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Abstract 

Cells whose accessibility landscape has been profiled with scA T AC-seq cannot readily be annotated to a particular cell type. In fact, annotating 
cell-types in scA T AC-seq data is a challenging task since, unlike in scRNA-seq data, we lack knowledge of ‘marker regions’ which could be used 
for cell-type annotation. Current annotation methods typically translate accessibility to expression space and rely on gene expression patterns. 
We propose a no v el approach, scA T A cat, that le v erages characteriz ed bulk A T AC-seq dat a as protot ypes to annot ate scA T AC-seq data. To mitigate 
the inherent sparsity of single-cell data, we aggregate cells that belong to the same cluster and create pseudobulk. To demonstrate the feasibility 
of our approach we collected a number of datasets with respective annotations to quantify the results and e v aluate perf ormance f or scA T Acat. 
scA T Acat is available as a python package at https:// github.com/ a ybugealta y/scA T Acat . 
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hromatin structure can control the accessibility of potential
ene regulatory elements in a dynamic and cell-type-specific
anner and therefore plays a critical role in gene regulation

 1 ). It has been shown that accessibility measurements offer
aluable additional information to gene expression and have
een demonstrated to be more cell-type specific than expres-
ion data ( 2 ). This is due to much of the cell-type-specific infor-
ation within the genome being located in enhancer regions,
hich are captured by accessibility assays. Today, even single-

ell technologies are applied to accessibility measurements.
ne of the most commonly used techniques is scA T AC-seq ( 3 ).
urther advances in single-cell genomics have facilitated the
rofiling of thousands of cells simultaneously, even at a multi-
odal level ( 4 ). While these protocols lead to an enormous
eceived: January 19, 2024. Revised: September 11, 2024. Editorial Decision: Sep
The Author(s) 2024. Published by Oxford University Press on behalf of NAR G

his is an Open Access article distributed under the terms of the Creative Comm
https: // creativecommons.org / licenses / by-nc / 4.0 / ), which permits non-commerc
riginal work is properly cited. For commercial re-use, please contact reprints@o
ermissions can be obtained through our RightsLink service via the Permissions l
ournals.permissions@oup.com. 
growth in the volume of data generated, the large datasets also
allow deeper insights into complex biological systems. 

Numerous types of cells can be found in an organism. Tra-
ditionally, these cell types have been defined based on pheno-
typic characteristics ( 5 ). With the advent of single cell RNA
sequencing (scRNA-seq) it has become a common practice to
cluster cells based on their transcriptome profile, in the ex-
pectation that these clusters correspond to cell types ( 6 ). The
results, e.g. of the Human Cell Atlas ( 7 ), rely on this assump-
tion and cell-types are frequently assigned to individual cells
based on the determined transcriptome. 

In this work, we deal with the problem of assigning cell-
types to the cells for which a single cell A T AC sequencing
(scA T AC-seq) experiment has been performed. This is an im-
portant problem if we want to exploit the detailed cell-type
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the datasets used. 
information that is assumed to be contained in the accessibil-
ity of the chromatin. Since most data and most cell-type an-
notation is available for scRNA-seq data, many existing ap-
proaches capitalize on the RNA level by predicting a proxy to
gene expression from the accessibility landscape. This proxy
is frequently referred to as ‘gene activity score’ ( 8 ,9 ). Given
this gene activity score, annotation methods for scRNA-seq
data can be carried over. These fall roughly into marker-based
and reference-based methods. Marker-based annotation usu-
ally is a manual process which requires expert knowledge and
testing of multiple markers. Recent work ( 10 ,11 ) has tried to
better support this process. Transferring labels from a known
cell-type to the query cells by way of reference-based annota-
tion can be achieved either by the statistical similarity metrics
( 12–16 ) or by machine learning models ( 17–21 ). ( 22 ) provides
a benchmarking study comparing these techniques. A recent
tool, Cellcano ( 23 ) is developed specifically for cell-type an-
notation in scA T AC-seq data and demonstrated superior per-
formance over the existing approaches. 

An alternative and potentially more accurate way to an-
notate cell-types in scA T AC-seq data is to perform within-
modality annotation, that is to say, annotating the cell types
using annotated-A T AC-seq data. Ideally, this will rely on an
annotated scA T AC-seq reference. One of the recent efforts to
tackle this problem is EpiAnno ( 24 ) which leverages exist-
ing annotated scA T AC-seq data and employs a Bayesian neu-
ral network framework for supervised cell-type annotation.
However, this method is not computationally scalable ( 23 ).
Often times the scA T AC-seq reference itself is a product of
annotation via expression markers on RNA levels. As a sur-
rogate to annotated scA T AC-seq references, an alternative ap-
proach is to use characterized-bulk A T AC-seq data as a refer-
ence. This approach has been suggested by ( 25 ). 

Here, we put forward scA TAcat–scA TAC-seq cluster anno-
tation tool for annotation of cell-types in scA T AC-seq data
based on characterized bulk A T AC-seq data. scA T Acat pro-
vides results comparable to or better than many approaches
that perform cell-type annotation. Rather than using the genes
and their predicted activity as the features for assignment, we
focus on the regulatory elements in the chromatin. We explore
the use of FAC-sorted scA T AC-seq data as a demonstration of
the methodology. We further apply our annotation method
and compare it to other approaches using six more datasets
of blood and brain cells. For comparison we study four ap-
proaches, namely, marker-based annotation, reference-based
label-transfer, Cellcano and EpiAnno. We will discuss the chal-
lenges and biases in cell-type annotation in scA T AC-seq data.

Materials and methods 

scA T Acat 

Method outline 
Given a set of cells for which a scA T AC-seq experiment has
been performed, scA T Acat seeks to annotate cells with their
corresponding cell-type. To be more precise, we first cluster
the scA T AC-seq data yielding what we call ‘pseudobulk’ clus-
ters. This serves the purpose of aggregating the sparse counts
from several cells and to obtain better accessibility profiles
at the pseudobulk level. All the cells in a pseudobulk cluster
will inherit the assignment of the pseudobulk cluster. Further-
more, for annotation we require prototypes of the possible
cell-types. Typically, for each cell-type there may be several
replicate prototype samples available. Such prototypes can,
e.g. come from existing characterized bulk A T AC-seq data.
scA T Acat takes as input these bulk accessibility profiles of dis- 
tinct cell-types to which the computed pseudobulk clusters can 

be matched. scA T Acat co-embeds the prototype accessibility 
profiles with the pseudobulk clusters in a principal component 
analysis (PCA) space and exploits the distance in this space to 

assign the cell-type labels. 

Preprocessing of reference bulk A T AC-seq data 
To allow for integration of different data sets we rely on can- 
didate cis-regulatory elements (cCREs) provided by ENCyclo- 
pedia Of DNA Elements (ENCODE) project ( 26 ) (version 2) 
as a feature space for all the datasets in this study. We calculate 
the cCRE coverage of the bulk A T AC-seq datasets. Next, we 
identify the differentially accessible cCREs in pairwise man- 
ner. This approach is adopted based on our hypothesis that 
these particular cCREs hold the most discriminative informa- 
tion and are cell-type specific. We use the DiffBind R pack- 
age (v3.0) ( 27 ) with DESeq2 ( 28 ) as the underlying method 

after applying sequencing depth normalization provided by 
the package. We identify significantly differential accessible 
regions by filtering for FDR ≤0.05. 

This analysis results in variable number of differential re- 
gions depending on the similarly between the compared cell- 
types. To ensure equal contribution of various comparisons 
and mitigate the potential bias, we gather the same number 
of features, by default 2000 regions, unless a comparison con- 
tains fewer differential regions, from each pairwise compari- 
son to derive a final feature space. When choosing this number 
we took into consideration the lower bound for the differen- 
tial regions, as well as the total number of regions for the fi- 
nal feature set. Note that this number may be adjusted based 

on the specific cell-types under consideration. These features,
hereafter named differential cCREs , are used as the final fea- 
ture space for the rest of the analysis. We apply library size 
normalization and log 2 transformation to the original data 
and finally subset the matrix to differential cCREs . 

Preprocessing of scA T AC-seq data 
Due to the sparsity of scA T AC-seq data, some preproccess- 
ing is needed. For scA T AC-seq data, we calculate the coverage 
of cCREs by counting the number of fragments within each 

cCRE region for each single cell. This yields a cell-by-cCRE 

matrix . Features which occur in less than k (default k = 3) 
cells get eliminated. Additionally, we get rid of the Y chromo- 
some to avoid gender biases. On the level of cells, we filter out 
cells with < 1000 and > 80 000 non-zero features, as well as 
doublet cells detected by AMULET ( 29 ). 

Analysis suites for scA T A C data ( 8 , 9 ) process scA T AC-seq
data using TF-IDF. More specifically, we apply TF-logIDF nor- 
malization ( 30 ). This results in re-weighted features (cCREs) 
by assigning greater weight to more important features. Then 

we subset the data to the differential cCREs as defined by 
the reference bulk A T AC-seq data. W e then reduce the dimen- 
sion via PCA and continue with the standard scanpy clustering 
pipeline ( 31 ). We determine the nearest neighbors with neigh- 
bors function (n_pcs = 50, n_neighbors = 30) and compute a 
UMAP ( 32 ) embedding. UMAP provides a low dimensional,
non-linear embedding in which one can visualize a clustering.
Next, we apply Leiden clustering ( 33 ) with leiden function. In 

this study we set the Leiden resolution parameter to 1 for all 
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chose to use ‘cca’ reduction method to attain more informed 
The cells in one cluster form a pseudobulk . To represent this
seudobulk we compute its accessibility profile by adding the
ead coverage for each feature across the cluster member cells.
ust like for the bulk data, we apply library size normalization
nd log 2 transformation to the pseudobulk matrix and subset
he matrix to differential cCREs . 

o-embedding prototypes with pseudobulks 
o make datasets comparable we apply a z -score transforma-
ion. First consider the bulk-by-cCRE matrix of prototypes.

e substitute each matrix entry by its z -score with respect to
ts column, i.e. mean and standard deviation are computed
ver the cells in the column. Call this matrix X . For pur-
oses of integrating the data, the z-score transformation on
he pseudobulk-by-cCRE matrix is performed with the very
ame column-means and column-standard deviations of the
rst matrix. Call this transformed pseudobulk-by-cCRE ma-
rix Y . Both matrices have as many columns as there were dif-
erential features. The number of rows, n X 

, of the transformed
ulk-by-cCRE matrix is the number of annotated prototype
ulk samples given. These may describe a number k of differ-
nt cell-types. For one cell-type there may be several (replicate)
ulk samples. The number of rows of Y , n Y , is just the number
f pseudobulk clusters. 
After this transformation step, we proceed to co-embed pro-

otype bulk samples and pseudobulk clusters into one space
sing PCA. To this end, we obtain the eigenvectors of the ma-
rix X . Depending on the number of dimensions one wants to
eep, concatenate this number of eigenvectors into a matrix
 . The data can then be represented in a lower dimensional

pace by transforming the original matrix as follows: 

ˆ X = W 

t × X (1)

here W 

t corresponds to the transpose of the matrix W . The
seudobulk samples get projected onto the same PCA space
s follows: 

ˆ Y = W 

t × Y (2)

s a result, we have projection with both pseudobulk and pro-
otype bulk samples embedded into the same space. 

nnotating pseudobulk clusters 
o-embedding ˆ X and 

ˆ Y , and visualizing the projection in 3D
CA space facilitates a simplified interpretation of cell-type
elationships. However, determining the annotations solely
ased on a visualisation may be tedious. In particular, the first
hree PCs used in the projection might not suffice to fully cap-
ure the inherent structure of the high dimensional data. Fol-
owing common practice, we therefore keep a larger number
f dimension (typically 30 if there are enough samples avail-
ble) to compute Euclidean distances in this high-dimensional
mbedding space. 

