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Abstract: Two series of novel integral asymmetric monophasic hybrid membranes, cellulose
acetate/silica/titania (CA/SiO2/TiO2—series 1) and cellulose acetate/titania (CA/TiO2—series 2),
were developed by the coupling of sol-gel technology and a modified version of the phase inversion
technique. SEM micrographs confirmed the integral asymmetric structure of all membranes. ATR-FTIR
and ICP-OES results showed that, for the membranes in series 1, TiO2 is covalently bound to SiO2,

which, in turn, is covalently bound to CA, while for the membranes in series 2, TiO2 is directly
and covalently bound to the CA matrix. Permeation experiments revealed that the permeation
performance of the membranes in series 1 is unaffected by the introduction of TiO2. In contrast,
the introduction of TiO2 in the series 2 membranes increased the hydraulic permeability by a factor
of at least 2 when compared to the pristine CA membrane and that incremental additions of TiO2

further increased the Lp.

Keywords: cellulose acetate/titania membranes; cellulose acetate/silica/titania membranes; monophasic
hybrid membrane; nanocomposite membrane; ultrafiltration; sol-gel; phase inversion

1. Introduction

Cellulose, a linear homopolymer composed of d–anhydroglucopyranose units linked by
β–(1→4)–glycosidic bonds (Figure 1a), is one of the most abundant renewable organic materials
produced in the biosphere, with approximately 5 × 1011 tons generated annually [1]. Cellulose’s
most significant industrial ester, cellulose acetate (CA), is formed by the acetylation of cellulose,
followed by acid-hydrolysis, to lower the acetyl degree (Figure 1b). Though this process modifies the
original cellulose biostability, CA is generally recognized as a biodegradable [1,2], biocompatible and
(re)absorbable thermoplastic polymer [3–5]. Properties such as excellent hydrophilicity, good resistance
to chlorine and other oxidant compounds, non-toxicity, non-irritancy, great mechanical flexibility
and reasonable heat-resistance, along with low footprint and cost make CA a pivotal raw material
in a wide range of traditional industries [6]. Camera film (8 and 16 mm Kodak negative film),
cigarette filters (Hoechst-Celanese, Eastman Chemicals, Rhodia Acetow, Daicel, and Mitsubishi
Rayon), lacquers (Wurdack, Eastman), fibers (Celanese, Eastman, Viscocel, Mitsubishi Rayon),
degradable plastics, toys (Lego bricks from 1949 to 1963), textiles (satins, brocades, and taffetas),
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magnetic tapes (IBM 726 tape drive in the IBM 701 computer) and separation-process membranes
are among traditional CA products. The emergence of nanotechnology in recent years has brought
valuable cellulose-based end-products, which span to engineering, pharmaceutical and medical
fields. Technical and medicinal textiles, pharmaceutical drug coatings, microparticles for controlled
drug release, sensors (immune-, chemical-, biochemical- and photosensors) and polymer membranes
are some examples of engineered CA products in the market [6]. Regarding polymer membranes
for industrial separation-processes, CA membranes have played an important role in drinking and
wastewater treatment [7], gas separation [8], blood purification [9,10], ultra/nanofiltration and various
other bio-separation processes [11,12], due to their high efficacy and cost effectiveness [13]. However,
extreme operating conditions, such as high temperatures and/or low pH values, may promote the
hydrolysis of the CA polymer, compromising the chemical, mechanical and thermal stability of the
CA membranes. Furthermore, because cellulose is an organic polymer which can be digested by
microorganisms, biofilms are known to grow at the active layer surface of CA-based membranes,
a phenomenon known as biofouling, which may hinder the membrane productivity and its filtration
efficiency, reducing the membrane lifetime and limiting its potential applications [14].

Membrane functionalization has been proven to be an efficient strategy towards biofouling
prevention by promoting anti-adhesion surfaces [15] and/or controlling bacterial growth [16]. Most of
the research being conducted in academic institutions and under industrial projects addresses two-phase
systems, known as composites, where an inorganic additive such as zeolite [17], a transition metal
complex [18], silver [19], silica [20], titania [21], fluorite [22], or a carbon nanotube [23] is incorporated
into the polymer-based membrane casting solution. In these composites, repulsive forces between the
polymer and the inorganic phases and/or different thermal expansion coefficients may compromise
adhesion between the two composite phases, causing delamination or micro- or nano-particle loss
during membrane operation.

The authors pioneered an alternative strategy in which monophasic (hybrid) CA/silica membranes
were produced by in situ condensation between silanols (≡Si–OH−) from the SiO2 precursor and
hydroxyl (–OH−) or acetate (–CH3COO−) groups from the CA polymer during casting solution
homogenization [9,24]. Detailed characterization of the chemical composition of the monophasic
hybrid CA/silica membranes revealed that the additive (SiO2) is covalently bound and homogeneously
distributed throughout the polymer matrix [24].

Titania, either amorphous or crystalline, has been shown to possess an outstanding bactericidal
performance, even without previous ultra-violet (UV) stimuli [25,26]. Although the mechanistic details
of the TiO2 photocatalyzed reactions remain complex and are not completely understood [26,27],
the role of TiO2 is widely recognized in the formation of reactive oxygen species (ROS) (hydroxyl,
superoxide anion radicals, O2, O2

−). When in close proximity to bacteria, these ROS’s damage bacterial
cell membranes through lipid peroxidation, enhance membrane fluidity, and cause cell integrity
disruption, eventually leading to cell death [26,27] (Figure 1c).

In this work, we report on a novel method for the development of integral asymmetric monophasic
hybrid membranes by coupling a modified version of the phase inversion technique [28] and sol-gel
methodology [29]. The sol-gel method enables the condensation between inorganic silica precursors
(hydrolysed TEOS and TiPOT precursors, ≡Si–OH−, ≡Ti–OH−, respectively) and the organic phase,
CA, during the preparation of the casting solution, promoting two distinct monophasic hybrid
systems characterized by ≡Si–O–CA and ≡Ti–O–CA covalent bonding. In these systems, following the
hydrolysis reaction shown in reactions 3a, Annex A, self-condensation may occur between Si–OH,
Ti–OH or CA–CA monomers, creating small silica, titania or CA clusters spread throughout the
CA–SiO2–TiO2 and CA–TiO2 monophasic hybrid membrane matrices. Hetero-condensation reactions
(depicted in reaction 3b, Annex A) also occur and compete with the self-condensation reactions. Due to
the very high number of hydrolyzed CA units over Si–OH and Ti–OH units, as well as the vigorous
stirring during the preparation step of the casting solution, hetero-condensation reactions predominate
over self-condensation reactions, leading to the synthesis of monophasic hybrid systems.The phase
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inversion technique is a well-known method for the preparation of integral asymmetric membranes,
which, when coupled to the sol-gel method, promotes the synthesis of integral asymmetric monophasic
hybrid CA/silica/titania (CA/SiO2/TiO2—series 1) and CA/titania (CA/TiO2—series 2) membranes.
These membranes present only one phase, as opposed to composite membranes, where the inorganic
component is added to the casting solution in the form of nano- or micro-particles.

