn1b-Tg mice exhibited bronchitic lung 

pathology when evaluated on H&E stained sections, regardless of Muc5ac genotype (not 

shown). However, in contrast to what was observed for the Muc5b−/− cross, there were no 

differences in AB-PAS positive mucus content, either luminal or epithelial, between 

Muc5ac-deficient or sufficient Scnn1b-Tg mice (Figure 2a-c). These data suggest that 

Muc5ac did not significantly contribute to the intraluminal mucus plugging observed in 

Scnn1b-Tg mice. Quantitation of BAL mucin content (Figure 2d,e and Supplementary 
Figure 2, lower panels) revealed that, contrary to Muc5b−/− mice, Muc5ac−/− mice did not 

exhibit a compensatory increase in Muc5b compared to Muc5ac+/+ mice. Muc5b signal was 

increased in Scnn1b-Tg mice, regardless of Muc5ac genotype. As for Muc5ac BAL content, 

the signal for Muc5ac+/+ and Muc5ac+/− mice was just above background, but an increased 

level of Muc5ac was observed in Muc5ac+/+Scnn1b-Tg mice. Of note, there was a genotype-

dependent reduction of harvested Muc5ac in Muc5ac+/−Scnn1b-Tg and Muc5ac−/−Scnn1b-

Tg mice, reflecting the Muc5ac allelic make-up of the mice.
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Relative contribution of Muc5ac vs. Muc5b to neonatal survival in a model of lethal mucus 
obstruction, the F1 C57:FVB Scnn1b-Tg mouse

As previously reported, the severity of the Scnn1b-Tg muco-obstructive phenotype is 

proportional to airway mucin secretory capacity, which is age- and mouse strain-

dependent22. Specifically, we and others have reported that neonatal mice experience a 

transient increase in Muc5ac and Muc5b secretion during the early postnatal period 

(PND5-10)25,26. The developmentally regulated increase in mucin concentration on airway 

surfaces, coupled to the small caliber of neonatal airways, makes Scnn1b-Tg pups more 

sensitive to the impact of salt and water depletion produced by Scnn1b-Tg overexpression 

and causes fatal tracheal mucus obstruction. We have previously described a variant of 

Scnn1b-Tg mice, F1 C57:FVB Scnn1b-Tg mice22, characterized by extremely high 

postnatal mortality (90%) and higher BAL mucus content as compared to congenic 

C57BL/6N Scnn1b-Tg mice.

Accordingly, we crossed Muc5ac−/−Scnn1b-Tg mice or Muc5b−/−Scnn1b-Tg mice with 

inbred FVB/NJ mice to obtain mice of four different genotypes (Muc+/+, Muc+/−, 

Muc+/+Scnn1b-Tg, Muc+/−Scnn1b-Tg) in a homogeneous F1 C57:FVB genetic background. 

The effect of decreased Muc5ac or Muc5b concentration on survival was evaluated. 

Muc5b+/+ and Muc5b+/− mice had the expected normal, high survival, whereas 

Muc5b+/+Scnn1b-Tg mice were all dead within seven days from birth (Figure 3a). 

Importantly, heterozygosity for Muc5b significantly improved the survival of 

Muc5b+/−Scnn1b-Tg mice (~70% at PND10) as compared to Muc5b+/+Scnn1b-Tg mice 

(~0% at PND10). When similar studies were performed with Muc5ac−/− mice, we observed 

no protection from lethality (Figure 3b) but a modest though significant delay in mortality 

of the Muc5ac+/−Scnn1b-Tg mice as compared to Muc5ac+/+Scnn1b-Tg mice. Collectively, 

these data suggest that Muc5b is the dominant mucin that leads to lethality of Scnn1b-Tg 

mice in the “high mucus producer” FVB background.

Mucociliary transport only partially correlates with the severity of muco-obstructive lung 
disease

A key measurement that has been used to relate airway mucus function to disease has been 

the rate of mucociliary clearance (MCC)2. Accordingly, we compared the relative rates of 

mucus transport in the two models of defective airway clearance, i.e., Scnn1b-Tg and 

Muc5b−/− mice. Furthermore, to test whether a reduction in mucin concentration in the lungs 

of Scnn1b-Tg mice produced by absence of Muc5b might rescue mucus transport, we also 

measured MCC in Muc5b−/−Scnn1b-Tg.

As shown in Figure 4, Muc5b+/+ mouse lungs cleared ~75% of the tracer particles within 15 

minutes after instillation. In contrast, there was almost a complete loss of MCC in Muc5b−/− 

mice, as previously reported19. Also similar to previous reports21, a ~50% reduction in MCC 

was observed in Muc5b+/+Scnn1b-Tg mice. Notably, deletion of Muc5b in Scnn1b-Tg mice 

did not rescue mucus transport, but rather caused a reduction in MCC towards the levels 

exhibited by Muc5b−/− mice.
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Deletion of Muc5b or Muc5ac does not affect bacterial burden or ameliorate airway 
inflammation in Scnn1b-Tg mice

Because both Scnn1b-Tg and Muc5b−/− mice have increased susceptibility to spontaneous 

and experimentally induced airway bacterial infection19,21,27, we tested whether the 

combination of the two genotypes would produce an additive phenotype. As effects of 

Muc5ac deletion on intestinal pathogen clearance have also been reported 28, microbiology 

experiments were also performed for the Muc5ac−/− × Scnn1b-Tg cross.