To obtain a matching between pseudobulk clusters and pro-
otype samples, we first compute centroids for each of the pro-
otype cell-types. Next, we compute the Euclidean distances
in many dimensions) between the pseudobulk clusters and the
 centroids, yielding a n Y × k matrix D . Finally, we annotate
ach pseudobulk cluster by its closest centroid of a cell-type. 

Going beyond the mere assignment, inspection of the ma-
rix D can provide valuable information about the data. This
ill already show when decisions are ambiguous. Addition-

lly, we also compute a matrix of size ( k + n Y ) × ( k + n Y ) with
ll the distances among pseudobulks and prototypes. Hierar-
chical clustering on this matrix helps to understand the group-
ing among pseudobulks and prototypes, as well as to detect
possible outliers. 

scA T Acat is implemented in Python and made compati-
ble with scanpy ( 31 ) and anndata ( 34 ) libraries for an easy
integration. 

Marker-based annotation 

Marker-based annotation is one of the standard ways to an-
notate cell-types in scRNA-seq data. This method includes ex-
ploiting the expression of so-called marker genes, which are
the genes exclusively expressed in a known cell-type, as a pre-
dictor of the associated cell-type. Application of this method
for scA T AC-seq data is enabled by the use of a metric called a
‘gene activity score’ as a stand-in for the expression of genes.
The gene activity score typically measures the level of accessi-
bility around the gene body and nearby enhancer regions with
the assumption that expression can be inferred from accessi-
bility. Therefore, this value is also referred as predicted expres-
sion. In this study we use the gene score calculations as defined
by Signac ( 8 ), which considers the number of fragments within
the gene body and 2 kb upstream region of each gene to de-
termine for each gene’s activity. Here, we refer to the resulting
matrix as gene-score matrix . Note that the scA T AC-seq data
is processed as outlined by Signac with default parameters to
obtain this gene-score matrix . Once the gene activity scores
are calculated, one can look at the predicted expression lev-
els of the marker genes to determine the cell-type of a cluster.
In this work, CellMarker 2.0 ( 35 ) is used as the marker gene
resource, if not specified otherwise. 

Reference-based label-transfer 

Another commonly used way to annotate cells in single-cell
data includes transferring the cell labels from existing an-
notated reference atlases. Here, we use one of the widely
adapted tools, Seurat (v3) ( 13 ,36 ) for this purpose. Briefly,
Seurat (v3) employs canonical correlation analysis (CCA) to
determine so-called ‘anchors’ between the query and reference
datasets. Anchors represent the cells with the highest similar-
ity and therefore serves as a correspondence between reference
and the query. The assumption is that the anchor cells define
matching cell states and create a shared space between the
query and reference. Each anchor pair is then scored based on
the correspondence in connecting cells’ shared nearest neigh-
bor (SNN) graphs ( 37 ). Anchors serve as bridges to transfer
information, such as cell-type label, from reference to query
cells. 

It is important to note that in order for reference and query
to align and for bridges to be defined, (i) there needs to be a
shared feature space between the reference and query and (ii)
both the data need to be processed similarly. To satisfy the first
requirement, we use gene-score matrix of scA T AC-seq data de-
scribed above, effectively defining our features as genes. For
the second requirement, we use Seurat toolkit and apply ‘log-
Transformation’ for both the datasets. We next determine the
variable features using Seurat’s ‘vst’ method and select top
3000 variable features. Subsequently, we determine anchors
using ‘FindTransferAnchors’ method with ‘cca’ as the reduc-
tion method. Note that, in our experience, the latest Seurat v4
integration with reduction method ‘spca’ typically results in
limited and insufficient number of anchors. Consequently, we
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annotations. Lastly, we use ‘TransferData’ function to transfer
cell-type information from reference to query data. We apply
this approach for cell-type annotation, which we referred to
as label-transfer . 

Cellcano 

Cellcano is a supervised cell-type annotation method specifi-
cally designed for scA T AC-seq data ( 23 ). Cellcano relies on the
ArchR ( 9 ) defined gene scores for both reference and query
datasets. ArchR calculates these gene scores by considering
the accessibility around the gene body and 5 kb upstream of
the transcription start site. This value is then scaled by incor-
porating the regulatory accessibility signal around the gene
boundary , which is 100 kb on either side of the gene, with
exponential decay function. Cellcano performs the cell-type
annotation task in two rounds. In the first round, reference
gene scores of the cells with known cell-labels are used to train
a multi-layer perceptron (MLP), which then predicts the cell-
types in the query data. In the second round, query cells anno-
tated with high confidence are selected as ‘anchor’ cells. These
cells serve as the training data for the second training round
where a self-Knowledge Distiller (KD) model predicts the cell
labels of non-anchor cells. 

For all the used datasets, we first used ‘Cellcano preprocess’
to obtain gene scores as per ArchR’s default settings. Next,
we trained the Cellcano model with the scA T AC-seq reference
dataset using ‘Cellcano train’ option. Finally, we applied ‘Cell-
cano predict’ option with the trained model to annotate cell
types in the query scA T AC-seq data. The datasets we used as
query and reference datasets are listed in Table 1 . Cellcano is
employed with default parameters. 

EpiAnno 

EpiAnno is another supervised cell-type annotation method
specifically designed for scA T AC-seq data ( 24 ). This methods
employs a Bayesian neural network for its supervised learn-
ing strategy. Unlike other methods, EpiAnno does not rely on
any gene scoring approximation and uses peaks or genomic
regions as features. 

The first step of the method is preprocessing starting with
feature selection. Peaks occupied by less than three percent
of the cells, which is controlled by ‘peak_rate’ parameter,
are eliminated to reduce noise. The resulting dataset under-
goes TF-IDF transformation, followed by z -normalization to
standardize the data. After reprocessing, the training data is
fed into the Bayesian neural network along with the cell-
type labels. Besides cell-type annotation, EpiAnno generates
latent representation for each cell based on its label, which
is then mapped back to original feature space through the
nonlinear Bayesian neural network. This enables interpretable
embedding. 

For the trained model to make predictions, it is essential
that the feature sets of both the training and test data are the
same. EpiAnno achieves this by unifying the peak set to those
of the test dataset. Specifically, it counts the reads of the train-
ing dataset that fall into the peaks of the test dataset, ensuring
that both datasets share the same features. This enables inter-
dataset predictions. In this study, we used the peaks identified
by the default ArchR pipeline as the features for our datasets.
Following the instructions in original paper, we unified the
training data features to the peaks of test data. The datasets
we used as query (test) and reference (training) are listed in
Table 1 . For all cell-type annotation tasks, we employed the 
‘run_crossdataset_projection’ script with default settings, ex- 
cept for PBMC and FACS bone marrow scA T AC-seq datasets 
where we adjusted the ‘peak_rate’ parameter to 0.05 due to 

memory constraints. 

Performance assessment 

In the assessment of annotation methods, we first adapted 

the performance metrics introduced in ( 38 ). Given an experi- 
ment with a set of cells, each cell has a ground-truth annota- 
tion, whereby each cell is assigned a label (e.g. B cell). While 
each method provides an annotation, the annotations may not 
cover all cells due to variations in the preprocessing filters used 

by each method. For a fair comparison, we only consider cells 
annotated by both the ground-truth and all compared meth- 
ods. More importantly, the annotation labels may not encom- 
pass all the labels that are used by the ground-truth anno- 
tation as each method uses different reference / training data 
with a distinct set of labels. To address this discrepancy, we im- 
plemented two different performance evaluations. In the first 
evaluation, we determine the set of common cell-type annota- 
tions across all methods and the ground-truth, here referred 

as ‘common cell-types’. We consider only those cells whose 
ground-truth annotation is one of the common cell-types. De- 
spite being conservative, this approach enables unbiased com- 
parison and minimizes the impact of difference in reference 
data labels. The second strategy differs in that we evaluate 
each method individually such that the common cell-types are 
defined as cell-types shared between the method in question 

and the ground-truth. This strategy allows for the evaluation 

of a possibly larger number of cell-type annotation labels and 

the corresponding cells, depending on the number of common 

cell-types annotated by a method. 
Let the set of annotation labels be L = 1 , 2 , ..., K . Further,

let C be the set of cells c i . We only use cells that have been an-
notated by the ground-truth as one of the common cell-types.
Let m i denote method i , where we adopt the convention that 
m 1 is the ground-truth. m i is a mapping from cells to labels,
i.e. it is of the form m i ( c j ) = l with l ∈ L . This would mean
that mapping m i labels cell j as type l . Note that we only use 
those labels that are predicted by all methods, i.e. we reduce 
the label set to 

⋂ 

i Im (m i ) . Accordingly, we also reduce the 
cells in the ground-truth and only keep those cells for which 

the label is a member of this reduced label set. The first met- 
rics we use, accuracy ( Acc ), quantifies the proportion of cells 
with accurately assigned cell-type annotations across cells and 

calculated as: 

Acc = 

1 

n 

n ∑ 

j=1 

I ( m i ( c j ) = m 1 ( c j )) (3) 

where n is the number of labeled cells, c j is the j th cell, m i 

is the mapping from cell to predicted cell-type and m 1 is the 
mapping from cell to true (ground-truth) cell-type, and I is the 
indicator function that returns 1 when its argument is true and 

0 otherwise. 
Balanced accuracy ( BAcc ) measures the average accuracy 

across cell-types and calculated as: 

BAcc = 

1 

r 

r ∑ 

i =1 

Acc i (4) 
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Table 1. Summary of the query and reference datasets utilized for cell-type annotation methods compared in this study 

Query dataset scA T Acat prototypes 
Seur at label-tr ansfer 
reference Cellcano reference EpiAnno reference 

FACS BM scA T AC-seq feasibility study: 
aggregated single cells for 
BMMC progenitors 

BMMC CITE-seq of 
hematopoietic 
progenitors 

CD34+ BM 

progenitors 
scA T AC-seq 

CD34+ BM 

progenitors 
scA T AC-seq 

application: bulk 
A T AC-seq of sorted 
BMMC progenitors 

10X PBMC sc-multiome bulk A T AC-seq of sorted 
PBMCs 

PBMC CITE-seq PBMC scA T AC-seq PBMC scA T AC-seq 
PBMC scA T AC-seq 
NeurIPS BMMC 

sc-multiome 
bulk A T AC-seq of sorted 
BMMCs 

BMMC CITE-seq BMMC scA T AC-seq BMMC scA T AC-seq 

BMMC scA T AC-seq 
Corces brain scA T AC-seq bulk A T AC-seq of sorted 

brain cell-types 
brain primary motor 
cortex snRNA-seq 

brain cerebral cortex 
sc-multiome 

brain cerebral cortex 
sc-multiome Brain cortex scA T AC-seq 

Abbreviations: BM, bone marrow; BMMC, bone marrow mononuclear cells; PBMC, peripheral blood mononuclear cells. A comprehensive version of this 
table with detailed dataset references is available in Supplementary Table S1 . 
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n this equation, r denotes the number of cell-types in reduced
ell-type subset 

⋂ 

i Im (m i ) . Acc i refers to the accuracy of the
 th cell-type. 