The introduction of TiO2 in the casting solutions of the reference membranes, CA/SiO2 and CA,
is expected to affect the permeation performance of the two new hybrid membranes, CA/SiO2/TiO2 and
CA/TiO2. For the membranes in series 1, the CA organic content was kept constant and equal to 95 wt%.
The inorganic content consisted of SiO2 and TiO2, and the TiO2 was increased by steadily replacing the
silica content with titania. For the membranes in series 2, the inorganic phase was composed solely of
titania, which was steadily increased from 0 to 5 wt%. A maximum total inorganic content of 5 wt%
was chosen based on the previous works on permeation by the authors [9,24], which revealed enhanced
permeation properties for monophasic hybrid integral asymmetric CA/silica membranes containing
5 wt% silica.
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2. Materials and Methods

2.1. Materials

Series 1 (CA/SiO2/TiO2) and series 2 (CA/TiO2) monophasic hybrid asymmetric membranes
were prepared with cellulose acetate (CA) (C6H7O2(OH)3, ≈ 30,000.00 g/mol, ≥97%), titanium(IV)
isopropoxide (TiPOT) (C12H28O4Ti, 284.00 g/mol, 97%), tetraethyl orthosilicate (TEOS) (Si(OC2H5)4,
208.33 g/mol, reagent grade 98%), purchased from Sigma-Aldrich Quimica S.L. (Lisbon, Portugal),
formamide (CH3NO, 45.02 g/mol, ≥99.5%), purchased from Carlo Erba Reagents (Barcelona, Spain),
acetone (C3H6O, 58.08 g/mol, 99.7%) and nitric acid (HNO3, 63.01 g/mol, >60%), purchased from JMS
(Lisbon, Portugal).

Membrane drying was performed with isopropanol (25% V/V, 50% V/V, 75% V/V, 100% V/V)
(anhydrous, 99.5%) from Sigma-Aldrich Aldrich Quimica S.L. (Lisbon, Portugal) and n–hexane (25%
V/V, 50% V/V, 75% V/V, 100% V/V) (98%) from Sigma-Aldrich Aldrich Quimica S.L. (Lisbon, Portugal).

The solutes used in permeation experiments were 1, 3, 4, 6, 10, 20, 35, and 55 kDa polyethylene
glycol (PEG) from Sigma-Aldrich Aldrich Quimica S.L. (Lisbon, Portugal) and 70 kDa Dextran from
Sigma-Aldrich Aldrich Quimica S.L. (Lisbon, Portugal).

Bi-distilled water (H2Od) (conductivity 0–2 µS/cm3, pH 5.8–6.5) and pure deionized (DI) water
were obtained at Laboratório de Análise de Águas, IST, Lisbon, Portugal.

All chemicals used in the synthesis, drying and characterization of the hybrid membranes were
used without further purification.

2.2. Membrane Synthesis

Membranes were synthesized by a modified version of the phase inversion technique [28] coupled
with sol-gel methodology [29]. The acid catalyzed hydrolysis and condensation sol-gel reactions took
place during the preparation of the casting solution (24 h period). During this period, the polymerization
between the hydrolyzed inorganic species containing ≡Si–OH− and ≡Ti–OH− groups and the CA
polymer containing –OH– and –CH3COO– groups occurs, generating monophasic hybrid matrices
containing ≡Si–O–CA and ≡Ti–O–CA groups. The complete sol-gel hydrolysis and condensation
reactions are presented in detail in Appendix A.

Two distinct groups of membranes were produced: series 1—CA/SiO2/TiO2 membranes—and
series 2—CA/TiO2 membranes. For each membrane composition, one batch was produced, resulting in
ten flat sheet membranes with dimensions of approximately 20 cm (width) × 30 cm (height) each.
The membranes’ acronyms and casting solution compositions are shown in Table 1. The acronyms
reflect the membranes’ composition, i.e., the mass percentage of CA, SiO2, and TiO2 in the synthesized
membranes. Appendix B shows a detailed description of these calculations. After complete sol-gel
hydrolysis and condensation, each TEOS molecule originates one silica unit, and each TiPOT molecule
originates one titania unit. Formamide and acetone (solvents) and water (sol-gel reactant) were
discarded in the calculations.



Membranes 2020, 10, 195 5 of 26

Table 1. Membrane acronyms and casting solution composition (series 1 and series 2).

Acronyms/Compounds
Series 1

CA/SiO2
(95/5)

CA/SiO2/TiO2
(95/4.5/0.5)

CA/SiO2/TiO2
(95/4/1)

CA/SiO2/TiO2
(95/3/2)

CA/SiO2/TiO2
(95/2/3)

CA 16.40 16.40 16.40 16.40 16.40
Formamide 29.00 29.00 29.00 29.00 29.00

Acetone 51.10 51.10 51.10 51.10 51.10
TEOS 3.00 2.70 2.40 2.10 0.93
TiPOT 0.00 0.32 0.64 0.96 2.07

DI 0.50 0.5 0.5 0.5 0.5
HNO3 3 drops (pH 1.5–2)

Acronyms/Compounds
Series 2

CA
(100)

CA/TiO2
(99.5/0.5)

CA/TiO2
(98/2)

CA/TiO2
(97/3)

CA/TiO2
(95/5)

CA 17.00 16.40 16.40 16.40 16.40
Formamide 30.00 29.00 29.00 29.00 29.00

Acetone 53.00 51.10 51.10 51.10 51.10
TEOS - - - - -
TiPOT 0.00 0.32 0.96 2.07 3.00

DI 0.00 0.5 0.5 0.5 0.5
HNO3 3 drops (pH 1.5–2)

Casting Conditions

Temperature (◦C): 19–23
Solvent evaporation time (s): 30

Coagulation medium: Deionized water at 0 ◦C during 1–2 h

NOTE 1: reference membranes in blue column. NOTE 2: the membranes’ acronyms reflect the final membranes’
composition in terms of wt% and not the casting solution compositions.

2.2.1. Series 1: CA/SiO2/TiO2 Membranes

For the preparation of the membranes in series 1, five different casting solutions were prepared.
In this membrane set, the organic content was kept constant (95 wt% CA) with an inorganic part
consisting of SiO2 and TiO2, while SiO2 was steadily replaced by TiO2, as shown in Table 1, Appendix B.
In series 1, the CA/SiO2 (95/5) membrane was selected as the reference membrane.

One-pot sol-gel (hybrid) reactions were promoted during the casting solution homogenization.
The acid catalyzed hydrolysis/condensation of TEOS and TiPOT (the SiO2 and TiO2 alkoxide precursors,
respectively) was promoted in situ by adding TEOS, TiPOT, DI, and nitric acid to the CA polymer
and solvent (formamide and acetone) mixture in the reaction vessel. TEOS was added, drop-by-drop,
at the beginning of the casting solution homogenization, while TiPOT was added, drop-by-drop, 8 h
later, due to its faster hydrolysis rate. To help with the TiPOT solubilization in the casting solution,
TiPOT was pre-solubilized in a solution of nitric acid, formamide and acetone.

After 24 h of homogenization, the hybrid casting solutions were poured onto a glass plate, at room
temperature, with a 250 µm casting knife. After a solvent evaporation time of 30 s, the glass plates
were quenched into a gelation bath (ice-cold H2Od). After being in the coagulation bath for 2 h,
the membranes were detached from the glass plate and stored in H2Od at 4 ◦C.