At PND5 7, Muc5b−/− mice exhibited an incidence of infection of ~50% compared to 0% in 

Muc5b+/+ mice, with a bacterial burden of ~1.5 Log CFU/mouse (Figure 5a). In contrast, 

virtually all neonatal Scnn1b-Tg mice were infected with a bacterial burden of ~3 Log CFU/

mouse, and this infection was not affected by the Muc5b genotype. At PND35, none of the 

Muc5b−/− mice were infected, and sporadic infections were detected in Scnn1b-Tg mice 

(Figure 5b), in agreement with previous reports27. Similar to neonatal Scnn1b-Tg mice, 

there was no appreciable difference in bacterial burden due to Muc5b genotype in adult WT 

or Scnn1b-Tg mice. A similar picture emerged from the microbiological analysis of BAL 

samples harvested from mice derived from Muc5ac−/− × Scnn1b-Tg crosses at PND5 7 

(Supplementary Figure 4), with the notable exception that Muc5ac−/− neonatal mice did 

not exhibit the incidence of spontaneous bacterial infection observed in neonatal Muc5b−/− 

mice.

To test whether genetic ablation of Muc5ac or Muc5b affected the airway inflammatory 

profile of Scnn1b-Tg mice, we characterize BAL cells in neonatal (PND5 7) and adult 

(PND35) mice. Neutrophil counts were elevated in both Muc5b−/− and Muc5b+/+Scnn1b-Tg 

neonatal mice as compared to Muc5b+/+ littermates (Figure 5c), in agreement with the 

presence of bacteria. Rather than rescuing this phenotype, Muc5b deletion caused a trend 

towards worsening of the neutrophil infiltration in Scnn1b-Tg mice. In adult mice, there was 

a modest but significant increase in neutrophil count in Muc5b−/− mice, whereas the 

neutrophil infiltrate was much greater in Muc5b+/+Scnn1b-Tg mice (Figure 5d). However, 

the airway neutrophilia typical of adult Scnn1b-Tg mice was not ameliorated by either 

partial (Muc5b+/−Scnn1b-Tg mice) or total (Muc5b−/−Scnn1b-Tg mice) ablation of Muc5b. 

Rather, a gene-dosage dependent trend towards worsening of airway neutrophilia was 

observed (Muc5b+/+ > Muc5b+/− > Muc5b−/−). Muc5b deletion alone was not associated 

with significant changes in macrophage numbers either in neonatal (Supplementary Figure 
5a) or adult WT mice (Supplementary Figure 5b). Neonatal Scnn1b-Tg mice exhibited a 

modest increase in BAL macrophages as compared to WT littermates, regardless of Muc5b 
genotype, but this increase was normalized in adult mice with only the Muc5b−/−Scnn1b-Tg 

mice exhibiting a significant difference versus WT littermates.

As a parallel readout of airway inflammation, we evaluated the BAL chemokine and 

cytokine profiles in adult mice. The neutrophil chemoattractant chemokines (C-X-C motif) 

ligand 1 (CXCL1 or KC) and lipopolysaccharide-induced CXC chemokine (LIX) were 

significantly elevated in Scnn1b-Tg mice as compared to both WT and Muc5b−/− mice 

(Figure 6a,b). Genetic deletion of Muc5b did not alter the levels of these inflammatory 

markers in Scnn1b-Tg mice. Although it did not reach significance, macrophage 
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inflammatory protein (MIP)-2 was elevated in all Scnn1b-Tg samples, regardless of Muc5b 
genotype (Supplementary Figure 5c), whereas IL-6 and TNFα were below the lower limit 

of detection in all samples (data not shown).

As for the progeny of the Muc5ac−/− × Scnn1b-Tg cross, partial or total Muc5ac deletion did 

not cause neutrophilia or altered BAL macrophage counts in either neonatal 

(Supplementary Figure 6a,c) or adult (Supplementary Figure 6b,d) WT mice. Of note, 

Muc5ac deletion did not rescue the BAL neutrophilia in either neonatal or adult Scnn1b-Tg 

mice (Supplementary Figure 6a,b), and only a slight increase in BAL macrophage 

numbers was detected in neonatal Muc5ac−/−Scnn1b-Tg mice as compared to WT 

littermates (Supplementary Figure 6d).