Another variant of measuring accuracy is cluster accuracy
 CAcc ). The clusters are defined by scA T Acat pipeline using
he Leiden clustering as explained above (see section Prepro-
essing of scATAC-seq data ). For each annotation method, as
ell as the ground-truth, every cluster is annotated as the most

bundant cell-type of its constituent cells. We only consider
he clusters with more than 10 cells. Let p i denote method
 , where we adopt the convention that p 1 is the ground-truth
luster labels. p i is a mapping from clusters to labels, i.e. it is of
he form p i ( s j ) = l with l ∈ L . This would mean that mapping
 i labels cluster j as type l . The cluster accuracy is calculated
s follows: 

CAcc = 

1 

n Y 

n Y ∑ 

j=1 

I ( p i ( s j ) = p 1 (s j )) (5)

here n Y refers to the number of clusters as defined by the
eiden clustering, s j is the j th cluster, p i is the mapping from
lusters to predicted cell-type and p 1 is the mapping from clus-
ers to true (ground-truth) cell-type. 

To define true positives (TP), false positives (FP), true neg-
tives (TN) and false negatives (FN) for a specific label l ∈ L ,
e use the following definitions: 

TP l = 

n ∑ 

j=1 

I ( m i ( c j ) = l ∧ m 1 (c j ) = l ) 

FP l = 

n ∑ 

j=1 

I ( m i ( c j ) = l ∧ m 1 (c j ) � = l ) 

TN l = 

n ∑ 

j=1 

I ( m i ( c j ) � = l ∧ m 1 (c j ) � = l ) 

FN l = 

n ∑ 

j=1 

I ( m i ( c j ) � = l ∧ m 1 (c j ) = l ) 

Using these definitions, we calculate the median Precision,
edian Recall, median and macro F 1 scores. 
Matthews correlation coefficient (MCC) is a metric for as-

essing the performance of binary classification models. MCC
takes into account true and false positives and negatives and
a high MCC score is only achieved when the majority of both
negative and positive cases, regardless of their proportions in
the dataset are accurately prediced. Therefore, MCC score ef-
fectively addresses the class imbalance that affects the accu-
racy measure. 

For the multiclass case, the MCC can be defined as follows
( 39 ): 

MCC = 

c × s − ∑ 

k (t k × p k ) √ 

(s 2 − ∑ 

k p 

2 
k ) × (s 2 − ∑ 

k t 
2 
k ) 

where c represents the total number of correct predictions, s
is the total number of samples, t k and p k represent the total
number of samples in the true class k and the predicted class
k , respectively. In multiclass scenario, MCC score takes 1 as
the maximum value while the minimum value ranges between
−1 and 0. 

Cohen’s kappa ( κ) calculates the level of concordance be-
tween annotations by taking the agreement occurring by
chance into account. It is defined as: 

κ = 

p o − p e 

1 − p e 

where p o is the observed agreement ratio and p e is the expected
agreement in case of a random label assignments. κ ranges be-
tween −1 and 1 with 1 referring to the full agreement between
annotators. 

Rand index (RI) measures the similarity between two set
of clusters by examining the pairs of elements that match and
differ within the clusters. It is defined as number of agreeing
pairs divided by number of pairs. Adjusted rand index (ARI)
adjusts this measure for chance with the following formula: 

ARI = ( RI − Expected RI ) / ( max ( RI ) − Expected RI ) 

This similarity score ranges between −0.5 and 1, with 1 being
the perfect match and random labelling ranging between 0
and 1. 

Datasets 

Query scA T AC-seq datasets 

FACS human hematopoiesis (bone marrow) scA T AC-seq 

The bone marrow scA T AC-seq data is acquired from ( 40 ). The
dataset includes scA T AC-seq data of 2210 human hematopoi-

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae135#supplementary-data
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etic progenitor cells which are obtained from bone marrow
and isolated via fluorescence-activated cell sorting (FACS).
FACS enables sorting of single cells into a well plate using
cell-type specific cell-surface markers and thereby provides a
true cell-type annotation for each cell in the data. 

Owing to this unique property, we use this data both as
single-cell data as well as bulk prototype data. When using
as a bulk prototype, we combine the single cells of the same
cell-type by summing the features across cells and form bulk-
like data. As the data is by default annotated, here we refer to
this dataset as annotated bulk prototype dataset. When using
as a single-cell data, as the name suggests, we use the data
obtained from cells individually and do not leverage the FACS
annotations. 

10X human PBMC sc-multiomics 
Human peripheral blood mononuclear cell (PBMC) sc-
multiomic data has been obtained from 10X website ( 41 ). The
dataset includes paired scRNA-seq and scA T AC-seq profiles of
10 661 cells, obtained from PBMCs of a healthy donor. Infer-
ence of the cell-type annotations of this dataset is introduced
in the Methods section. 

NeurIPS human bone marrow sc-multiomics 
This dataset has been provided as part of the NeurIPS chal-
lenge ( 42 ). The dataset serves as a valuable resource for bench-
marking studies and claimed to be the largest and most realis-
tic multimodal data available ( 43 ). The datasets are also care-
fully annotated by experts considering various marker genes
and across scRNA-seq and scA T AC-seq data. W e focused on
one sample from this study , namely , s1d1 for the sake of sim-
plicity. The data consist of 19 039 bone marrow cells obtained
from a healthy donor. In this study, we decoupled the paired
measurements and exclusively used the scA T AC-seq data. For
this dataset, we use the annotations provided by the challenge
organizers as the ground-truth, therefore, do not perform cell-
type annotation for the scRNA-seq part. 

Granja human PBMC scA T AC-seq 

Human PBMC scA T AC-seq data of sample D10T1 comes
from ( 44 ) and was downloaded from GEO. The fragments
file was aligned to the hg19 genome version and, using the
liftOver utility, was transferred to hg38 genome assembly. The
dataset includes 2891 healthy PBMCs. We used the cell-type
annotations provided in the original publication. 

Granja human BMMC scA T AC-seq 

Human BMMC scA T AC-seq data of sample D6T1 is also ac-
quired from ( 44 ). Like PBMC data, we obtained the frag-
ments file and used liftOver utility to align the fragment files to
hg38 genome assembly. The dataset includes 12 394 healthy
BMMCs. We rely on the cell-type annotations from the origi-
nal publication. 

Corces brain scA T AC-seq 

Corces brain scA T AC-seq data ( 45 ) comes from caudate nu-
cleus of a cognitively healthy individual (control 1). The raw
data is aligned to GRCh38 genome version using cellranger-
atac-2.0.0. We use 10 016 brain cells whose cell-type annota-
tions are provided in the original publication. 
Mor abito br ain cortex scA T AC-seq 

The Morabito dataset ( 46 ) includes scA T AC-seq data from the 
postmortem prefrontal cortex of an individual with no cogni- 
tive impairments. We focus only on Sample-90 for the sake of 
simplicity. The raw data is obtained from GEO database and 

and aligned to the GRCh38 genome version using cellranger- 
atac-2.1.0. It comprises of 5933 brain cells, with cell-type an- 
notations derived from the original publication. 

Reference datasets 

Human PBMC CITE-seq 

Human PBMC CITE-seq ( 36 ) comprises the transcriptomic 
measurements of 211 000 PBMCs along with 228 cell-surface 
proteins. The reference includes two levels of cell-type annota- 
tions with increasing granularity , namely , cell-type.l1 and cell- 
type.l2. We used the coarse annotation, celltype.l1, which in- 
cludes the main blood cell types, namely; B, CD4 T, CD8 T,
natural killer, monocytes, dentritic, other T and other cells. 

Human BMMC CITE-seq 

The BMMC (bone marrow mononuclear cell) dataset ( 13 ) 
comprises single-cell transciptomics measurements of 33 454 

bone marrow cells along with 25 cell-surface proteins. This 
reference as well, includes two levels of cell-type annota- 
tions with increasing granularity , namely , cell-type.l1 and cell- 
type.l2. The used fine-grained annotation, celltype.l2, which 

includes progenitor cells and hematopoietic stem cells, along 
with the PBMCs. 

Satpathy human PBMC sc-multiome 
This dataset is obtained from ( 47 ) and includes the paired 

scRNA-seq and scA T AC-seq measurements of 9616 PBMCs.
We only used the scATAC-seq measurements of a PBMC sam- 
ple, referred to as Rep_1. We obtained the fragments file from 

GEO which was aligned to hg19 genome version. We used 

liftOver utility to align the fragments file to hg38 genome as- 
sembly. The dataset annotation encompasses a range of blood 

cell types, including B cells, CD4 T cells, CD8 T cells, natural 
killer cells, dendritic cells, monocytes, basophils and various 
subtypes thereof. 

Satpathy human CD34+ progenitor sc-multiome 
This dataset also comes from ( 47 ) and consists of paired 

scRNA-seq and scA T AC-seq measurements. W e use only 
the scA T AC-seq measurements of 10 056 CD34+ cells,
identified as Rep_1. The processing of the fragments file 
was conducted in the same manner as with the Satpa- 
thy Human PBMC sc-multiome dataset. In comparison to 

the cell types found in the Satpathy Human PBMC sc- 
multiome dataset introduced above, the CD34+ progeni- 
tor dataset includes annotated progenitor cell-types such 

as hematopoietic stem cells (HSCs), monocyte-dendritic cell 
progenitors (MDPs), megakaryocytic-erythroid progenitors 
(MEPs), lymphoid-primed multipotent progenitors (LMPPs),
granulocyte-monocyte progenitors (GMPs), multipotent com- 
mon myeloid progenitors (CMPs) and common lymphoid 

progenitors (CLPs). 