2.2.2. Series 2: CA/TiO2 Membranes

For the preparation of the membranes in series 2, five different casting solutions were prepared
with CA and an increasing inorganic content of TiO2 (up to 5 wt%), as shown in Table 1, Appendix B.
In series 2, CA was chosen as the reference membrane. Acid catalyzed hydrolysis/condensation of
TiPOT, the TiO2 precursor, was promoted in situ by adding DI, TiPOT, drop-by-drop, and nitric acid to
the CA/formamide/acetone mixture in the reaction vessel. The membranes were casted in the same
conditions as described for the membranes in series 1.
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2.3. Membrane Drying

The membranes in series 1 and 2 were dried by the solvent-exchange method [30]. Briefly,
the membranes were submerged in several different solutions for a period of 24 h at room temperature,
followed by the final solvent (100% n–hexane) evaporation in a desiccator. A detailed sequence of the
solvent system used and immersion time is given in Appendix C.

2.4. Membrane Characterization

2.4.1. FEG-SEM: Surface Morphology and Cross-Section Structure

The membrane surface morphology and cross-section structure were analyzed by Field Emission
Gun–Scanning Electron Microscopy (FEG-SEM) (JEOL 7001F JOEAL). SEM images of the top and
bottom layers were taken at 5000×magnification and the cross sections were taken with a magnification
between 550 and 650×.

Prior to being imaged, the membranes were cut (1 × 1 cm) and dried according to the process
described in Section 2.3. The dried membranes were fractured in liquid nitrogen, mounted on a stub and
sputter-coated with gold. The membranes’ total thickness and skin layer thickness were measured from
FEG-SEM cross-section images with ImageJ software. For each membrane, five randomly selected zones
from the entire cross-section images were measured and the mean thickness and standard deviation
were calculated, as shown in Appendix D. Light elements energy-dispersive X-Ray spectroscopy (EDS)
was used to evaluate the presence of Ti.

2.4.2. ICP-OES: Quantification of Titanium

Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) (ICP-OES Optima 2000
from PerkinElmer, USA) was used to quantify the presence of titanium in the series 1 and series 2
membranes. Prior to being analyzed, four different wet samples of each membrane composition with
a surface area of 16 cm2, from at least two different membranes from the same batch, were dried
at room temperature until constant weight was achieved. Then, they were placed in an Heraeus
oven at 550 ◦C for 30 min to discard volatile components and organic matter and break intra- and
intermolecular bonds. After cooling to room temperature, the ashes were solubilized in acidified
water (pH ≤ 2). The solution was then introduced in the ICP-OES equipment and plasma-atomized.
After excitation, Ti decayed to ground state and the emitted photons (hv) allowed for an accurate and
precise Ti quantification (<3 wt%). This assay was done in triplicate, and the mean mass and standard
deviation were determined.

The predicted theoretical titanium mass, mTi(theoretical), was calculated assuming homogenous
distribution of Ti throughout all 10 membranes of each batch. The mTi(theoretical) was defined by

mTi(theoretical) =
wm × nTiPOT×MWTi

MT
(1)

and the calculations were based on a 16 cm2 surface area membrane sample. mTi(theoretical) is the
predicted theoretical mass of titanium in the membrane sample; wm is the membrane sample weight;
nTIPOT is the number of TiPOT moles introduced in the membrane casting solution (each TiPOT
molecule originates one TiO2 unit); MWTi is the molecular weight of titanium; and MT is the mass of
all 10 membranes obtained in the batch. MT is calculated taking into account the mass of CA, TiO2

(obtained assuming complete hydrolysis and condensation of TiPOT) and SiO2 (obtained assuming
complete hydrolysis and condensation of TEOS) per batch (MT = mCA + mTiO2 + mSiO2).

The error propagation through the mTi calculation was determined. The uncertainties are: (1) 0.01 g
for the CM-600 CBJ scale (Barcelona, Spain) used to weigh all chemicals and (2) 0.0001 g for the Sartorious
BA120s scale (Göttingen, Deutschland) used to weigh the membrane samples. The sum of absolute
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errors (δx) of the measured variables (x) was considered for additions or subtractions. In multiplications
or quotients, the sum of the relative errors

(
δx
|x|

)
was used, assuming errors < 10% [31–33].

2.4.3. ICP-OES: Quantification of Leached Titanium

To study the possibility of TiO2 leaching from the synthesized membranes, a pure DI water
permeation assay was conducted with the membranes containing the highest TiO2 content in both
series 1 and series 2 (described in Section 2.5, Figure 2). The assay was performed in triplicate for each
composition (samples from different membranes with the same composition were analyzed). Mean Ti
concentration and standard deviation were calculated.Membranes 2020, 10, x FOR PEER REVIEW 8 of 28 
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(2) heating/cooling jacket; (3) pump; (4) valve of concentrate collector; (5) manometer; (6) permeate cell;
(7) pressure retention valve.

The permeation experiment consisted in recirculating 500 mL of pure deionized (DI) water at
a feed flow rate (Qf) of 0.6 L/min and a transmembrane pressure (TMP) of 2 bar in the Celfa-P28
cross-flow filtration system described in Section 2.5, Permeation Properties. Samples of the initial feed
solution (pure DI water) and samples from the permeate and concentrate collected after 3 h of filtration
were analyzed by ICP-OES to quantify Ti.

2.4.4. ATR-FTIR: Chemical Bonding

The active layer surface of all membranes, both from series 1 and series 2, was analyzed by
Fourier transform infrared spectroscopy (FTIR) in attenuated total reflection (ATR) mode. Prior to
characterization, random samples with a surface area of approximately 1 cm2 were air-dried at room
temperature. FTIR spectra of the samples (five per membrane composition), with the active layer
facing upwards, were obtained with a Nicolet Magna IR System 5700 spectrometer (Nicolet Instrument
Corp., Madison, WI, USA) using a Golden Gate MKII ATR accessory with a Ge crystal (Graseby Specac,
Smyrna; sampling depth: 0.2–1.1 µm at 4000–400 cm−1). Each spectrum was obtained by averaging
256 scans with a resolution of 4 cm−1. The spectra were transformed to log10(1/R) using OMNIC
software and are presented without baseline or smooth corrections.

The complete ATR-FTIR spectra (825–3750 cm−1) were recorded to identify the types of bonds
present in all membranes. CA/SiO2 95:5, in series 1, and CA 100, in series 2, were taken as reference.

In order to compare the chemical structure of the hybrid membranes from series 1 and series 2,
a more detailed analysis was performed in regions 1690–1800 cm−1 and 950–1175 cm−1 of the carbonyl
absorbance band where Ti–O–C peaks are expected [34–37].

The 1000–1110 cm−1 ATR-FTIR bands from series 1 and series 2 were decomposed by Gaussian
curve-fitting (Levenberg Marquardt algorithm, allowing variation in width, height, and position of the
bands) after a baseline correction (subtraction of a straight line between two extreme wavenumbers of
the region). The number and starting position of the bands used in the fitting were obtained from the
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smoothed (Savitzky–Golay algorithm) second-derivative spectrum of the region. For each membrane,
two individual peaks were found, and a non-linear least-squares fitting procedure was performed to
obtain 100% Gaussian shaped peaks. The ATR-FTIR spectra data was analyzed using Origin 8 pro
software (https://www.originlab.com/).