Deletion of Muc5b, but not Muc5ac, worsens the incidence of bronchus-associated 
lymphoid tissue (BALT) in Scnn1b-Tg mice

Histopathological analysis of lung sections stained with hematoxylin and eosin (H&E, 

Figure 7a) using a semi-quantitative score25 (Supplementary Figure 7a,b) and quantitative 

morphometry (Figure 7b) indicated that BALT was absent in PND35 WT mice, regardless 

of Muc5ac or Muc5b genotype, whereas low level accumulation of this ectopic lymphoid 

tissue could be detected in mucin-sufficient Scnn1b-Tg mice at this time point. Of note, 

Muc5b deletion significantly increased the incidence of BALT in Scnn1b-Tg mice, whereas 

Muc5ac deletion did not modify this phenotype. This increase in BALT was not reflected in 

the total number of BAL lymphocytes, which was elevated in Scnn1b-Tg mice regardless of 

Muc5b genotype (Figure 7c). Both B and T cells were present in these lymphoid nodules 

(Figure 7d), and their rather loose organization suggested recently formed, inducible 

BALT29.

We sought to determine if there was a correlation between incidence of BALT and 

immunoglobulin concentrations in BAL harvested from the progeny of the Muc5b−/− × 

Scnn1b-Tg cross. A striking increase in IgA was observed in all Scnn1b-Tg samples, 

regardless of Muc5b genotype (Figure 8a). Except for an increase in IgG1 in 

Muc5b−/−Scnn1b-Tg mice (Figure 8b), no systematic differences were observed for other 

IgG subtypes or IgM as a function of Muc5b genotype (Supplementary Figure 8a-d). 

Longitudinal studies comparing Scnn1b-Tg and WT littermates showed that IgA levels are 

increased in the BAL of Scnn1b-Tg mice beginning at PND10 (Supplementary Figure 8e). 
Since it has been proposed that IgA binding to mucus through the polymeric Ig receptor 

secretory component (SC) is essential for IgA function in the lung30, we tested whether 

selective deletion of Muc5b or Muc5ac would modify the localization of SC in WT or 

Scnn1b-Tg mice. As shown in Figure 8c, SC was exclusively localized to the surface 

epithelium in both Muc5b+/+ and Muc5b−/− mice (as well as Muc5ac−/− mice, not shown), 

whereas it was abundant in the luminal mucous secretions of Scnn1b-Tg mice, and its 

localization was not altered in the absence of either Muc5ac or Muc5b.

DISCUSSION

Many aspects of lung mucus biology have become better defined in recent years. For 

example, it appears that Muc5b, not Muc5ac, is the dominant mucin that confers to the 
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mucus layer the properties required for transport in the healthy lung 19. Moreover, the 

dominant role of mucins in producing the biophysical properties governing mucus flow in 

health versus reduced/no flow in disease has also become better appreciated. Notably, a 

novel paradigm posits that healthy airway surfaces are populated by two mucus hydrogel 

layers, one comprised of the mobile layer (where Muc5b is dominant) and the other 

comprised of the periciliary layer, enriched in tethered mucins including Muc1, Muc4, and 

Muc16 4. The identification of this two-gel topology for the airway surface 9 is key to 

quantify biophysical variables related to the distribution of water between the two hydrogels, 

which ultimately determines the efficiency of mucus transport 4. Of particular relevance for 

this study is the notion that mucus clearance is inversely proportional to its concentration, a 

concept recently translated to the clinic 2.

It is clear that mucins play an important role in the pathogenesis of bronchitic lung diseases, 

which are clinically characterized by increased sputum production over defined periods of 

time, and pathologically associated with airway epithelial remodeling, including goblet cell 

metaplasia, inflammation and mucus plugging. Despite the likely importance of mucus in 

the pathogenesis of these diseases, it is not clear whether abnormal qualitative or quantitative 

properties of mucus produce disease. Specifically, it is not clear whether the simple absence 

of mucus clearance, abnormal ratios of MUC5AC to MUC5B, or abnormal mucus 

concentration are required features to initiate pathology. Heretofore it has been difficult to 

experimentally separate the two different pathologic mechanisms, e.g., absence of transport 

versus presence of hyperconcentration, which is key to address this question.

Recently, the opportunity to study the role of mucins subtypes, mucus concentration, and 

mucus transport in the pathogenesis of bronchitic lung disease has been afforded by the 

generation of mouse models that produced different perturbations of airway mucus biology. 

Specifically, the availability of Muc5b−/− mice, which exhibit very slow airway mucus 

transport19, and Scnn1b-Tg mice, which exhibit airway mucus hyperconcentration and 

adhesion to airway surfaces21, has provided the opportunity to assess the relative roles and 

possible interactions of these dysfunctions in a common cohort.

In the studies reported here, the progenies from the mucin deficient × Scnn1b-Tg mice 

crosses were compared utilizing metrics of bronchitic disease severity. Mucin-sufficient 

Scnn1b-Tg mice exhibited a relatively severe bronchitic phenotype, including: 1) increased 

airway mucus burden (Figure 1 and 2); 2) highly penetrant spontaneous bacterial infection 

(Figure 5); 3) significant inflammatory infiltrates (Figure 5); 4) epithelial/parenchymal 

remodeling (Figure 1 and 7); and 5) increased in pro-inflammatory cytokines (Figure 6) 

consistent with previous reports 24,25,27. Novel to this study, we observed another index of 

increased immune responses, i.e., high concentrations of IgA in Scnn1b-Tg BALF (Figure 
7e). In contrast, Muc5b−/− mice exhibited a milder disease, with a lesser incidence of 

bacterial infection, fewer BAL neutrophils, lower levels of pro-inflammatory cytokines and 