Satpathy human BMMC sc-multiome 
Similarly, this dataset is obtained from ( 47 ) and consists 
of paired scRNA-seq and scA T AC-seq measurements. W e 
use only the scA T AC-seq measurements of 6011 BMMCs,
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dentified as Rep_1. The processing of the fragments file was
onducted in the same manner as with the Satpathy Hu-
an PBMC sc-multiome dataset. The BMMC dataset encom-
asses cell-types from both the PBMC and CD34+ progen-

tor datasets, offering a comprehensive view of the cellular
andscape. 

hu human cerebral cortex sc-multiome 
his dataset is acquired from ( 48 ) and consists of the paired
xpression and accessibility measurements of human cere-
ral cortex across time. We focus on only one adult brain
ample referred to as Adult_1 which consists of 1395 cells
ith corresponding cell-type labels. These labels includes
ligodendrocytes, astrocytes, oligodendrocyte progenitor cells
OPCs), excitatory neurons (ENs), pericytes, inhibitory neu-
ons (INs) and microglia. 

llen Brain Map primary motor cortex snRNA-seq 

his dataset ( 49 ,50 ), obtained from the Allen Brain Atlas,
omprises single-nucleus transcriptomes of 76 533 nuclei ob-
ained from two post-mortem human brain samples. The
ataset explores the cell-type composition of primary cortex
nd it is commonly referred to as ‘Human M1 10x’. It encom-
asses a variety of cell-types, including astrocytes, endothelial
ells, excitatory neurons, inhibitory neurons, microglia, oligo-
endrocyte precursor cells, oligodendrocytes and vascular and
eptomeningeal cells. 

uman hematopoietic differentiation bulk A T AC-seq 

he human hematopoietic differentiation bulk A T AC-seq
ataset ( 2 ) includes bulk A T AC-seq profiles of 13 human pri-
ary blood cell-types extending over diverse hematopoiesis

ayers. Samples are obtained from peripheral blood and bone
arrow. In our study, we exploit distinct subsets of this data

o match potential cell-types in the given query dataset. As
he FACS-profiled scA T AC-seq bone marrow data inherently
pecifies the cell-types, we match the bulk prototypes to those
ell-types. When integrating the bulk samples bone marrow
ata we use all 13 cell-types. Lastly, when integrating with
BMC data, we consider only the terminal cell states (unipo-
ent cells), which constitutes the largest portion of a typical
BMC samples. Notably, this dataset lacks the dendritic cell
opulation. To account for this, we merge the the dataset
ith the plasmacytoid dendritic cells data from ( 51 ). All the
ata is preprocessed according to ENCODE A T AC-seq anal-
sis pipeline ( 52 ). 

OCA2: lineage-specific brain open chromatin atlas 
he BOCA2 dataset ( 53 ) comprises of bulk chromatin acces-
ibility profiles of four brain cell-types across three brain re-
ions: anterior cingulate cortex, dorsolateral prefrontal cor-
ex, and primary visual cortex. These cell nuclei were iso-
ated using fluorescence-activated nuclei sorting (FANS), en-
uring that each A T AC-seq dataset reflects the chromatin ac-
essibility of homogeneous cell populations. The dataset con-
ains a total of 94 samples, including 23 glutamatergic neu-
ons, 22 GABAergic neurons, 24 oligodendrocytes and 25
icroglia / astrocytes. Given the consistent profiles of cell types

cross different regions ( 53 ), samples from various brain re-
ions were treated as replicates. The data was processed in
ccordance with the ENCODE A T AC-seq analysis pipeline
tandards ( 52 ). 
A summary of the datasets and in which combination they
are used for assessing different methods is outlined in Table 1 .

Results 

Testing scA T Acat on FACS bone marrow scA T AC-seq data 
To evaluate the performance of scA T Acat, we first used FACS-
profiled scA T AC-seq data as both the prototype reference and
the query. Therefore, this part of the study serves as a feasibil-
ity study . Essentially , we aimed to test if scA T Acat could accu-
rately match individual cells to prototypes when the datasets
are identical, before applying it to real-world scenarios. The
data is inherently annotated by cell-types due to the cell-
surface markers of sorted cells. We leveraged these annota-
tions to assess the efficacy of our scA T Acat method. scA T A-
cat requires bulk prototype data to provide cell-type anno-
tation for query scA T AC-seq data. W e created bulk-like pro-
totypes by aggregating the same cell-types from the sorted
scA T AC-seq. DiffBind requires minimum two replicate per
cell-type to provide reasonable statistics regarding differential
regions. Therefore, for each cell-type we created two bulk-like
prototypes by randomly splitting the cells per cell-type into
two. We next identified differentially accessible regions using
DiffBind. We considered pairwise combinations of the pro-
genitor cell-types when determining differentially accessible
regions. 

Figure 1 A shows the clustering of the single cells into 11
clusters. From this clustering we compute 11 pseudobulk sam-
ples. The clustering is not in full agreement with annotation,
as can be seen in Figure 1 B. For example, hematopoietic stem
cells (HSCs) and multipotent progenitors (MPPs) do not show
a clear separation. Based on the annotation (Figure 1 B), we
computed bulk-like prototypes. Next, we integrate the pseu-
dobulks from the clustering with the prototypes in one PCA
space. Figure 1 C represents the 3D PCA projection obtained
through scA T Acat. The visualization clearly illustrates a dis-
tinct separation among prototypes. The pseudobulk clusters
closely align with these prototypes. 

While the 3D projection provides an intuition about the
relationships between prototypes and pseudobulks, the Eu-
clidean distances from high dimensions provide more accu-
rate proximity information. Therefore, we determined the
Euclidean distances between the prototypes and pseudobulk
samples in high dimensional PCA space consisting of 30 prin-
cipal components (PCs). A heatmap representation of these
distances is depicted in Figure 1 D. For the purpose of assign-
ment, each pseudobulk gets assigned to its closest prototype.
Accordingly, clusters 0, 3 and 4 correspond to HSC; Clus-
ter 1 to granulocyte-monocyte progenitor (GMP); clusters 2,
5 and 6 to common myeloid progenitor (CMP); cluster 7 to
lymphoid-primed multipotent progenitor (LMPP); cluster 8 to
common lymphoid progenitor (CLP) and clusters 9 and 10 to
megakaryocytic-erythroid progenitor (MEP). 

We use the metrics introduced in the Methods section to
evaluate scA T Acat’ s performance, with results presented in
Figure 2 L. In this feasibility study, scA T Acat demonstrated
promising results across various metrics, particularly in cluster
accuracy with a perfect score of 1.0, and high median preci-
sion and recall scores of 0.87 and 0.91, respectively . Notably ,
the ARI score is lower than the other evaluation metrics in-
dicating that the clustering of predicted labels does not fully
align with those of ground-truth. 
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A B

C D

E F

G H

Figure 1. ( A –D ) Testing scA T Acat on FACS bone marrow scA T AC-seq data as part of the feasibility study. ( A ) UMAP embedding colored by the clustering 
of FACS scA T AC-seq cells, and ( B ) by true (ground-truth) cell identities derived from FACS labels of common lymphoid progenitor (CLP), common 
m y eloid progenitor (CMP), granulocyte-monocyte progenitor (GMP), hematopoietic stem cell (HSC), lymphoid-primed multipotent progenitor (LMPP), 
megakar yocytic-er ythroid progenitor (MEP) and multipotent progenitor (MPP). ( C ) 3D PCA projection of the feasibility study. Prototypes, depicted as 
triangles, are created by aggregating single cells from (B) based on cell-type, with two prototypes generated for each cell-type. Circles represent 
pseudobulks, the aggregated forms of clusters from (A). ( D ) Heatmap of the high-dimensional Euclidean distances between prototypes and 
pseudobulks. ( E –H ) Application of scA T Acat in annotating FACS bone marrow scA T AC-seq data. ( E ) UMAP embedding colored by the clustering of FACS 
scA T AC-seq cells, and ( F ) by true (ground-truth) cell identities derived from FACS labels. ( G ) 3D PCA projection of the pseudobulks together with 
prototype bulk samples. Triangles represent prototypes while circles represent pseudobulks. ( H ) Heatmap of the high-dimensional Euclidean distances 
bet ween protot ypes and pseudobulks. 
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A B C D

E F G H

I J K

L M

Figure 2. Performance evaluation of methods in annotating FACS bone marrow scA T AC-seq data. ( A –H ) Marker-based annotation of hematopoietic stem 

cells (HSCs) and common m y eloid progenitors (CMPs). ( A ) depicts UMAP embedding of FACS-characterized bone marrow scA T AC-seq data. The blue 
colored cells represents ground-truth HSCs. The figures ( B–D ) show the predicted expression levels of HSC marker genes, AVP, CD34 and HOXP, with 
darker shades indicating higher expression. ( E ) depicts UMAP embedding of FACS bone marrow scA T AC-seq data. The blue colored cells represents 
ground-truth common m y eloid progenitors (CMPs). T he figures ( F–H ) depict the predicted e xpression le v els of CMP mark er genes, ZNF70, NAT8L, HDC, 
with darker shades indicating higher expression. ( I –K ) Cell-type annotation via label-transfer. ( I ) UMAP representation of predicted gene expression 
matrix colored by ground-truth cell-types. ( J ) shows the same UMAP embedding however, this time the color-code indicates the predicted cell-type 
identity by the label-transfer approach as shown by the legend. ( K ) scRNA-seq UMAP embedding of the reference bone marrow data, used as a 
reference when applying label-transfer approach, colored by cell-type identities. ( L , M ) Evaluations of cell-type annotations performances for FACS bone 
marow scA T AC-seq data. ( L ) sho ws the perf ormance of scA T Acat on feasibility study . ( M ) Perf ormance comparison of all the methods across v arious 
e v aluation metrics. MCC, Mathew’s correlation coefficient; ARI, adjusted rand index. 



10 NAR Genomics and Bioinformatics , 2024, Vol. 6, No. 4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The matrix of Euclidean distances between pseudobulks
and prototypes already shows that some decisions are almost
a tie. An alternative visualization is provided by clustering
all the distances among pseudobulks and prototypes. Such
a heatmap with the associated single-linkage dendrogram is
shown in Supplementary Figure S1 B. In this figure, e.g., the
group of clusters 0, 4 and the HSC cells form a cluster in the
dendrogram. 

Performance of scA T Acat in annotating FACS bone marrow
scA T AC-seq data 
After demonstrating the effectiveness of our method in the fea-
sibility study, we applied scA T Acat again to the same FACS
scA T AC-seq data. However, this time, we integrated external
prototypes from bulk A T AC-seq data ( 2 ). These prototypes
align with the cell-types present in the scA T AC-seq data. W e
define differentially accessible regions using the prototypes
and use these features to represent the data. Therefore, the
data representations differ despite using the same scA T AC-seq
data. 

Figure 1 E shows the clustering of cells in a UMAP embed-
ding, revealing 10 clusters. We form pseudobulks by aggre-
gating the cells in each cluster. Figure 1 F depicts the real iden-
tities of the cells. Clusters show remarkable consistency with
annotations. Nevertheless, HSCs and MPPs do not exhibit a
clear separation. Our next step was to co-embed pseudobulks
with prototypes. Figure 1 G depicts the 3D PCA projection
produced by scA T Acat. The figure contains colored triangles
for the prototype replicates and circles for the pseudobulks.
Mostly there is a clear association between the correct pro-
totypes and pseudobulks, although there is larger variability
among the CMP and GMP prototypes. HSCs and MPPs are
less clearly distinguishable but mix with each other, as can also
be seen in the UMAP. 

Subsequently, we compute the Euclidean distances between
the prototypes and pseudobulks in high dimension to com-
pute more informative cell-type annotation. Figure 1 H shows
the heatmap of these distances. Using this distance matrix we
annotate each pseudobulk by the closest prototype cell-type.
In this way we can correctly associate clusters 0 and 3 to HSC,
clusters 1 and 4 to CMP, cluster 2 to GMP, cluster 5 to MPP,
clusters 6 and 9 to MEP, cluster 7 to LMPP and cluster 8
CLP. This shows that using the high-dimensional Euclidean
distances scA T Acat again provides accurate annotations for
each cluster. 