2.5. Permeation Properties

2.5.1. Hydraulic Permeability

Figure 2 shows a schematic representation of the experimental ultrafiltration (UF) crossflow set-up
used to determine the pure water hydraulic permeability (Lp) of the membranes from series 1 and
series 2.

The permeation cell of Celfa-P28 consists of two detachable parts separated by a porous plate to
accommodate a membrane with a total surface area of 25 cm2. Prior to each experiment, the membrane
was compacted for 3 h with deionized water at a transmembrane pressure (TMP) 20% higher than the
maximum operating pressure.

The membranes were characterized as to pure water permeation fluxes, hydraulic permeability,
and separation performance in terms of apparent rejection coefficients for several PEG and Dextran solutions.

The hydraulic permeability coefficient (Lp) is defined by

Lp =
Jpw

TMP
(2)

where Jpw is the pure water permeation flux and TMP.
The pure water fluxes in the series 1 and series 2 membranes were measured using DI water at

room temperature under two different experimental conditions: (i) feed flow rate (Qf) of 0.6 L/min
and TMPs of 0.5, 1.9, 1.5, 2.0, 2.5, and 3.0 bar; (ii) Qf of 1.3 L/min and TMPs of 1.0, 1.5, 2.0, 2.5, 3.0,
and 3.5 bar. For each Qf/TMP condition, Jpw was measured in triplicate.

2.5.2. Molecular Weight Cut-Off

The membrane molecular weight cut-off (MWCO), which is defined as the molecular weight of a
macromolecule whose rejection by the membrane is higher than 90%, was experimentally determined
through ultrafiltration (UF) crossflow, whose set-up is described in Figure 2. The MWCO values of two
membranes from series 1 (95/5/0, and 95/2/3 CA/SiO2/TiO2) and two from series 2 (100, and 95/5 CA/TiO2)
were determined by the apparent solute rejection coefficients (f ) defined by

f =
Cb −Cp

Cb
(3)

where Cb and Cp are the solute concentrations in the bulk feed solution and permeate solution,
respectively. Permeation experiments were performed to calculate the apparent rejection coefficients
for PEG 1000, 3000, 4000, 6000, 10,000, 20,000, 35,000, 55,000, and Dextran 70,000. All experiments were
conducted at room temperature, with single solute solutions, feed concentration of 600 ppm, feed flow
rate of 93 L/h, and transmembrane pressure of 1 bar. The concentrations of the PEG and Dextran
solutions in the feed and in the permeate were determined in terms of total organic carbon content
by a Total Organic Carbon Analyzer (Dohrmann Total Organic Carbon Analyzer Model DC-85A,
Tokyo, Japan). The MWCO value was determined by a linear regression of the curve log(f/1 − f ) vs.
the molecular weights of the organic solutes and its intersection with the 90% rejection line, which
corresponds to a log(f/1 − f ) of 0.954.

https://www.originlab.com/


Membranes 2020, 10, 195 9 of 26

3. Results and Discussion

3.1. Membrane Structure and Surface Morphology

The top and bottom surfaces and cross-section morphologies of the membranes from series 1 and
series 2 analyzed by SEM and micrographs are shown in Figure 3a,b, respectively. The SEM images
obtained from the top surfaces clearly show smooth, non-porous and dense membrane morphologies
in both series 1 and series 2. In contrast, the membranes’ bottom surfaces appear to have a more
uneven and porous structure. The cross-section SEM images clearly identify the membranes’ integral
asymmetric nature in both series, which is characterized by a thin skin dense layer on top (active layer),
outlining a thicker and porous substructure (porous layer). As a first conclusion, the introduction
of TiO2 on the membranes’ composition did not affect the membranes’ asymmetric character in
neither series 1 nor series 2. Nevertheless, finger-like macro-voids appear in the series 1 membranes
(Figure 3a) with higher TiO2 content (CA/SiO2/TiO2, 95/2/3) and in all series 2 membranes (Figure 3b).
According to Smolders et al. [38], macro-void formation occurs under rapid precipitation conditions
and/or a decrease in the viscosity of the casting solution. In the present work, adding higher contents of
TiPOT decreased the viscosity of the casting solutions in both series 1 and series 2, which may explain
the macro-void configuration.
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Figure 3. Field emission gun (FEG)-SEM images of the top surface (magnification 5000×), bottom surface
(magnification between 550× and 650×) and cross-sections (magnification 5000×) of: (a) the membranes
in series 1, and (b) the membranes in series 2.

Membranes 95/4.5/0.5 and 95/4/1 (from series 1, CA/SiO2/TiO2) and 99.5/0.5 and 98/2 (from series 2,
CA/TiO2) showed distinct features on the bottom surfaces, which were further investigated by EDS.
Figure 4a shows SEM images and the EDS spectrum of the 98/2 membrane (series 2, CA/TiO2), revealing
identical Ti peak intensities in the deposit spectra (spectrum 1) and the bottom flat surface (spectrum 2,
reference membrane). Ti peak intensity is even lower in spectrum 1 (deposit) than in spectrum 2
(the membrane’s bottom surface), ruling out the hypothesis of TiO2 segregation.

The SEM images were used to determine the total thickness and the dense layer thickness of the
membranes from series 1 and series 2. The procedure adopted for measuring the dense layer thickness
of the CA/SiO2/TiO2 (95/4/1) membrane from series 1 is shown in Appendix D. For the membranes in
series 1, the total thickness varies between 98 and 130 µm and the dense layer thickness varies between
142 and 271 nm. The introduction of TiO2 into the membrane casting solutions and its incremental
increase do not seem to have a direct influence on the total or dense layer thickness of the CA/SiO2/TiO2

membranes. For the membranes in series 2, the total thickness varies between 84 and 161 µm and the
dense layer thickness varies between 176 and 333 nm. The introduction of TiO2 into the membrane
casting solutions and its incremental increase do not seem to have direct influence on the total thickness
of the CA/TiO2 membranes. However, there is a significant reduction in the dense layer thickness of the
membranes containing TiO2 when compared to the pristine CA membrane. The skin layer thickness of
the CA membrane (330 ± 50 nm) is approximately 1.7 times larger than the average value of the dense
layer thickness (189 nm) of the membranes containing TiO2 in series 2.