IgA, and importantly no histological evidence of airway epithelial remodeling or 

emphysema. In parallel, no evidence of spontaneous lung disease was observed in 

Muc5ac−/− mice, consistent with previous reports20.
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Interestingly, the severity of the obstructive and inflammatory airway phenotype did not 

simply reflect the rates of airway mucus clearance. As shown in Figure 4, airway 

mucociliary clearance in Muc5b−/− mice was indeed lower than in Scnn1b-Tg mice, despite 

the milder phenotype of the former. Accordingly, we speculate that it is not a reduction in 

the absolute rate of mucus clearance that dominates the pathogenesis of bronchitis, but it is 

the presence of hyperconcentrated mucus adherent to the airway surfaces, as evident in 

Scnn1b-Tg mice (Figures 1, 2 and 7). This interpretation is consistent with findings in other 

mouse models that exhibit defective mucus transport but lack a mucus-adhesive component, 

e.g., models of primary ciliary dyskinesia (PCD), which also exhibit a mild lower airway 

phenotype 3133.

Crossing the Muc5b−/− and Muc5ac−/− mice with Scnn1b-Tg mice also offered the 

opportunity to query the role of the two major secreted mucins in the development of the 

Scnn1b-Tg phenotype. Muc5ac-deficient Scnn1b-Tg mice exhibited little/no change as 

compared to Muc5ac-sufficient Scnn1b-Tg mice (Figure 2). In contrast, the magnitude of 

mucus obstruction in Scnn1b-Tg mice was significantly reduced in the absence of Muc5b, as 

evaluated both morphometrically and by BAL western blot (Figure 1e,f,g,h), consistent with 

the notion that Muc5b is the major secreted mucin in mouse airways 19,26,34. Despite the 

reduction in mucus burden, areas of mucus adhesion persisted histologically (Figure 1d,e). 

These plugs likely contained Muc5ac, consistent with the significant accumulation of 

Muc5ac in the BAL fluid of Muc5b−/−Scnn1b-Tg mice (Figure 1h).

The availability of a mouse strain that exhibits a lethal muco-obstructive phenotype, i.e., F1 

C57:FVB Scnn1b-Tg mice, allowed us to investigate whether decreased levels of Muc5b or 

Muc5ac could rescue survival. Heterozygosity for Muc5b, but not Muc5ac, was sufficient to 

significantly rescue the survival of F1 C57:FVB Scnn1b-Tg mice (Figure 3). Based on the 

data that Muc5b+/−Scnn1b-Tg mice exhibit ~50% the levels of BAL Muc5b as compared to 

Muc5b+/+Scnn1b-Tg mice (Figure 1g), it is likely that the reduction of Muc5b was 

responsible for the large increase in survival. In contrast, Muc5ac+/−Scnn1b-Tg mice 

exhibited a modest increase in time to death as compared to Muc5ac+/+Scnn1b-Tg mice, 

suggesting that a Th2- or developmentally-driven increase in Muc5ac might be detrimental 

to survival early in life.

Importantly, inflammation in Muc5b−/−Scnn1b-Tg mice was not reduced proportionately to 

mucus obstruction. Instead, there was an overall increase in the severity of pulmonary 

inflammation as indexed by increased number of BAL neutrophils and BALT (Figures 5 
and 7), These findings suggest that other factors in addition to mucus obstruction can lead to 

pulmonary inflammation. Perhaps the simplest explanation for the increased inflammatory 

phenotype in Muc5b−/−Scnn1b-Tg mice is that reduction of secreted Muc5b did not rescue 

the defective airway clearance of Scnn1b-Tg mice but, rather, further reduced mucus 

clearance to the levels of Muc5b−/− mice (Figure 4). This reduction could promote further 

adhesion of other mucus components, possibly Muc5ac, to airway surfaces as well as 

prolong the residence time of pro-inflammatory particles or debris initiating a predictable 

inflammatory response. Alternatively, it has been reported that mucins may “communicate” 

with inflammatory cells, including macrophages and dendritic cells 12,13,3537, and perhaps 

the absence of Muc5b contributed per se to an exaggerated inflammatory response in 
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Muc5b−/−Scnn1b-Tg mice. Finally, gel-forming mucins, and particularly Muc5b, are 

associated with a network of proteins forming macromolecular complexes, known as “mucin 

interactomes”, which are thought to be involved in maintaining airway immune homeostasis 

through their anti-microbial/anti-inflammatory/anti-oxidant functions38,39. Derangement of 

this network may have adverse effects in controlling airway inflammation.

Another unexpected finding of this study was that Muc5b deletion did not affect bacterial 

burden in Scnn1b-Tg mice (Figure 5a,b) despite a reduction in mucus plugs. A possible 

interpretation is that while Muc5b deletion decreased mucus plugging, it also reduced 

clearance of inhaled bacteria (as indicated by the presence of bacteria in 50% of the neonatal 

Muc5b−/− mice), offsetting the beneficial effect of reduced plugging. We can also speculate 

that the composition of neonatal mucus, enriched in Muc5ac as compared to adult mice (26 

and A. Livraghi-Butrico, unpublished data), might also contribute to increased, Muc5b-

independent trapping of bacteria.