We next applied marker-based annotation to the same
FACS scA T AC-seq data and aimed at annotating cell-types by
the predicted expression profiles of the marker genes in cells.
Marker-based annotation requires collection of cell-type spe-
cific marker genes which in itself may be a nontrivial task. We
obtain marker genes from a curated data table from ( 54 ) (Sup-
plementary Table S3). As these genes are by definition cell-type
specific, we expect also their predicted expression to be spe-
cific for the same cell-type. Figure 2 shows the UMAP embed-
ding of the cells with the color code depicting ground-truth
cell identities for HSCs and CMPs (A and E, respectively).
However, as shown in Figure 2 B–D for HSCs (respectively
Figure 2 F–H for CMPs), the marker genes do not show the
distinctive predicted expression profiles. In fact, in both cases
marker genes are expressed in a dispersed set of cells over the
UMAP. Some marker genes show ubiquitous predicted expres-
sion (Figure 2 C) while others show unspecific characteristics.
We conclude that transcriptome based marker genes cannot
be directly carried over to predicted gene expression space to 

annotate cell-types in scA T AC-seq data. 
Following this, we employed Seurat’s label-transfer ap- 

proach on the same FACS-characterized bone marrow 

scA T AC-seq data for cell-type annotation. Label-transfer es- 
sentially uses Canonical Correlation Analysis to transfer cell- 
type labels from a well-annotated reference dataset to a query 
dataset. In order to use this approach we rely on the BMMC 

CITE-seq data (see Datasets) as a reference and predicted gene 
expression values of FACS bone marrow scA T AC-seq data as 
the query. Since the CITE-seq data includes measurements of 
cell-surface proteins, the cells in the reference dataset have reli- 
able and independent annotations. The BMMC CITE-seq data 
comprises a range of blood cell types including both termi- 
nal and progenitor cells. As our FACS bone marrow scA T AC- 
seq data consist of only the progenitor cells, we subset the 
CITE-seq data accordingly. Figure 2 K shows the UMAP em- 
bedding of the scRNA-seq part of reference CITE-seq data 
which serves as the source for transferred cell-type labels. Fig- 
ure 2 I shows the UMAP representation of the query scA T AC- 
seq data and the color code depicts the real cell-type identi- 
ties. Some of the cell-types form a distinct cluster, e.g. CLPs,
GMPs. However, some cell-types display inconsistency be- 
tween the clustering and their real cell-type identities. No- 
tably, HSCs and MPPs cannot be distinguished. Addition- 
ally, HSC and MPPs, as well as MEPs are split into two 

clusters. Finally, Figure 2 J shows the annotated FACS bone 
marrow scA T AC-seq data where the color code denotes cell- 
type annotations obtained with the label-transfer approach.
These annotations do not show uniformity within clusters 
and annotations do not overlap with the original cell-type 
identities. 

Next, we applied Cellcano for cell-type annotation of the 
FACS-characterized bone marrow scA T AC-seq dataset. W e 
trained the Cellcano model with a gene score matrix ob- 
tained from the Satpathy human CD34+ progenitor scA T AC- 
seq dataset using ArchR default parameters, incorporating 
cell-type annotations as reported in the original study. Sub- 
sequently, we generated a gene score matrix for our FACS- 
characterized bone marrow scA T AC-seq query dataset and 

used the trained model to assign cell types to the query data. 
The last cell-type annotation method to compare is Epi- 

Anno. EpiAnno uses peaks as the reference frame which we 
define using ArchR. Given that peak regions can vary be- 
tween datasets, a preprocessing step is necessary to align fea- 
tures for supervised learning. Following the authors’ guide- 
lines, we adapt the reference data to match the peak regions 
of the query dataset, creating a unified dataset ready for learn- 
ing. This implies that, for the reference data, we count the 
reads falling into the peak regions of the query data. After 
these preprocessing steps, the datasets are ready for supervised 

learning. 
Just like in Cellcano, we use Satpathy human CD34+ pro- 

gentior scA T AC-seq dataset as the reference scA T AC-seq data 
and unify it with the ArchR-defined peaks of our FACS- 
characterized bone marrow scA T AC-seq dataset. W e then 

train EpiAnno’s Bayesian neural network algorithm with this 
unified dataset and its cell-type annotations. The method 

failed when using the default ‘peak_rate’ parameter, due to 

the high memory demands from the large amount of peaks.
By modifying this parameter to 0.05, we were able to success- 
fully execute EpiAnno. Finally, we apply the model to predict 
cell-types in the query dataset. 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae135#supplementary-data
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erformance assessment 

n order to quantitatively assess the performances of the above
entioned methods, we compare the annotations obtained

rom each approach to the real cell-type identities obtained
rom FACS labels. The annotations in reference data sets cover
 broader spectrum of bone marrow cells than those of query
ACS labels. Additionally, the annotations of reference and
uery datasets disagree on parts of the nomenclature, even
hough they may correspond to similar cell types. To increase
he concordance between annotations, we modified the an-
otations to a coarser annotation scheme whenever possible,
or example, we used ’HSC / MPP’ instead of using ’HSC’ and
MPP’ separately, following the annotation style of the Sat-
athy dataset. Similarly, nomenclature is aligned between the
nnotations, for example, we used ’CLP’ instead of ’B cell
rogenitor (Prog_B)’ in CITE-seq reference data and ’B cell
rogenitor (Pro_B)’ in Satpathy scA T AC-seq reference. Origi-
al annotations along with their corresponding simplified an-
otations are provided in Supplementary Table S2 . Different
reprocessing and filtering parameters result in distinct sets
f annotated cells. We thus focus on those cells that have an
nnotation across all methods, as well as a ground-truth label.

We follow the two strategies for performance evaluation
resented in Methods subsection ‘Performance Assessment’.
n the conservative approach we determine the set of com-
on annotations across methods and the ground-truth. The

ommon cell-type annotations between CITE-seq data, Sat-
athy scA T A C-seq reference, and FA CS labels are MEP , GMP ,
SC / MPP , CLP and LMPP . Therefore we focus on these com-
on annotations. Evaluation of FACS bone marrow dataset

cross these metrics is summarized in Figure 2 M. Except for
luster accuracy where three methods have the same score,
cA T Acat consistently shows the best performance across all
he metrics, followed by EpiAnno and Cellcano. The label-
ransfer approach performs poorly except when assessed by
edian recall with a score of 0.77. Despite relatively high ac-

uracy scores, the methods other than scA T Acat show lower
RI, indicating that although most of the data points are la-
eled correctly, the overall clustering structure does not align
ell with the true label structure. Additionally, if one cell-type
ominates the annotations, a method might achieve high ac-
uracy by predominantly predicting the majority cell-type, but
he ARI could be low if the method fails to correctly iden-
ify the structure of smaller cell-type classes. Similarly, for
he methods except scA T Acat, a similar low score trend is
bserved for Cohen’s kappa. This suggests that these meth-
ds may not be as effective in datasets with imbalanced class
istributions. 
In the second strategy, we define the common cell-types

n a pairwise manner by comparing the cell-type annotations
f each method independently with ground-truth labels. The
esulting performance scores are shown in Supplementary 
igure S1 D. In this second strategy as well, scA T Acat main-
ained its leading position among the methods. Except for
edian recall, where label-transfer secured the second posi-

ion, EpiAnno was next, followed by Cellcano and then label-
ransfer across the metrics. In comparison to the first strategy,
he scores for label-transfer remained unchanged in this sec-
nd strategy, while most of the scores for other methods saw
 slight decrease. 

Since the granularity of Leiden clustering results depends
n the resolution parameter, we tested the impact of this pa-
ameter on the performance of scA T Acat. W e applied scA T-
Acat with Leiden clustering resolutions varying from 0.1 to
2.5 increasing by increments of 0.1. This was done on the
same FACS bone marrow scA T AC-seq data and the prototypes
introduced above for scA T Acat. W e compared the resulting
annotations with ground-truth cell identities obtained from
FACS labels. Resulting performance metrics are presented in
Supplementary Figure S1 E and Supplementary Table S9 . With
increasing resolution parameter, more cell-types are being an-
notated and evaluated resulting varying performances. The
highest overall performance is observed at the lowest tested
resolution (0.1) and higher resolutions generally lead to a de-
crease in most performance metrics, such as accuracy, bal-
anced accuracy, F 1, median precision, and median recall score.
This suggests that as the clustering becomes finer (more clus-
ters), the method’s ability to accurately classify and recall the
data points decreases slightly. 

We also tested the effect of number of features in reference
frame on the performance of scA T Acat. The results are pre-
sented in Supplementary Figure S12 B and Supplementary 
Table S16 , and detailed in Supplementary Material Section 1.
1 . 

Additionally, to assess the effectiveness of scA T Acat
methodology, we investigated various co-embedding strate-
gies within the scA T Acat approach and different embed-
ding algorithms. We then performed a comparative analy-
sis relative to the scA T Acat framework which are presented
in Supplementary Material Section 1.2 and Supplementary 
Figure S13 . 

Performance of scA T Acat in annotating 10X PBMC data 
Single-cell transcriptome technologies have been frequently
demonstrated and used on PBMCs and thus provided deep
understanding of blood cell-types. For purposes of this study
it is particularly helpful that a sc-multiome PBMC dataset is
available combining nuclear scA T AC-seq and scRNA-seq of
the same cells (see Datasets). 

Since the PBMC sc-multiome data has not been externally
annotated, we are leveraging the scRNA-seq part of the data
to create a surrogate ground-truth. Relying on the assumption
that cell-type annotation in scRNA-seq data is more straight-
forward ( 55 ) than for scA T AC-seq, we can evaluate our scAT-
Acat annotation with respect to this ground-truth. 

To obtain a ground-truth cell-type annotation, scRNA-seq
data gets processed using Seurat’s standard pipeline ( 36 ). Sub-
sequently, cell-type annotation is performed via the label-
transfer approach using PBMC CITE-seq data as the refer-
ence and applying SCTransform for both the reference CITE-
seq and query scRNA-seq data. Anchors are determined using
spca as the reduction method and cell-type identities are ex-
tracted via the MapQuery . The cell-type annotations of the
scRNA-seq data is shown in Supplementary Figure S2 A. 

Having a ground-truth annotation of the cells available,
we proceeded to annotate the scA T AC-seq part of the mul-
tiome data using scA T Acat, via the marker genes, by label-
transfer, Cellcano and EpiAnno. To apply scA T Acat, scA T AC-
seq data is processed as introduced earlier. For the prototypes
we again use the sorted hematopoietic bulk A T AC-seq data
(see Datasets), albeit now focusing only on those terminal cell
states (CD4 T cells, CD8 T cells, B cells, NK cells, monocytes,
dendritic cells) that are also part of PBMCs ( 56 ). The differ-
entially accessible regions between the bulk prototypes are
identified and used as the reference frame for clustering.
A UMAP representation of the clustering of the cells is

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae135#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae135#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae135#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae135#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae135#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae135#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae135#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae135#supplementary-data
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12 NAR Genomics and Bioinformatics , 2024, Vol. 6, No. 4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

shown in Figure 3 A. We formed 15 pseudobulks out of these
clusters and applied scA T Acat to integrate prototypes and
pseudobulks. 