In integral asymmetric membranes, the dense layer thickness determines the resistance to mass
transport, with the filtration efficiency being inversely proportional to the dense layer thickness [13].
All series 2 membranes containing TiO2 and two membranes in series 1, CA/SiO2/TiO2 (95/3/2)
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and CA/SiO2/TiO2 (95/2/3), exhibited lower skin dense layer thickness than the reference (CA/SiO2)
membrane. Therefore, these membranes are expected to impose less mass transport resistance to
solutions and higher permeation capacities are envisaged, which is the reason why they were selected
for determining the MWCO.Membranes 2020, 10, x FOR PEER REVIEW 11 of 28 
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Figure 4. (a) Bottom SEM images of the CA/TiO2 (98/2) membrane analyzed by EDS. Spectrum 1 EDS
analysis was performed in a surface deposit and spectrum 2 EDS analysis was performed in the bottom
flat surface of the membrane. (b) Membrane thickness (µm) and skin dense layer (nm) thickness for
the membranes in series 1 and series 2. The total membrane thickness and dense layer thickness were
measured from the SEM images of the series 1 and series 2 membranes’ cross sections using ImageJ
software (procedure illustrated in Appendix D).
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3.2. Titanium Quantification

3.2.1. Titanium Incorporated in the Membranes

The titanium (Ti) content in the series 1 and series 2 membranes was evaluated by ICP-OES and
the results of the experimental and theoretical Ti content are shown in Table 2. Results show that
the experimental results and theoretical estimations coincide and are within the experimental error,
which leads to the conclusion that the entire amount of Ti introduced in the casting solution, through the
addition of TiPOT, is present in the monophasic hybrid membranes. Furthermore, the variation between
different samples from the same batch is low, suggesting a homogeneous Ti distribution throughout
the entire membrane.

Table 2. Ti present in casting solutions (Titheoretical) and in the membranes (Tiexperimental) from series 1
and 2.

Series 1 Ti(theoretical) (mg) Ti(exp) (mg)

CA/SiO2 (95/5) 0.00 ± 0.01 0.00 ± 0.10
CA/SiO2/TiO2 (95/4.5/0.5) 0.20 ± 0.01 0.20 ± 0.10

CA/SiO2/TiO2 (95/4/1) 0.44 ± 0.01 0.40 ± 0.10
CA/SiO2/TiO2 (95/3/2) 0.62 ± 0.01 0.70 ± 0.10
CA/SiO2/TiO2 (95/2/3) 1.28 ± 0.01 1.20 ± 0.20

Series 2 Ti(theoretical) (mg) Ti(exp) (mg)

CA (100) 0.00 ± 0.01 0.00 ± 0.10
CA/TiO2 (99.5/0.5) 0.31 ± 0.01 0.50 ± 0.10

CA/TiO2 (98/2) 0.76 ± 0.01 1.30 ± 0.30
CA/TiO2 (97/3) 1.66 ± 0.01 1.30 ± 0.50
CA/TiO2 (95/5) 2.39 ± 0.01 2.00 ± 0.20

3.2.2. Titanium Leached from the Membranes

The quantification of Ti leached from the membranes was determined in a permeation experiment,
through ICP-OES analysis of the H2Od collected from the permeate and concentrate solutions. Table A3
in Appendix E shows the values of Ti found in each experiment. The initial and final permeate and
concentrate values are the same in all solutions, <0.010 ± 0.000 mg/L, and are within the experimental
values for all membranes from series 1 and series 2. These results mean that, during the 3 h filtration,
the membranes did not release any titanium, which indicates a strong bonding between titania and the
CA membrane matrix. Since the membranes with higher TiO2 content from series 1 and series 2 did
not leach Ti, it is unlikely that the remaining membranes with lower TiO2 content will.

3.3. Chemical Composition and Hybrid Bonding

3.3.1. Series 1 Membranes

Figure 5 shows ATR-FTIR spectra for the series 1 membranes. In Figure 5a, the wide-range
ATR-FTIR spectra (825–3750 cm−1), normalized to the C=O stretching band, is presented and, in Table 3,
peak assignments are given. The 95/5 spectrum confirms the previous work from the authors [24].
The most intense peaks (equal intensity for all membranes in series 1) are the CA peaks found at 1045
and 1232 cm−1, which are assigned to acetate groups (symmetric (νsCOC) and antisymmetric (νasCOC)
modes, respectively [39,40]). The band centered at 1369 cm−1 is assigned to δsCH3, and the band
centered at 1741 cm−1 is assigned to the strong carbonyl stretching mode (νC=O) [41,42]. The broad
band located at 3000–3700 cm−1 (assigned to the O–H stretching mode, νOH) [39] contains contributions
from water (H–O–H), hydrolyzed silica/titania precursors (≡Si–OH−, ≡Ti–OH−), and non-esterified
cellulose polymer –OH groups. The three weaker peaks found at 1065, 1122, and 1161 cm−1 are assigned
to C–O–C stretching modes (from glycosidic bonds and monosaccharide units, νasCOC) [43]. Since the
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esterification degree of the cellulose acetate is 40%, the glycosidic oxygens can establish intramolecular
hydrogen bonds within the CA hydroxyl groups. Two important bands of CA/SiO2 hybrid membranes
are the ν(Si–O–Si) and ν(Si–O–C), observed at 1065 and 1118 cm−1, respectively [24]. Lower intensity
peaks are observed at 1433 and 1637 cm−1 (assigned to δCH2 and δHOH, respectively) [41,42]. The weak
band centered at 903 cm−1 confirms the presence of acetate methyl groups [39]. To highlight specific
characteristics within series 1, deconvolution studies in the 1690–1800 cm−1 and 1000–1100 cm−1

regions were performed.
Figure 5b documents the carbonyl region with stretching modes located between 1690 cm−1 and

1800 cm−1. Table 4 presents the carbonyl peak areas (A) and wavenumbers corresponding to this region.
Incremental additions of TiO2 shift the carbonyl peak to lower wavenumbers (blue shift) and, at the
same time, reduce the carbonyl peak area. This is a clear indication of Ti–CA bonding formation by
nucleophilic substitution of the carbonyl (C=O) rather than by the hydroxide (OH) group (Appendix A).
Furthermore, the νC=O shift indicates bond length increase and, consequently, bond weakening.

Figure 5c shows the region of the ATR-FTIR spectra between 1000 and 1110 cm−1 for the membranes
in series 1. Careful analysis of these curves shows that there are contributions from two main peaks
centered at approximately 1040 and 1067 cm−1. Figure 6 shows the curve-fitting decomposition of the
region between 1000 and 1110 cm−1 for the CA/SiO2/TiO2 membranes, and Table 5 shows the values of
the wavelength and relative peak areas. The peak centered at 1039 cm−1 corresponds to the symmetric
COC vibrations of the acetate group (νsCOC (acetate)) [39,40], and the peak centered at 1067 cm−1

corresponds to νaSiOSi [41,42,44–46]. This indicates the formation of a Si–O–Si network, probably in
nano/micro-clusters dispersed throughout the polymer matrix [24].Membranes 2020, 10, x FOR PEER REVIEW 14 of 28 
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Figure 6. ATR-FTIR spectra of the hybrid membranes from series 1 in the 1000–1110 cm−1 region.
Curve-fitting decomposition of the bands located between 1000 and 1110 cm−1 for: (a) CA/SiO2(95/5);
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95/2/3 membranes. Bold black line—experimental results; dashed line—simulated results.

Table 3. Assignments of the ATR-FTIR spectra of the CA/SiO2/TiO2 (series 1) membranes.