As noted above, we found that IgA BAL levels were elevated in Scnn1b-Tg mice, suggesting 

that mucus hyperconcentration/adhesion stimulates local IgA production and secretion. IgA 

levels were elevated independently of Muc5b genotype, suggesting that the residual degree 

of mucus obstruction was sufficient to stimulate IgA synthesis and secretion. Importantly, 

previous reports have shown that SC-mediated binding of IgA to mucus is required for its 

function30. Our immunohistological data (Figure 8c) suggest that SC binding to the mucus 

is not Muc5ac- or Muc5b-dependent. However, we can not rule out the possibility that the 

overall decrease in intraluminal Muc5b in Muc5b−/−Scnn1b-Tg mice removed an essential 

“scaffold” for secreted IgA, impairing immune exclusion 40 and promoting inflammation.

In conclusion, mucus biology in the normal and diseased lung is complex and likely involves 

not only the biophysical contributions of mucins to mucus transport but also interactions 

with host immune cells and defense proteins. Our data suggest that mucus 

hyperconcentration/adhesion rather than the loss of mucus flow dominates the 

pathophysiology of bronchitic lung diseases, and, consequently, these diseases may be 

characterized as “muco-obstructive” lung diseases. So, what is pathogenic in static/adherent 

mucus? Mucus adhesion certainly blocks airflow, and it is in part responsible for the reduced 

airflow observed in muco-obstructive lung diseases. Adherent mucus is also the site of most 

bacterial airways infections, including those causing exacerbations in CF and COPD, and, 

even when “sterile”, it appears to be a pro-inflammatory DAMP27. Moreover, mucus 

plugging induces local, epithelia hypoxia24, which is an increasingly recognized feature of 

the CB syndrome41, important for both inflammatory responses and anaerobic infection. 

Notably, therapies designed to clear mucus from airway surfaces are predicted to be 

therapeutic for these conditions. The simplest therapies involve the “rehydration” of mucus 

so that its concentration is restored to levels compatible with transport. It is also likely that 

therapies designed to reduce mucin secretion, and thus reduce concentrations, may also be 

useful. However, our data suggest that a complete loss of secreted mucins, especially 

MUC5B, may worsen pathology, so a more moderate titration might be needed 

therapeutically.
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METHODS

Animals

Animals were maintained and studied under protocols approved by the University of North 

Carolina Institutional Animal Care and Use Committee, according to the principles outlined 

by the Animal Welfare and the National Institutes of Health guidelines. Mice were housed in 

individually ventilated micro-isolator cages in a specific pathogen-free facility at the 

University of North Carolina at Chapel Hill, on a 12-hour day/night cycle. Mice were fed a 

regular chow diet and given water ad libitum.

Muc5ac−/− 20 and Muc5b−/− 19 mice were obtained from the Laboratory of Dr. Christopher 

Evans as C57BL/6J:129/Sv line. Congenic C57BL/6N Scnn1b-Tg mice and wild-type (WT) 

littermates were maintained as a hemizygous as described 22 and referred to as WT (i.e., 
Scnn1b-Tg− or Scnn1b-Tg negative) or Scnn1b-Tg (i.e., Scnn1b-Tg+ or Scnn1b-Tg 

positive). Mucin-deficient Scnn1b-Tg mice and appropriate littermate controls were 

generated by sequential breeding of congenic C57BL/6N hemizygous Scnn1b-Tg mice with 

Muc5ac−/− or Muc5b−/− mice, using a breeding strategy previously described 25. For clarity, 

genotypes of the progenies are indicated in the main text and figure legends as follows: 

Muc5ac+/+/Scnn1b-Tg− = Muc5ac+/+; Muc5ac+/−/Scnn1b-Tg− = Muc5ac+/−; Muc5a−/−/

Scnn1b-Tg− = Muc5ac−/−; Muc5ac+/+/Scnn1b-Tg+ = Muc5ac+/+Scnn1b-Tg; Muc5ac+/−/

Scnn1b-Tg+ = Muc5ac+/−Scnn1b-Tg; Muc5a−/−;Scnn1b-Tg+ = Muc5ac−/−Scnn1b-Tg; and 

similarly for the Muc5b−/− × Scnn1b-Tg cross. Congenic C57BL/6N Muc5ac−/− and 

Muc5b−/− mice were generated by crossing heterozygous mice to inbred C57BL/6N mice 

(Taconic, Hudson, NY) for more than 12 generations. Mixed-strain or congenic mice were 

used as described in the text. At post-natal day (PND) 1 or 2, pups were toe clipped for 

identification and genotyping, as previously described 21. Mice studied were littermates, 

age-matched and of both sexes. Congenic FVB/NJ mice were purchased from The Jackson 

Laboratory (Bar Harbor, Maine).