Figure 3 B depicts the 3D PCA projection obtained by scAT-
Acat. The bulk prototypes roughly cluster into three groups,
akin to the UMAP plot. Pseudobulks closely align and co-
embed with bulk samples except for cluster 11. The repli-
cates of CD8 T cell and dendritic cells are more scattered in
3D space indicating a higher variability among them. Clus-
ters 1 and 4 project in between CD4 and CD8 T cells. It is
important to highlight that the 3D PCA plot, which is based
on the variation within the first three PCs, might not capture
the complex similarity relationships within the data. There-
fore, we calculate the distances between between bulk pro-
totypes and pseudobulks considering additional (higher) di-
mensions. The heatmap showing these distances is presented
in Figure 3 C. The heatmap depicts a clear clustering structure
for most of the clusters resulting in clear annotations. How-
ever, the high similarity between CD4 and CD8 T cells (also
visible in Supplementary Figure S2 C) makes it harder to an-
notate the clusters surrounding them. Nevertheless, cluster 4,
which presents the most ambiguous signal in the 3D PCA plot,
aligns more closely with CD4 T cells than with CD8 T cells.
The same is true for cluster 1, although it is less pronounced.
Consequently, we annotated each pseudobulk by the closest
bulk sample, hence, clusters 0, 3, 8, 11 and 12 correspond to
monocyte; clusters 1, 2, 4 and 6 to CD4 T cell; clusters 5 and
13 to CD8 T cell; cluster 7 and 10 to B cell; cluster 9 to nat-
ural killer (NK) cell and cluster 14 to plasmacytoid dendritic
cells (pDC). 

Although cluster 11 is annotated as a monocyte, it shows
similarity with other prototypes, too. This observation could
be attributed to a biological characteristic, such as the pres-
ence of highly similar cell types in the scA T AC-seq data. In
such intricate cases, it is helpful to further investigate the
data. An alternative visualization provided as part of scA T A-
cat, depicting the clustering of pairwise Euclidean distances
between pseudobulks and prototypes, can be helpful in in-
terpreting such cases. Supplementary Figure S2 C shows the
heatmap of these distances. Cluster 11 shows affinity to both
the monocyte prototype together with other monocyte pseu-
dobulks (clusters 0, 3, 8, 12) as well as to the CD4 T-cells
with clusters 1, 2, 4 and 6. Possible explanations for this phe-
nomenon include heterogeneity in cluster 11 or possible dou-
blet cells. The annotation process will respect the closest dis-
tances in high dimensions and annotate cluster 11 as mono-
cytes. Yet, the example shows that visual inspection of the
high-dimensional distances can indicate potential biological
or technical problems. 

To put these results in context, we generated the predicted
expression levels of PBMC scA T AC-seq cells and carried out
marker-based annotation. Predicted expression levels of a
well-established B cell marker gene, PAX5 ( 57 ), is depicted
in Figure 3 D. Clusters 7 and 10 show highest expression
of PAX5 suggesting these clusters as potential B cells. No-
tably, we also observe a low-level but ubiquitous expression
of PAX5 across other cell types. Supplementary Figure S2 D-
N illustrates more examples of the marker-based annotation
which further demonstrates the non-quantitative property of
this annotation approach. 

Next, we employed Seurat’s label-transfer approach to the
scA T AC-seq part of the multiome data. We used the same
procedure as in the label-transfer for the FACS bone marrow
scA T AC-seq data, although now based on PBMC CITE-seq 

data as reference. As a query we use the predicted expres- 
sion values of PBMC scA T AC-seq data. Figure 4 E shows the 
predicted annotations of the query cells and Supplementary 
Figure S2 B represents the scRNA-seq UMAP embedding of 
the reference CITE-seq data ( Supplementary Figure S2 ). An- 
notations shows high concordance with clusters, although 

dendritic cells appear close to monocytes indicating a lack of 
separation. Similarly, CD4 T cells cluster closely with CD8 T 

cells. This pattern is further reflected in cell-type annotation - 
some of the cells forming a cluster with CD8 T cells are anno- 
tated as CD4 T cells or NK cells. Likewise, certain cells within 

the CD4 T cell cluster are annotated as monocytes. 
Subsequently, we annotate the cell-types in PBMC data via 

Cellcano, using Satpathy PBMC scA T AC-seq data as the ref- 
erence data. Just like in the FACS bone marrow dataset, we 
generate gene score matrices from both the query and refer- 
ence scA T AC-seq datasets, which serve as inputs for Cellcano.
Cellcano is then trained with the reference data and the cell- 
type annotations for the query data were derived by applying 
this trained model. 

As a final annotation strategy, we employed EpiAnno. For 
this method as well, the Satpathy PBMC scA T AC-seq data was 
selected as the reference. We perform peak calling for both 

the query and reference scA T AC-seq data using ArchR. These 
peaks are then unified as introduced above to generate the 
common feature space. The unified reference peaks and the 
cell-type labels allow for training of EpiAnno. Notably, with 

the default ‘peak_rate’ paramater of 0.03, the method failed 

due to excessive memory requirements of the high number of 
peaks. We adjusted this parameter to 0.05 to successfully run 

EpiAnno. We use the trained model to predict the cell-types of 
the query data. 

Performance assessment 

Lastly, we compared the annotations obtained from scAT- 
Acat, label-transfer, Cellcano and EpiAnno. We excluded 

the marker-based annotation from this comparison because 
choice of marker genes is subjective and making clear de- 
cisions about the annotation is difficult. We again adapt a 
coarser cell-type annotation scheme to accommodate more 
cells, for example, use use ‘CD8 T cell’ instead of ‘CD8 effector 
memory cells’ or ‘CD8 central memory cells’. Supplementary 
Table S3 includes both the original annotations and their sim- 
plified versions. For the first performance evaluation strategy,
we define the common cell-type annotations across methods 
and the ground-truth annotations and consider only those 
cells with the cell-type corresponding to these common cell- 
types in their ground-truth label. We then calculate the per- 
formance metrics based on the ground-truth derived from the 
RNA part of the multiome data. The results of these metrics 
are presented in Figure 3 F. In this dataset, label-transfer ap- 
proach demonstrated superior performance, especially in ac- 
curacy, balanced accuracy and cluster accuracy, among other 
metrics. scA T Acat and Cellcano were competitive, with scAT- 
Acat high scores in median precision and recall scores. Cell- 
cano showed a notable performance for balanced accuracy 
and ARI score highlighting its ability to handle imbalanced 

datasets. EpiAnno showed the lowest performance across 
metrics. 

The results of the second evaluation strategy, where we de- 
termine the common cell-types by comparing the methods’ 
annotations to ground-truth annotations individually, are pre- 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae135#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae135#supplementary-data
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https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae135#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae135#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae135#supplementary-data
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A B C

D E F

Figure 3. Performance evaluation of methods in annotating 10X PBMC data. ( A ) UMAP embedding colored by the clustering of PBMC scA T AC-seq cells. 
( B ) 3D PCA projection of the PBMC scA T AC-seq pseudobulks together with prototypes. Triangles represent prototypes while circles represent 
pseudobulks. ( C ) Heatmap of the high-dimensional (50 PCs) Euclidean distances between the pseudobulks and prototypes shown in (B). Monocyte 
(Mono), B cell (Bcell), plasmacytoid dendritic cell (pDC), natural killer cell (NK), CD4 T cell (CD4Tcell), CD8 T cell (CD8Tcell). ( D ) UMAP embedding PBMC 

scA T AC-seq cells colored by predicted marker gene expression of B cell marker PAX5. ( E ) Cell-type annotation via label-transfer. UMAP representation of 
predicted gene expression matrix colored by predicted cell-type labels based on label-transfer. ( F ) Evaluation of cell-type annotations performances for 
PBMC scA T AC-seq data across methods. 
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ented in Supplementary Figure S3 A. Despite a slight reduc-
ion in its scores, label-transfer remains the top performer
cross the accuracy metrics, macro F1, MCC and Cohen’s
appa scores. scA T Acat performs similarly to before now
howing better results than Cellcano in terms of all the accu-
acy metrics and macro F 1 score. EpiAnno continues to show
ower performance across the metrics. 

Finally, we assessed the impact which different Leiden
lustering parameters have on the performance of scA T A-
at. The results across varying clustering parameters (0.1–2.5)
re shown in Supplementary Figure S3 B and Supplementary 
able S10 . For this dataset our method showed stable perfor-
ance with respect to changes in clustering parameters, with
nly minor changes in most metrics. Cluster accuracy, how-
ver, improved with increasing clustering parameter. 

erformance of scA T Acat in annotating NeurIPS bone mar-
ow sc-multiome data 
ext, we applied the five annotation strategies to NeurIPS
one marrow sc-multiome data (see Section Datasets). Like in
BMC sc-multiome data, we focus on the scA T AC-seq part of
he data and simply ignore the scRNA-seq part. This dataset
as been provided as part of a benchmarking competition and
t comes with expert cell-type annotation. 

We first applied our scATAcat method for cell-type annota-
ion. As prototype, we used both the progenitor and terminal
ell-types in the bulk data and determined differentially ac-
cessible regions between pairs of cell-types. Up-to 2000 most
differential regions per comparison get combined to obtain
the final feature set. Then we preprocess the scA T AC-seq data
and perform clustering. 

A UMAP of the clustered cells is shown in Figure 4 A. We
form 13 pseudobulks out of these clusters and integrate them
with prototypes using scA T Acat. The result of this projec-
tion is depicted in Figure 4 B. Most of the pseudobulk-clusters
project closer to terminal cell-types than to progenitors. Be-
sides, as expected by their high prevalence in bone marrow
( 58 ), many clusters project closer to erythrocytes. Most of the
lymphoid cells (CD8 T cell, CD4 T cells and NK cells) show
rather indistinctive positioning in the 3D projection. 