Wavenumber/cm−1

AssignmentCA/SiO2
(95/5)

CA/SiO2/TiO2
(95/4.5/0.5)

CA/SiO2/TiO2
(95/4/1)

CA/SiO2/TiO2
(95/3.5/1.5)

CA/SiO2/TiO2
(95/2/3)

3487 br 3490 3491 3489 3490 νOH (H bonded)
1741 S 1742 1743 1736 1747 νC=O
1637 w 1637 1637 1637 1638 δHOH (H2O)
1433 w 1432 1432 1431 1432 δCH2
1369 m 1369 1369 1369 1369 δsCH3
1232 VS 1232 1232 1233 1232 νasCOC (acetate)
1161 w 1161 1161 1161 1161 νasCOC (glycosidic)

1122 w,sh 1122 1122 1122 1122 νasCOC (glycosidic)
1065 w 1065 1065 1065 1065 νasCOC (glycosidic), ν(Si–O–Si)
1045 VS 1045 1045 1045 1045 νsCOC (acetate)
903 w 904 903 903 904 ρCH3

VS—very strong; S—strong; m—medium; w—weak; vw—very weak; sh—shoulder; br—broad.
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Table 4. Areas and wavenumbers of the carbonyl group located in the 1690–1800 cm−1 region for the
series 1 membranes.

Components
CA/SiO2

(95/5)
CA/SiO2/TiO2

(95/4.5/0.5)
CA/SiO2/TiO2

(95/4/1)
CA/SiO2/TiO2

(95/3.5/1.5)
CA/SiO2/TiO2

(95/2/3)

ν̃/cm−1 A ν̃/cm−1 A ν̃/cm−1 A ν̃/cm−1 A ν̃/cm−1 A

1741 27.67 1742 23.87 1743 23.30 1746 22.80 1747 23.40

Table 5. Summary of the spectral deconvolution in the 1000–1110 cm−1 region in series 1 (CA/SiO2/TiO2).

Components
CA/SiO2

(95/5)
CA/SiO2/TiO2

(95/4.5/0.5)
CA/SiO2/TiO2

(95/4/1)
CA/SiO2/TiO2

(95/3.5/1.5)
CA/SiO2/TiO2

(95/2/3)

ν̃/cm−1 A (%) ν̃/cm−1 A (%) ν̃/cm−1 A (%) ν̃/cm−1 A (%) ν̃/cm−1 A (%)

1039 51 1040 53 1040 57 1039 63 1039 64
1066 49 1067 47 1068 43 1068 37 1067 36

3.3.2. Series 2 Membranes

Figure 7 shows the ATR-FTIR spectra for series 2 membranes. In Figure 7a, the wide ATR-FTIR
spectra between 825 and 3750 cm−1 of the reference membrane (composed solely of CA) and the
hybrid membranes containing between 0.5 and 3 wt% TiO2, normalized to the C=O stretching band,
is evidenced. The complete assignment of the spectra is presented in Table 6. The same intense bands
corresponding to CA which were seen for the membranes in series 1 are also present in all series 2
membranes. To highlight the differences between the pristine CA membrane and the hybrid CA/TiO2

membranes, the enhanced region of the carbonyl stretching mode (νC=O) between 1680 and 1800 cm−1

is presented in Figure 7b. Table 7 identifies the peak area and wavenumbers of the carbonyl group for
series 2 membranes. Results clearly show an increase in the peak area corresponding to the carbonyl
group, along with a shift from 1739 cm−1 for the reference CA membrane to 1744 cm−1 for the CA/TiO2

99.5:0.5 membrane, 1745 cm−1 for the CA/TiO2 98:2 membrane, and 1749 cm−1 for the CA/TiO2 97:3
and CA/TiO2 95:5 membranes. The CA content in all membranes is equal, so the fact that the peak
assigned to νC=O is increasing indicates that carbonyl groups are not being removed from the CA
molecule when TiO2 is introduced and, therefore, TiO2 is bonding to CA by nucleophilic substitution
of the hydroxyl (OH) group rather than the carbonyl (C=O) group of CA (Appendix A).

Table 6. Assignments of the ATR-FTIR spectra of the CA/TiO2 (series 2) membranes.

Wavenumber/cm−1
Assignment

CA(100) CA/TiO2 (99.5/0.5) CA/TiO2 (98/2) CA/TiO2 (97/3) CA/TiO2 (95/5)

3490 br 3488 3494 3500 3500 νOH (H bonded)
1739 S 1744 1745 1749 1749 νC=O
1635 w 1639 1636 1639 1639 δHOH (H2O)
1435 w 1437 1430 1433 1433 δCH2
1368 m 1379 1369 1379 1373 δsCH3
1233 VS 1234 1234 1234 1228 νasCOC (acetate)
1165 w 1163 1163 1163 1163 νasCOC (glycosidic)
1037 VS 1043 1043 1043 1043 νsCOC (acetate)
898 w 903 903 897 903 ρCH3

VS—very strong; S—strong; m—medium; w—weak; vw—very weak; sh—shoulder; br—broad.
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Table 7. Areas and wavenumbers of the carbonyl group located in the 1690–1800 cm−1 region for the
CA/TiO2 membranes.

Components
CA

(100)
CA/TiO2
(99.5/0.5)

CA/TiO2
(98/2)

CA/TiO2
(97/3)

CA/TiO2
(95/5)

ν̃/cm−1 A ν̃/cm−1 A ν̃/cm−1 A ν̃/cm−1 A ν̃/cm−1 A

1739 18.69 1744 22.35 1745 22.41 1749 22.80 1749 23.09
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from series 2 (normalized to the C=O stretching band), (a) wide spectrum (4000–800 cm−1); (b) enhanced
1690–1800 cm−1 region and (c) enhanced 1000 and 1110 cm−1 region.

Figure 7c shows the ATR-FTIR absorption spectra of the CA membrane and the CA/TiO2

membranes in the region located between 1000 and 1110 cm−1. It is evident that the center of the peak
shifts from 1043 cm−1 for the pristine CA membrane to a lower wavenumber of 1037 cm−1 for the
membranes containing TiO2 and that the total area of the band belonging to the pristine CA membrane
is larger than the bands corresponding to the hybrid CA/TiO2 membranes. For the pure CA membrane,
the peak centered at 1043 cm−1 has the contribution of two groups: the symmetric COC vibrations of
the acetate group (νsCOC (acetate)), and the antisymmetric COC vibrations of the glycosidic group
(νasCOC (glycosidic)). Both these groups are present in the hybrid CA/TiO2 membranes and, therefore,
the shift to higher wavenumbers can be explained by the contribution of the band assigned to the
stretching vibration of the Ti–O–C group (νTiOC), which absorbs at higher wavenumbers located
between 1039 and 1045 cm−1 [35,36]. The presence of Ti–O–C bonds gives evidence that covalent bonds
between the inorganic (TiO2) and organic (CA) components of the hybrid CA/TiO2 membranes were
established in series 2.
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3.4. Permeation Properties

Hydraulic Permeability and MWCO

The hydraulic permeability coefficient (Lp) reveals the pure water permeation capacity of a
membrane. For the Lp determination, pure water permeate fluxes (Jpw) were measured at different
pressures and flow rates. For each membrane in both series, the linear regression of the Jpw in function
of the transmembrane pressures (∆P) applied was obtained. The slope of the linear regression equation
gives the Lp.

Hydraulic permeability coefficient (Lp) values for all hybrid membranes of series 1 and series 2
at 0.6 L/min (black) and 1.3 L/min (gray) are shown in Figure 8a,b, respectively. The Lp values were
determined by the linear regressions of Jpw vs. ∆P for all membranes and the two flow rates. For all
membranes in series 1 and series 2, an average value of the Lp was determined from the Lp values
found for each flow rate.