Bronchoalveolar lavage (BAL), cell counts, analyses of soluble contents and bacteriology

BAL was performed in neonatal and adult mice as previously described 25. For microbiology 

studies, BAL was performed aseptically and colony forming units (CFUs) enumerated were 

enumerated in serially plated dilutions [plated onto Columbia anaerobe sheep blood agar 

(Becton Dickinson, NJ) and incubated in a candle jar to facilitate the growth of 

microaerophilic bacteria at 37°C for 24 hours], as previously described 27. Mouse TNFα, 

KC, MIP-2, LIX, IL-6, IgG1, IgG2a, IgG2b, IgG3, IgA, and IgM were measured in cell-free 

BAL using a Luminex-based assay (EMD Millipore, Billerica, MA), according to the 

manufacturer's instructions.

Lung histology

Lungs were immersion-fixed in 10% neutral-buffered formalin (NBF) to prevent dislodging 

of airway luminal contents. Paraffin-embedded sections were stained with hematoxylin and 

eosin (H&E) and Alcian Blue-Periodic Acid Schiff staining (AB-PAS), and lung pathology 

graded as previously described using a semi-quantitative histology score 25 or 
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morphometry24. Tissue blocks received a numerical code at time of embedding and scoring 

was performed by an investigator blinded to specimen genotype.

Agarose gel mucin western blot

Secreted mucin quantification was carried out using a slight modification of the protocol 

described in 25. BAL samples were solubilized by addition of urea to reach a 6M 

concentration. Samples were reduced with 10 mM dithiothreithol for 90 min at 37°C and 

alkylated with 25 mM iodoacetamide for 30 min at room temperature (RT) in the dark. 

Equal volumes of reduced samples (40 μl) were run on 1% agarose gel at 80 V for 90 min. 

Gels were vacuum-blotted onto nitrocellulose membranes with 4x sodium citrate buffer 

(SSC) for 2 hours, blocked with Odyssey blocking buffer (OBB, Li-COR Biosciences, 

Lincoln, NE), and probed with rabbit polyclonal antibodies against Muc5b (UNC223, 

1:2000 in OBB34) or Muc5ac (UNC294, 1:1000 in OBB+0.1% Tween-20, 42). The 

secondary antibody was IRDye 680LT donkey anti-rabbit IgG (Li-COR Biosciences), 

diluted 1:15,000 in OBB. Detection and densitometry were performed using the Odyssey 

Infrared Imaging System (LI-COR Biosciences).

Mucociliary clearance (MCC) assay

PND35 mice were anesthetized with 2-3 % isoflurane and a small incision was made 

through the tracheal ventral wall. Using a fine-bore cannula, 200 nl of PBS containing a 

known number of fluorescent microspheres (3 μm Molecular Probes FluoSpheres, Nile Red, 

Invitrogen Corp.) was deposited near the tracheal bifurcation. After the cannula was 

removed and the tracheostomy closed, the anesthetized mouse was allowed to breath 

spontaneously for 15 minutes. After this period, the mouse was euthanized, the lungs and 

trachea (up to the larynx) were removed and solubilized in KOH, and the beads left in the 

tissue were counted. MCC was determined as % of delivered beads that were cleared.

Immunofluorescence analysis of BALT

Lungs were inflated with a 1:1 mixture of OCT:PBS, embedded in 100% OCT and 

sectioned. Slides were air dried, fixed in ice cold 100% acetone for 5 min, and washed in 

PBS. Blocking was performed in 5% normal goat serum (NGS, Jackson ImmunoResearch 

Laboratories Inc., West Grove, PA), 1:50 Fc Block (BD Biosciences, rat anti-mouse CD16/

CD22 clone 2.4G2), 0.1% Tween-20, and 0.1% Triton-X in PBS, for 30 min at RT. Primary 

antibodies and isotype controls [goat anti-mouse CD3-ε (M-20) Santa Cruz and goat IgG 

Jackson ImmunoResearch 0.2 mg/ml, dil. 1:100; rat anti-mouse CD45R/B220 and rat IgG2a, 

κ both from BD Biosciences, dil. 1:50] were diluted in PBS + 0.1% Tween-20 + 0.1% 

Triton-X (PBS-TT) and incubated over night at 4°C. Sections were washed in PBS + 0.1% 

Tween-20 (PBST) and secondary antibodies (donkey anti-goat AlexaFluor 633 and donkey 

anti-rat AlexaFluor 594, Jackson ImmunoResearch, both at 1:200 dilution in PBSTT) were 

applied for 60 min at RT in the dark. After washing in PBST, slides were mounted with 

Vectashield Soft Mount media (Vector laboratories) containing DAPI for nuclear staining, 

and imaged by confocal microscopy, using a Leica SP2 microscope with an Apochromat 

40x/1.25 NA oil immersion lens.
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Immunohistochemical localization of SC