Figure 4 C shows a heatmap of the high-dimensional Eu-
clidean distances between prototypes and pseudobulks. This
representation of the distances shows a similar profile to 3D
projection. The progenitors form a separate cluster and the
lymphoid cells, while not well separated in the 3D PCA, form a
cluster in the heatmap. Pseudobulks 1, 2, 3, 5 and 6 are nearby
the prototypes for CD4 T cells, CD8 T cells NK cells in the
3D PCA and are clearly clustered together with them in the
heatmap. In fact, this is expected considering the lineage tree
shown in Supplementary Figure S1 A. We again annotate each
pseudobulk by considering its closest prototype cell-type in
terms of high-dimensional Euclidean distance. Cluster 0 cor-
responds to monocyte, clusters 1 and 5 to CD4 T cell; cluster
2 to NK cell; clusters 3 and 6 to CD8 T cells; clusters 4 and

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae135#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae135#supplementary-data
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A B C

D E F

Figure 4. Performance of scA T Acat in annotating NeurIPS bone marrow data. ( A ) UMAP embedding of scA T AC-seq cells of bone marrow sc-multiome 
data colored by the clustering. ( B ) 3D PCA projection of the bone marrow scA T AC-seq pseudobulks together with prototypes. Triangles represents bulk 
samples while circles represent pseudobulk-clusters. ( C ) Heatmap of the high-dimensional Euclidean distances between the pseudobulks and 
prototypes shown in (B). Monocyte (Mono), B cell (Bcell), plasmacytoid dendritic cell (pDC), natural killer cell (NK), CD4 T cell (CD4Tcell), CD8 T cell 
(CD8Tcell), erythrocyte (Ery), common lymphoid progenitor (CLP), common m y eloid progenitor (CMP), granulocyte-monocyte progenitor (GMP), 
hematopoietic stem cell (HSC), lymphoid-primed multipotent progenitor (LMPP), megakar yocytic-er ythroid progenitor (MEP) and multipotent progenitor 
(MPP). ( D ) Cell-type annotation via marker-genes. UMAP embedding of scA T AC-seq cells colored by predicted marker gene expression of B cell marker 
MS4A1. ( E ) Cell type annotation via label-transfer. UMAP representation of predicted gene expression matrix colored by predicted cell-type labels. ( F ) 
Evaluation of cell-type annotations performances for NeurIP bone marrow data across methods. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

11 to B cell; clusters 7, 8 and 9 to Erythrocyte; and finally,
cluster 10 to GMP. 

Next, we generated the predicted expression levels of the
scA T AC-seq profiles and employed marker-based annotation.
We use the same marker genes here as we used in annotat-
ing FACS-profiled bone marrow scA T AC-seq data (Figure 2 ).
While progenitor cell-type marker genes only provided a fuzzy
picture of cell identity, terminal cell-types display better pre-
dictive performance for the sc-multiome bone marrow data
studied now ( Supplementary Figure S4 ). For example, B cell
marker gene MS4A1 clearly highlights the B cell clusters (4
and 11) in the UMAP. Nevertheless, marker-based annotation
remains the most subjective approach. 

Subsequently, we carried out label-transfer approach. We
followed the same procedure as employed in label-transfer for
the FACS bone marrow scA T AC-seq data. This time we used
the complete BMMC CITE-seq dataset without subsetting to
the progenitor cell-types as the reference, and predicted ex-
pression levels of sc-multiome (scA T AC-seq) data as the query.
Figure 4 E shows the predicted labels of the query cells in the
UMAP embedding. Generally, clusters are predominantly an-
notated by one cell type, although the annotations get mixed
near cluster boundaries. Also, subsets of CD4 and CD8 T cell
co-embed without a clear separation. 
For cell-type annotation with Cellcano we use the Satpa- 
thy human BMMC sc-multime data as the reference. The gene 
score matrices of the query and the reference datasets are gen- 
erated via ArchR. Using the reference dataset and its cell-type 
annotations we train Cellcano and use the resulting trained 

model to predict the cell-types in the query dataset. 
As the last cell-type annotation method, we use EpiAnno 

with the same Satpathy human BMMC sc-multime data as 
the reference dataset. We follow the same approach conducted 

for other datasets, identifying peaks in both the reference and 

query datasets. EpiAnno gets trained using the peaks from the 
Satpathy human BMMC dataset. By default, EpiAnno trains 
the network for 50,000 epochs. For this dataset, the training 
process’s loss was reported to be 0 after the 20 000th epoch. 

Performance assessment 
Next, we compare the cell-type annotations obtained across 
methods to the provided ground-truth annotations. All the 
annotations include similar cell-types at varying granularity.
To increase the overlap between different annotation schemes 
and provide more inclusive comparison we simplified the an- 
notations to a coarser annotation scheme, if possible. Original 
cell-type annotations along with their corresponding simpli- 
fied annotations are provided in Supplementary Table S4 . In 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae135#supplementary-data
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he first evaluation strategy, we identify common cell types
y considering both the predicted annotations from the meth-
ds and the ground-truth. Due to EpiAnno’s identifying only
hree distinct cell types, this common cell-type set is reduced
o a single cell-type. Since some performance metrics require
t least two groups of cell types for calculation, we excluded
piAnno from the evaluation of this dataset. The performance
etrics of other methods are presented in Figure 4 F. scA T Acat

chieves the highest scores in almost all metrics, in particular
howing a perfect score in cluster accuracy. Label-transfer ap-
roach demonstrates a good performance across all the met-
ics except the median precision score where Cellcano per-
orms equally well with scA T Acat and median recall score
here Cellcano outperforms label-transfer approach. 
The results of second evaluation strategy are shown in

upplementary Figure S4 N. scA T Acat shows high scores
cross metrics. Label-transfer and Cellcano show moderate
erformance, with label-transfer excelling in median F1 score
nd Cellcano in median recall score. This evaluation includes
piAnno as well, as the common cell-types are defined in a
airwise manner, but it does not perform well. 
We examined the potential impact of the clustering pa-

ameter choice on performance metrics. As presented in
upplementary Figure S4 O and Supplementary Table S11 ,
ost of the metrics show rather robust performance across

arying clustering parameters while median recall and macro
 1 show the highest variance. 

erformance of scA T Acat in annotating Granja PBMC
cA T AC-seq data 
he scA T AC-seq data from ( 44 ) serves as the next dataset
e use to test and compare our scA T Acat cell-type annota-

ion method. This dataset has been annotated by the authors
hich we take as the ground-truth labels. We use the same
rototypes and the differentially accessible regions as those
sed in the 10X PBMC dataset with scA T Acat. W e follow
he standard scA T Acat pipeline to preprocess and cluster the
ells. Supplementary Figure S5 A shows the result of the clus-
ering. We then annotate the 11 pseudobulks by the proto-
ype labels using scA T Acat. The 3D projection plot depict-
ng the co-embedding of the pseudobulks with prototypes is
hown in Supplementary Figure S5 B. We also calculate the
igh-dimensional Euclidean distances between the prototypes
nd pseudobulks, assigning each cluster to its nearest proto-
ype cell type. As shown in Supplementary Figure S5 C, simi-
ar to the observations in the 10X PBMC sc-multiome dataset,
ome pseudobulks, such as cluster 2, show mixed signal. This
ay indicate a poor clustering performance. Additionally, de-

pite projecting rather far from B cells in the 3D PCA plot,
luster 8 is annotated as a B cell. Given that the projection
lot reflects only the first three PCs, it may not not be suffi-
ient to capture the real relationships in data. This once again
ighlights the importance of considering higher dimensions
hen determining the distances. 
We tried marker based annotation after obtaining gene ac-

ivity scores. With the exception of the B cell marker MS4A1,
hich displays a weak but distinct signal around cluster 4

 Supplementary Figure S5 D), all other marker genes failed
o highlight particular clusters ( Supplementary Figure S6 B–
). We therefore excluded marker based annotation from our
valuation again. 

To annotate the cells via label-transfer, we follow the same
rocedures and the reference dataset as previously used for
annotating 10X PBMC sc-multiome with the same approach.
Supplementary Figure S5 E shows the UMAP embedding of the
resulting annotations. Although B cells and NK cells shows
a coherent signal, neither the CD8 and CD4 T cells nor the
monocytes and dendritic cells form distinct clusters, indicating
poor annotation performance. 

For Cellcano, we made use of Satpathy PBMC sc-multiome
data and the cell-type labels as the training data. The gene
activity scores of the query data is then annotated with the
trained model. 

Similarly, for EpiAnno, we use the ArchR derived peaks of
Satpathy PBMC sc-multiome data as the reference dataset. We
next obtain the peaks of query Granja PBMC scA T AC-seq
data with ArchR and unify these peak regions to prepare the
inputs for EpiAnno. We train Epianno with the Satpathy data
and determine the cell-type labels of the query data, leveraging
the trained model. 

Performance assessment 

The reference datasets utilized in different annotation meth-
ods contains annotations of varying detail, and the used
nomenclature may differ. In order to include as many cells
as possible, we adjust the annotations to a coarser annota-
tion scheme. Supplementary Table S5 presents both the orig-
inal and adjusted annotations. Figure 5 A shows the results
of the first evaluation strategy. scA T Acat does well across all
the methods and metrics except for cluster accuracy, where
label-transfer also reaches a perfect score, and median preci-
sion where EpiAnno performs equally well as scA T Acat. The
performance ranking of label-transfer, Cellcano and EpiAnno
varies depending on the metric considered, indicating that
each method has unique advantages that may be leveraged
for specific question. 

The second evaluation strategy also resulted in similar re-
sults with scA T Acat being the best performing method. Both
scA T Acat and label-transfer reach a perfect score for Cohen’s
kappa score as shown in Supplementary Figure S5 F. 

The results of testing the effect of clustering on evaluation
metrics are presented in Supplementary Table S12 . Again, the
metrics perform quite stably across parameter choices. Only
cluster accuracy displays higher variation, possibly reflecting
clustering granularity. 

Performance of scA T Acat in annotating Granja 

BMMC scA T AC-seq data 

Another datatset we leverage from ( 44 ) is the BMMC
scA T AC-seq data. W e applied scA T Acat, marker based anno-
tation, label-transfer, Cellcano and EpiAnno to this dataset,
following the same strategies and the reference datasets in-
troduced in the NeurIPS bone marrow sc-multiome data. The
results are shown in Supplementary Figures S7 and S8 . 

Performance assessment 
We compared the annotations obtained from these meth-
ods to the ground-truth annotations provided by the au-
thors. We again adjusted the annotations across different ref-
erence datasets and the original and used annotations are
presented in Supplementary Table S6 . Figure 5 B shows the
performance metrics across methods when calculated with
the first evaluation strategy. EpiAnno performed poorly sim-
ilar to its application to NeurIPS bone marrow data. To
successfully calculate the metrics, we excluded this method
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Figure 5. Performance evaluation of methods in annotating Granja data. Evaluation of cell-type annotations performances for ( A ) PBMC and ( B ) BMMC 

scA T AC-seq data across methods. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

from the evaluation. Cellcano showed its best performance
on this data, achieving the highest scores across metrics, ex-
cept for median precision, where scA T Acat performed bet-
ter. Similar result are observed for the second evaluation
strategy, shown in Supplementary Figure S7 F. Cellcano per-
formed the best across all methods, except for the median
F1 score, where label-transfer achieved an almost perfect
score. 

Performance of scA T Acat in annotating Corces 

brain scA T AC-seq data 

We then proceeded to evaluate the performance of scATAcat
in a different tissue by applying all the methods to scA T AC-
seq data from the human brain. To apply scA T Acat, we lever-
age the sorted bulk A T AC-seq data of brain cell-types from
BOCA2 ( 53 ) as the prototypes. We define the differentially ac-
cessible regions. Supplementary Figure S12 D shows the num-
ber of differential regions across cell-types. Apparently, in
these brain cell types their number is larger than in blood cell
and to make use of these regions we combine the top 5000 re-
gions per comparison to obtain the differential regions for this
analysis. The scA T AC-seq data is processed as introduced ear-
lier and the clustering of the cells resulted in 10 clusters (Fig-
ure 6 A). The coembedding of the pseudobulks of these clusters
along with the bulk prototypes is shown in Figure 6 B. Most of
the clusters project close to oligodendrocytes and none of the
clusters are too close to GABAergic or glutamatergic neurons.
Nevertheless, when the distances are calculated in higher di-
mensions, the similarities between clusters and prototypes be-
come more apparent (Figure 6 C) and we annotate each clus-
ter by the closest prototype. For this dataset, the marker gene
based annotation showed promising results for some of the
marker genes like OLIG2 and GAD1, as can be seen from
Supplementary Figure S9 D–L. However, in the given cluster-
ing granularity, it is still challenging to make cell-type assign-
ments with this approach. 