For the membranes in series 1, the values of Lp were 47.5, 23.5, 21.0, 44.5, and 32 kg/m2.h.bar for
the membranes containing 0, 0.5, 1, 2 and 3 wt% TiO2 (Figure 8a). The value for the first membrane
of series 1, containing only CA and SiO2, is in the same value range found in our previous work
regarding CA/SiO2 membranes [24]. When compared to the reference membrane in series 1, CA/SiO2

(95/5), the incorporation of TiO2 reflects a decrease in the hydraulic permeability of all hybrid
CA/SiO2/TiO2 membranes. Another factor that influences the Lp is the thickness of the hybrid
membranes’ skin dense layer (Figure 4b), where thicker dense layers offer higher resistance to water
flux and which is in agreement with the results obtained from the permeation experiments, as the
hybrid CA/SiO2/TiO2 (95/4.5/0.5) and CA/SiO2/TiO2 (95/4/1) membranes showed thicker skin dense
layers (271.0 ± 89.0 and 213.0 ± 51.0 nm, respectively) than the reference CA/SiO2 (95/5) membrane
(194.0 ± 18.0 nm), leading to a reduction of 50–60% in Lp values. In contrast, the skin layer thicknesses
of the hybrid CA/SiO2/TiO2 (95/3/2) and CA/SiO2/TiO2 (95/2/3) membranes were smaller (142.0 ± 57.0
and 166.0 ± 58.0 nm, respectively) than that of the reference membrane and they still exhibited lower Lp
values than the reference membrane. Even though no direct correlation between the TiO2 content and
the Lp of the membranes in series 1 can be established, we can conclude that the introduction of TiO2 has
an effect in the organization of the molecular structure of the hybrid material at the dense layer surface.
The molecular organization of the final hybrid material possesses open spaces (pores at the nano- and
sub-nanoscale not detected by SEM) at the top dense surface of the membranes, which allow the water
molecules to flow through the membranes. Taking this into account, the membranes containing TiO2

seem to have a tighter structure, which hinders the passage of water and other solutes, resulting in a
lower Lp. For the membranes in series 2, the values of Lp were 12.5, 25.0, 27.0, 51.0, and 43.5 kg/m2.h.bar
for the membranes containing 0, 0.5, 2, 3 and 5 wt% TiO2 (Figure 8b). When compared to the series 2
reference membrane, CA (100), the incorporation of TiO2 increased the hydraulic permeability of all
hybrid CA/TiO2 membranes by a factor of at least 2. All hybrid CA/TiO2 membranes in series 2 have
similar dense layer thicknesses (≈180 nm), which are approximately 1.8 smaller than the dense layer
thickness of the pristine CA membrane (reference membrane for series 2). It is, therefore, expected that
the Lp values for the hybrid membranes should be higher than the value for the pristine CA membrane
and this is in accordance with the results. The interesting fact is that the Lp continues to increase as
the TiO2 content increases in the hybrid CA/TiO2 membranes, even though the dense layer thickness
remains essentially the same. This suggests that, as the TiO2 content increases the molecular structure
of the hybrid CA/TiO2 membrane, the material is modified, promoting larger open spaces and a looser
overall structure which facilitates the flux of water molecules, resulting in a higher Lp.
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MWCO 9 kDa.

In summary, the introduction of titania in the membranes in series 1, CA/SiO2/TiO2 hybrid
membranes, did not improve the water permeation of the CA/SiO2 (95/5) reference membrane.
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In contrast, the introduction of titania in the membranes in series 2, CA/TiO2 membranes, improved the
water permeation of the pristine CA membrane and the incremental increase in TiO2 further increased
the Lp, with both hybrid CA/TiO2 (97/3) and CA/TiO2 (95/5) membranes being the ones with the highest
Lp values.

For the series 1 and series 2 membranes, the MWCO was determined for the reference membranes
(non-TiO2 containing membranes), CA/SiO2 (95:5) (Figure 8c) and CA (100) (Figure 8e), and for the
membranes containing the highest TiO2 content, CA/SiO2/TiO2 (95:2:3) (Figure (8d) and (Figure 8d)
CA/TiO2 (95:5). For the membranes in series 1, the MWCO values of CA/SiO2 (95:5) and CA/SiO2/TiO2

(95:2:3) were 9 and 11 kDa, respectively. As was seen for the values of the Lp, the introduction of TiO2

does not seem to have a significant effect on the structures of the hybrid material which composes the
dense layer of the membranes in series 1. For the membranes in series 1 containing 0 wt% titania and the
highest content of titania (3 wt%), the rejection to macromolecules with MW 10 kDa is higher than 90%.

For the membranes in series 2, the MWCO value of the pristine CA membrane, CA (100), was 5 kDa
and, for the membrane containing the highest TiO2 content, CA/TiO2 (95:5), 9 kDa. As seen from the
results obtained for the Lp values of the series 2 membranes, the introduction of TiO2 does influence the
final structure of the hybrid material which composes the dense layer of the CA/TiO2 membranes when
compared to the pristine CA membrane. Once again, the introduction of TiO2 seems to increase the
size of the open spaces at the dense layer surface, enabling the passing/movement of larger molecules
through the membranes containing titania when compared to the pristine CA membrane.

In series 2, the MWCO measured for the pure CA membrane was 5 kDa and, for the CA/TiO2 (95/5)
hybrid membrane, 9 kDa. In this case, the introduction of 5 wt% TiO2 also opened the membrane pores
in the skin dense layer and let larger molecules cross. These results are in agreement with the Lp values
determined for series 2 membranes. The pristine CA membrane showed a lower pure water permeate
flux than the CA/TiO2 (95/5) hybrid membrane, which already indicates that the membrane pores
opened with TiO2 introduction. Nevertheless, both series of membranes are classified as ultrafiltration
membranes, since their size exclusion ranges from 0.5 to 100 kDa [47].

4. Conclusions

Two series of novel integral asymmetric monophasic hybrid membranes, CA/SiO2/TiO2 (series 1)
and CA/TiO2 (series 2), were developed by the coupling of sol-gel technology and a modified version
of the phase inversion technique, a method pioneered by the authors [24]. For the series 1 membranes,
the organic content (CA) was kept constant and equal to 95 wt% in all membranes. The reference
membrane, CA/SiO2 (95:5), contained 5 wt% SiO2 and, in the other four hybrid CA/SiO2/TiO2

membranes, the inorganic content was a combination of SiO2 and TiO2, with TiO2 steadily replacing
silica (from 0 to 3 wt%). For the membranes in series 2, the organic content (CA) was kept constant and
equal to 95 wt%. The inorganic phase, composed solely of TiO2, was increased from 0 wt%, in the
reference CA (100) membrane to 5 wt%. The membranes were characterized in terms of surface and
cross-section structure by SEM, chemical composition by ATR-FTIR, and ICP-OES, and the permeation
performance was evaluated in terms of Lp and MWCO.