Lungs were immersion fixed in 10% NBF for 24 hours. Paraffin embedded sections were 

incubated at 65°C for 2-4 hours, and deparaffinized with xylene (2 changes × 5’) and graded 

ethanol (100% 2 × 5’, 95% 1 × 5’, 70% 1 × 5’). After rehydration, antigen retrieval was 

performed by boiling the slides in 0.1M sodium citrate pH 6.00 (3 cycles with microwave 

settings: 100% power for 6.5 min, 60% for 6 min, and 60% for 6 min, refilling the Coplin 

jars with deionized water after each cycle). After cooling and rinsing with dH2O, quenching 

of endogenous peroxidase was performed with 0.5% H2O2 in methanol for 15 min, slides 

were washed in PBS, and blocked with 5% normal donkey serum (NDS), 1:50 Fc block in 

PBS-T, for 1 hr at RT. Primary antibodies and isotype control (goat anti-mouse pIgR R&D 

Systems AF2800 and goat IgG Jackson ImmunoResearch 0.2 mg/ml) were diluted in 5% 

NDS in PBST and incubated over night at 4°C. Sections were washed in PBS and secondary 

antibody (biotinylated donkey anti-goat IgG, Jackson ImmunoResearch, at 1:200 dilution in 

5% NDS in PBST) was applied for 30 min at RT. After washing in PBST, slides were 

incubated with avidin-peroxidase complex according to the manufacturer instruction 

(Vectastain kit, Vector laboratories), washed, incubated with the chromogenic substrate 

(Immpact Novared, Vector laboratories) and counterstained with Mayer hematoxylin. 

Coverslipped slides were imaged by transmitted light microscopy, using an Olympus BX60 

microscope with an UPlanFLN 40x/0.75 NA lens.

Statistics

Data are shown as means ± SEM, with the number of mice (n). Survival curves were 

compared using Kaplan-Meier followed by Log-rank analysis (Mantel-Cox) with Bonferroni 

correction for multiple comparisons. ANOVA followed by Tukey's post-hoc test for multiple 

comparisons was used to determine significant differences among groups for body weight, 

BAL cell and CFUs counts, MCC, BAL mucins content, BALF cytokines and 

immunoglobulin content, histology scores, and morphometric analyses. p<0.05 was 

considered statistically significant.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Mucus hyperconcentration/adhesion is necessary to produce bronchitic lung pathology, 
but Muc5b deletion ameliorates airway mucus obstruction in Scnn1b-Tg mice
(a) Representative photomicrographs of airway lumens cut in cross section proximal to the 

hilum from PND35 mice of the indicated genotypes, stained with H&E illustrating airway 

mucus obstruction and inflammatory infiltrates characteristic of bronchitic lung pathology in 

Scnn1b-Tg mice. (b-c) Semi-quantitative histology scores for airway inflammation (b) and 

air space enlargement (c) in PND35 mice from the Muc5b−/− × Scnn1b-Tg cross in the 

C57:129 genetic background. n= 6-9 mice/genotype. ANOVA * p<0.05 vs. Muc5b+/+ mice. 

(d) Equivalent sections as in (a) stained with AB-PAS for mucopolysaccharides, illustrating 

significant amelioration of mucus obstruction in Muc5b−/−Scnn1b-Tg vs. Muc5b+/+Scnn1b-

Tg mice. Scale bar 0.1 mm. (e-f) Morphometric analysis of total (epithelial+luminal, e) and 

epithelial (f) airway mucus volume density (Vs) in PND35 mice (C57:129 genetic 

background). n= 6-9 mice/genotype. ANOVA * p<0.05 vs. Muc5b+/+ mice, # p<0.05 vs. 

Muc5b+/+Scnn1b-Tg mice. (g-h) Densitometric analysis of mucin agarose western blots of 

BAL from the progeny of the Muc5b−/− × Scnn1b-Tg cross in the C57 congenic 

background, at PND35. Blots were probed with anti-Muc5b (g) or anti-Muc5ac (h) 
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antibodies. n=6 mice/genotype. ANOVA * p<0.05 vs. Muc5b+/+ mice, # p<0.05 vs. 

Muc5b+/+Scnn1b-Tg mice.
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Figure 2. Muc5ac deletion does not ameliorate airway mucus obstruction in Scnn1b-Tg mice
(a) Representative photomicrographs of proximal left lobe main stem bronchus from PND35 

mice of the indicated genotypes, stained with AB-PAS for mucopolysaccharides, illustrating 

no changes in mucus obstruction in Muc5ac−/−Scnn1b-Tg vs. Muc5ac+/−Scnn1b-Tg mice. 