We used Allen Brain Map primary motor cortex snRNA-
seq as the reference data (shown in Supplementary Figure S9 B)
for the label-transfer approach. Supplementary Figure S9 C
shows the UMAP embedding of the data with cells colored
by the label-transfer-based cell-type labels. In this, most of the
cells are annotated as excitatory (glutamatergic) neurons and
the cluster boundaries are fuzzy indicating rather poor anno- 
tation. 

For both Cellcano and EpiAnno we used the scA T AC-seq 

part of the human cerebral cortex sc-multiome data from ( 48 ) 
as the training dataset. We follow the same strategies intro- 
duced in the earlier sections to prepare the input data and 

train the models to obtain predicted cell-type annotations of 
the Corces scA T AC-seq data. 

Performance assessment 
We next compared and evaluated the annotations provided 

by each method taking the author annotations as the ground- 
truth. The both the ground-truth annotations and those de- 
rived from each method were adjusted to a coarser annota- 
tion scheme to enable evaluation of most number of cells, as 
presented in Supplementary Table S7 . Figure 6 D shows the 
results of the first evaluation strategy. Although label-transfer 
achieves perfect sore for median precision, and Cellcano does 
better for ARI, scA T Acat shows the best performance for all 
the other metrics. In the second evaluation strategy, meth- 
ods exhibit varied strengths ( Supplementary Figure S9 N): Epi- 
Anno is high in accuracy score, whereas Cellcano showcase 
the highest adjusted rand index. 

Supplementary Figure S9 O and Supplementary Table S14 

show the effect of clustering granularity on the evaluation 

metrics. The lowest clustering parameters leading to a very 
coarse clustering resulted in the highest scores, possibly be- 
cause they did not account for all cell types. Subsequently,
this dataset showed improved scores with increasing cluster- 
ing granularity in all metrics apart from balanced accuracy 
and median recall. 

Performance of scA T Acat in annotating Morabito 

brain cortex scA T AC-seq 

The Morabito brain cortex scA T AC-seq is also annotated with 

all five annotation methods following the same instructions 
to the annotation of Corces brain scA T AC-seq data. The re- 
sults are shown and detailed in Supplementary Figures S10 

and S11 , and Supplementary Tables S8 and S15 . 
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A B C

D E

Figure 6. Performance of scA T Acat in annotating Corces brain and Morabito brain cortex scA T AC-seq data. ( A ) UMAP embedding of Corces brain 
scA T AC-seq data colored by the clustering. ( B ) 3D PCA projection of the Corces brain scA T AC-seq pseudobulks together with prototypes. Triangles 
represents bulk samples while circles represent pseudobulk-clusters. ( C ) Heatmap of the high-dimensional Euclidean distances between the 
pseudobulks and prototypes shown in (B). Microglia and astrocytes (MGAS), GABAergic neurons (GABA), Glutamatergic neurons (GLU), 
Oligodendrocytes (OLIG). (D, E) Evaluation of cell-type annotations performances ( D ) for Corces brain data and ( E ) for Morabito brain cortex data across 
methods. 
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erformance assessment 
he performances of the methods in the conservative evalu-
tion strategy is presented in Figure 6 E. All methods, except
or label-transfer, demonstrated good performance. However,
cA T Acat was the best across many metrics, although by a
mall margin compared to Cellcano. The second evaluation
trategy showed similar results ( Supplementary Figure S10 F).
cA T Acat again shows the best scores across metrics except for
edian F 1 score where both Cellcano and EpiAno achieved
igher scores. 
In this dataset, increasing clustering granularity positively

ffects evaluation metrics, peaking at a granularity level of
.7 with the highest scores across several metrics, as shown in
upplementary Figure S11 N and Supplementary Table S15 .
owever, beyond this peak, the improvement in metrics does

ot consistently continue, indicating a limit to the benefits of
ncreased granularity. 

iscussion 

urrent single-cell methods like scA T AC-seq hold the promise
f unraveling the gene regulation at a more precise resolution.
tudying the accessibility profiles of cells enables understand-
ng of the regulatory landscape governing each cell type. How-
ever, the resulting data presents a number of challenges which
need to be tackled to fully capitalize on the valuable of infor-
mation they offer. 

One of the foremost challenges in scA T AC-seq data analysis
is to annotate cell-types. Typically, the methods developed for
cell-type annotation in scRNA-seq data are borrowed to an-
notate the cells in scA T AC-seq data. This is enabled by trans-
forming the scA T AC-seq data into scRNA-seq-like-data using
the accessibility around the genes as a proxy for expression.
In this study, we have demonstrated that this approach may
not yield optimal results, and does not fully exploit the po-
tential of scA T AC-seq, which inherently offers more cell-type
specificity. The other two methods used in this study, Cellcano
and EpiAnno, are specifically developed for cell-type annota-
tion in scA T AC-seq data. These approaches use existing anno-
tated scA T AC-seq datasets to train a machine learning model,
which is then applied to new datasets for cell-type annotation.
However, this strategy faces challenges similar to those of the
label-transfer method. Most of the scA T AC-seq datasets used
for training are annotated using scRNA-seq-based methods
by relying on the predicted expression levels of marker genes,
which we showed to be problematic. We introduced scA T Acat
to address this issue of circular reliance on scRNA-seq-based
annotations. We also argue that annotation within the same
modality would improve the cell-type annotations. scA T Acat
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enables cell-type annotation of clusters in scA T AC-seq data by
leveraging prototype accessibility profiles typically obtained
from bulk A T AC-seq data. 

Another challenge in scA T AC-seq data is the sparsity. Lim-
ited information in individual cells makes it impractical to
perform annotation at this level. As a remedy, we propose the
pseudobulk. Given that the clustering is performed sufficiently
fine-grained to not merge different cell-types, pseudobulk re-
flects the accessibility of the cell-type appropriately. Conse-
quently, all the cells in a pseudobulk share the same cell-type
annotation. 

One of the key decisions in scA T AC-seq data analysis is
to determine an appropriate reference frame. Label-transfer
and Cellcano use genes, offering stability but only leveraging
a limited portion of the A T AC-seq data. On the other hand,
EpiAnno relies on the A T AC-peak regions which vary across
datasets. This poses challenges when performing supervised
annotation. More specifically, it requires choosing between us-
ing the peaks from either the training or test dataset and ad-
justing the other accordingly. In their original paper, authors
base the analysis on the test peaks and adapt the training data
to this. This approach is problematic in a supervised learn-
ing context, where the model should be blind to test data
and it’s features. Also, this requires retraining the model for
each new dataset. When designing scA T Acat, we replace the
A T AC-peaks by ENCODE cCREs. As ENCODE cCREs are
derived through the integration of various experiments across
cell types, the advantage here is the stability of the reference
frame which is a prerequisite for data integration across dif-
ferent experiments. 

In addition to cell-type annotation, our program scA T A-
cat provides useful visualizations for the interpretation of the
these annotations. In one, we provide the heatmap of the Eu-
clidean distances which illustrates the similarity between all
the clusters and prototypes. Additionally, we provide a bipar-
tite heatmap showing the similarities of pseudobulks to each
prototype cell-type. This heatmap serves as a quantitative in-
dicator, providing a measure of confidence in the annotations.
In this way, one can, e.g. identify potential doublet clusters
showing similarity to multiple cell-types, as well as a new cell-
type with poor annotation confidence to all the prototypes. 

As reported in ( 59 ), the definition of ground-truth data is
generally a challenge in single-cell studies. We mostly rely on
the annotations provided in the publications of the datasets
derived, except for the first dataset where the cell-type anno-
tations are derived experimentally . Consequently , our evalu-
ations (as well as any other one) may be influenced by the
method through which the ground-truth is established. 

In our study, the observed performance of scA T Acat was su-
perior to other methods except for two datasets. One of these
datasets is the 10X PBMC sc-multiome dataset where the
label-transfer approach showed the best performance. How-
ever, in the absence of an external annotation for it, we anno-
tated the scRNA-seq part of the multiome data with the label-
transfer approach and used these annotations as the ground-
truth. This may, of course, introduce a bias in favor of this
method. 

Interestingly, on the Granja BMMC dataset Cellcano per-
forms better than scA T Acat, in contrast to the NeurIPS bone
marrow data where it is the other way around. Besides the
cluster granularity as one possible reason, it is interesting
to consider the dynamic character of hematopoietic devel-
opment. Bone marrow consists of the progenitors and the
terminal cell-types derived from these progenitors. The bone 
marrow progenitor cells follow a differentiation trajectory 
and are expected to show a dynamic and heterogeneous ac- 
cessibility profile ( 40 ) whereas terminal cell states, such as 
PBMCs, mostly consist of naïve or resting cells ( 56 ), sug- 
gesting more stable chromatin accessibility profiles. This may 
make it harder to capture the true chromatin accessibility sig- 
natures of progenitor cells, consequently making their cell- 
type annotation harder. The Granja dataset includes more pro- 
genitor cells than NeurIPS bone marrow data which may ex- 
plain scA T Acat’ s poorer performance. Additionally, the better 
performance of Cellcano in this case indicates that here the 
neural network indeed contributes in capturing this complex 

relationship. 
While our method has provided valuable insights, it also 

comes with limitations. First of all, scA T Acat requires proto- 
type cells as input, consequently, as in any reference based 

tool, can only annotate the cell-types for provided proto- 
types. Secondly, we build on the assumption that the pseu- 
dobulk clusters are sufficiently pure. However, this assump- 
tion may not hold true especially in the case of complex sam- 
ples including similar cell-types. In general, we recommend 

opting for a higher number of clusters to ensure more ho- 
mogeneous clusters. That being said, we also provided evi- 
dence that our method is fairly robust to clustering resolution 

( Supplementary Tables S9 –S15 ). 
A potential further extension of the method would be the 

use of single-cell-pseudobulk prototypes instead of bulk pro- 
totypes. This approach would leverage the increasingly avail- 
able and more homogenous scA T AC-seq atlases. Additionally,
conceptually our method is not restricted to scA T AC-seq data.
We are currently working on applying it to single-cell epi- 
genetic data like single-cell DNA methylation or single-cell 
ChIP-seq. 

Data availability 

scA T Acat is available as a python package at https://github. 
com/ aybugealtay/ scA T Acat and https:// zenodo.org/ records/ 
12586074 . 

The scripts used to generate the figures from this 
manuscript along with the figures / tables from the Supplemen- 
tary materials and their respective outputs can be accessed 

at https:// github.com/ aybugealtay/ scA T Acat _ paper and https: 
// zenodo.org/ records/ 13381495 . 

Supplementary data 

Supplementary Data are available at NARGAB Online. 
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