SEM micrographs confirmed the integral asymmetric structure of all membranes in series 1 and
series 2 and indicated that there is no direct correlation between the introduction of TiO2 and the
total membranes’ thickness. In terms of the dense layer thickness, the introduction of TiO2 seems to
promote thinner dense layers for the hybrid CA/TiO2 membranes (series 2) when compared to the
reference CA (100) membrane, while no correlation was found for the membranes in series 1.

ICP-OES revealed that the amount of Ti present in the samples of all membranes in series 1 and
series 2 was equal to the amount introduced in the casting solution in the form of TiPOT. Furthermore,
ICP-OES confirmed that no Ti was leached from the membranes into the permeate or feed solution
during typical filtration experiments performed at 2 bar for 3 h.

ATR-FTIR proved the existence of a monophasic hybrid network composed of cellulose–acetate
and silica and/or titania covalently connected by Si–O–C and Ti–O–C covalent bonds. Furthermore,
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in the membranes from series 2, CA/TiO2 membranes, results show that TiO2 preferably bonds to CA
by nucleophilic substitution of the hydroxyl group rather than the carbonyl group.

The results obtained from ICP-OES and ATR-FTIR lead us to conclude that, in both membrane series,
Ti is directly (series 2) or indirectly (series 1) covalently bound to the polymer matrix, forming two novel
monophasic hybrid organic-inorganic materials: CA/SiO2/TiO2, and CA/TiO2. In the CA/SiO2/TiO2

membranes, Ti is covalently linked to the silica groups which, in turn, are covalently linked to the CA,
while, in the CA/TiO2 membranes, Ti is directly linked to CA.

Permeation experiments revealed that the introduction of titania in the membranes in series 1
did not improve the water permeation when compared to the reference membrane, CA/SiO2 (95/5).
In contrast, the introduction of titania in the membranes in series 2 increased the water permeation by
a factor of at least 2 when compared to the reference membrane, CA (100), and the incremental increase
in TiO2 in the CA/TiO2 membranes further increased the Lp, with the hybrid membranes containing
TiO2, CA/TiO2 (97/3) and CA/TiO2 (95/5) being the ones with the highest Lp values. Following the same
trend, the MWCO of the membranes in series 1 was unaffected by the introduction of TiO2, while,
for the membranes in series 2, the introduction of 3 wt% TiO2 increased the MWCO from 5 kDa for the
pristine CA membrane, CA (100), to 10 kDa for the CA/SiO2/TiO2 (95:2:3) membrane.
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Appendix A. Acid Catalyzed Sol-Gel Hydrolysis and Condensation Reactions

The sol-gel process develops during the homogenization of the casting solution (24 h period)
under acid catalysis and is responsible for the covalent binding of SiO2 and TiO2 to the CA network.
The sol-gel process consists in hydrolysis and condensation reactions which take place according to the
following order:

Immediately after the addition of catalysts (HNO3), TEOS starts hydrolyzing (at a very slow rate).
As soon as TIPOT is added to the casting solution, its hydrolysis occurs (at a very high rate,
almost instantly). After complete hydrolysis of both SiO2 and TiO2 precursors (TEOS and TIPOT,
respectively), homo- and hetero-condensation takes place.

Homo-condensation reactions include: homo-condensation between orthosilic Si(OH)4 molecules,
homo-condensation between Ti(OH)4 molecules, and homo-condensation between CA–CA polymer.
Hetero-condensation reactions include: hetero-condensation between Si(OH)4 and CA polymer,
hetero-condensation between Ti(OH)4 and CA polymer, and hetero-condensation between between
Si(OH)4 and Ti(OH)4.

As the condensation reactions take place, other Si(OH)4 or Ti(OH)4 molecules may condensate
with other inorganic molecules already bonded to the CA polymer.
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Appendix B

Calculation base: 100 g casting solution
M (TEOS) = 208.33 gmol−1 M(SiO2) = 60.0843 gmol−1

M(TiPOT) = 284.22 gmol−1 M(TiO2) = 79.8658 gmol−1

Table A1. Membrane Acronyms and Casting Solution Composition (series 1 and series 2).

ACRONYM Casting Solution Composition (wt%)
CA/SiO2/TiO2 TEOS SiO2 TiPOT TiO2 CA (CA + SiO2 + TiO2)

95/5/0 3 0.865228 0 0 16.4 17.26523
95/4.5/0.5 2.7 0.778705 0.32 0.08992 16.4 17.26863

95/4/1 2.4 0.692182 0.64 0.17984 16.4 17.27202
95/3/2 2.1 0.605659 0.96 0.269761 16.4 17.27542
95/2/3 0.93 0.268221 2.07 0.581671 16.4 17.24989

ACRONYM Casting Solution Composition (wt%)
CA/TiO2 TiPOT TiO2 CA (CA + TiO2)

100 0 0 17 17
99.5/0.5 0.32 0.08992 16.4 16.48992

98/2 0.96 0.269761 16.4 16.66976
97/3 2.07 0.581671 16.4 16.98167
95/5 3 0.843002 16.4 17.243

Appendix C

Table A2. Membrane drying process: stages, solvents, and immersion time.

Stage Solution Time (h)

1 H2Od

24

2 Aqueous solution of Isopropanol (25% V/V)
3 Aqueous solution of Isopropanol (50% V/V)
4 Aqueous solution of Isopropanol (75% V/V)
5 Solution of Isopropanol (100% V/V)
6 Solution of Isopropanol (75% V/V) + n–Hexane (25% V/V)
7 Solution of Isopropanol (50% V/V) + n–Hexane (50% V/V)
8 Solution of Isopropanol (25% V/V) + n–Hexane (75% V/V)
9 Solution of n–Hexane (100% V/V)
10 Desiccator

Appendix D. Estimation of the Dense Layer Thickness from FEG-SEM cross Section Images and
ImageJ Software

The FEG-SEM figure illustrates the cross section of the CA/SiO2/TiO2 (95:4:1) membrane (a)
where the regions near the top dense (b) and near the bottom porous surface (c) are shown at higher
amplifications. In image (b), the active layer, characterized by a very thin dense layer on top of a
porous substructure, is visible at a large scale and its thickness can be measured using ImageJ software.
It is also possible to see that the pores throughout the cross section (from top to bottom) become larger
in the direction from the active layer to the bottom porous surface. Image (c) shows an amplified
region near the bottom porous surface, where pores are larger than the ones neighboring the active
layer. Images with these amplifications were taken for all membranes (series 1 and series 2) in order
to calculate the active layer thickness. The figure shows that the total thickness of the membranes in
series 1 was calculated from the images in the third column using ImageJ software.
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Appendix E. Titanium Leached from the Membranes

Table A3. Ti concentration ([Ti]) (mg/L) of the initial H2Od sample and of the final H2Od samples
collected from the permeate and concentrate cells in the permeation assay. CA/SiO2/TiO2 (95/2/3) and
CA/TiO2 (95/5) membranes were tested.

Series 1 H2Od Sample [Ti] (mg/L)

CA/SiO2/TiO2 (95/2/3)
Initial <0.010 ± 0.000

Final permeate <0.010 ± 0.000
Final concentrate <0.010 ± 0.000

Series 2 H2Od Sample [Ti] (mg/L)

CA/TiO2 (95/5)
Initial <0.010 ± 0.000

Final permeate <0.010 ± 0.000
Final concentrate <0.010 ± 0.000
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