Scale bar 0.1 mm. (b-c) Morphometric analysis of total (epithelial+luminal, b) and epithelial 

(c) airway mucus volume density (Vs) in PND35 mice (C57:129 genetic background). n= 

6-11 mice/genotype. ANOVA * p<0.05 vs. Muc5ac+/+ mice. (d-e) Densitometric analysis of 

mucin agarose western blots of BAL from the progeny of the Muc5ac−/− × Scnn1b-Tg cross 

in the C57 congenic background, at PND35. Blots were probed with anti-Muc5b (d) or anti-

Muc5ac (e) antibodies. n= 6 mice/genotype. ANOVA * p<0.05 vs. Muc5ac+/+ mice, # 

p<0.05 vs. Muc5ac+/+Scnn1b-Tg mice.
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Figure 3. Relative contribution of Muc5ac vs. Muc5b to neonatal survival in a model of lethal 
mucus obstruction, the F1 C57:FVB/NJ Scnn1b-Tg mice
Survival curves for the progeny of the Muc5b−/−Scnn1b-Tg mice (a) or Muc5ac−/−Scnn1b-

Tg mice (b) crossed with inbred FVB/NJ mice. Muc5b heterozygosity improved overall 

survival of F1 C57:FVB Scnn1b-Tg mice, whereas Muc5ac heterozygosity only resulted in 

delayed time of death (median survival PND 9 vs. PND 5 for Muc5ac+/−Scnn1b-Tg mice vs. 

Muc5ac+/+Scnn1b-Tg mice, respectively). * p<0.05 vs. Muc+/+ littermates, # p<0.05 vs. 

Muc+/+Scnn1b-Tg littermates.
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Figure 4. Mucociliary transport only partially correlates with the severity of muco-obstructive 
lung disease
Mucociliary clearance measurements in selected genotypes from the progeny of the 

Muc5b−/− × Scnn1b-Tg cross in the C57 congenic background, at PND35. n=6-14 mice/

genotype. ANOVA * p<0.05 vs. Muc5b+/+ mice, # p<0.05 vs. Muc5b+/+Scnn1b-Tg mice.
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Figure 5. Deletion of Muc5b or Muc5ac does not affect bacterial burden or ameliorate airway 
inflammation in Scnn1b-Tg mice
(a,b) Quantification of colony forming units (CFU) in BAL samples from the progeny of the 

Muc5b−/− × Scnn1b-Tg cross in the C57:129 genetic background, at PND5-7 (a) or PND35 

(b). (Log10+1)-transformed data. n= 8-24 mice/genotype (a) and n=5-8 mice/genotype (b). 

ANOVA * p<0.05 vs. Muc5b+/+ mice. (c-d) BAL neutrophil counts for the progeny of the 

Muc5b−/− × Scnn1b-Tg cross in the C57:129 genetic background, at PND5-7 (c) or PND35 

(d) n= 7-24 mice/genotype (c) and n=11-15 mice/genotype (d). ANOVA * p<0.05 vs. 

Muc5b+/+ mice.
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Figure 6. Deletion of Muc5b does not alter the BAL chemokine and cytokine profile in Scnn1b-
Tg mice
KC (a) and LIX (b) levels in cell-free BAL from the progeny of the Muc5b−/− × Scnn1b-Tg 

cross in the C57:129 genetic background at PND35. The dotted line represents the assay 

lower detection limit (LOD). n= 5-8 mice/genotype. ANOVA * p<0.05 vs. Muc5b+/+ mice.
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Figure 7. Deletion of Muc5b, but not Muc5ac, worsens the incidence of bronchus-associated 
lymphoid tissue (BALT) in Scnn1b-Tg mice
(a) Representative micrographs of proximal left lobe main stem bronchus from PND35 

mice, stained with H&E, illustrating typical histopathology for the indicated genotypes. 

Scale bar 0.2 mm. Airway mucus obstruction was evident in Muc5b+/+Scnn1b-Tg mice and 

Muc5ac−/−Scnn1b-Tg mice (asterisks), but it was less severe in Muc5b−/−Scnn1b-Tg mice. 

However, Muc5b−/−Scnn1b-Tg mice presented with a higher incidence of BALT (arrow and 

high magnification inset, scale bar 20 μm). (b) Morphometric analysis of BALT in PND35 

mice (C57:129 genetic background). n= 6-9 mice/genotype. ANOVA * p<0.05 vs. Muc5b+/+ 

mice. (c) BAL lymphocyte counts for the progeny of the Muc5b−/− × Scnn1b-Tg cross in the 

C57:129 genetic background, at PND35. n= 11-15 mice/genotype. ANOVA * p<0.05 vs. 

Muc5b+/+ mice. (d) Representative confocal images of BALT immunostained with B and T 

cells specific markers (B220 in red and CD3 in green, respectively), and relevant isotype 

negative controls (rat IgG2a,k and goat IgG, respectively). Nuclei are stained in blue 

(DAPI). Differential interference contrast (DIC) image is provided to illustrate the typical 

localization of BALT in the airway submucosal compartment.
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Figure 8. Airway mucus hyperconcentration/adhesion stimulates IgA secretion
(a,b) IgA (a) and IgG1 (b) levels in cell-free BAL from the progeny of the Muc5b−/− × 

Scnn1b-Tg cross in the C57:129 genetic background at PND35. The dotted line represents 

the assay lower detection limit (LOD). n= 5-8 mice/genotype. ANOVA * p<0.05 vs. 

Muc5b+/+ mice. (c) Immunohistochemical localization of the polymeric Ig receptor 

secretory component (SC) in the main stem bronchus of mice for the indicated genotypes. A 

serial section to the one used for Muc5b+/+Scnn1b-Tg SC stain is shown as negative IgG 

control (IgG control).
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