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Abstract
Background: Cells react to changing intra- and extracellular signals by dynamically modulating
complex biochemical networks. Cellular responses to extracellular signals lead to changes in gene
and protein expression. Since the majority of genes encode proteins, we investigated possible
correlations between protein parameters and gene expression patterns to identify proteome-wide
characteristics indicative of trends common to expressed proteins.

Results: Numerous bioinformatics methods were used to filter and merge information regarding
gene and protein annotations. A new statistical time point-oriented analysis was developed for the
study of dynamic correlations in large time series data. The method was applied to investigate
microarray datasets for different cell types, organisms and processes, including human B and T cell
stimulation, Drosophila melanogaster life span, and Saccharomyces cerevisiae cell cycle.

Conclusion: We show that the properties of proteins synthesized correlate dynamically with the
gene expression profile, indicating that not only is the actual identity and function of expressed
proteins important for cellular responses but that several physicochemical and other protein
properties correlate with gene expression as well. Gene expression correlates strongly with amino
acid composition, composition- and sequence-derived variables, functional, structural, localization
and gene ontology parameters. Thus, our results suggest that a dynamic relationship exists between
proteome properties and gene expression in many biological systems, and therefore this
relationship is fundamental to understanding cellular mechanisms in health and disease.

Background
Cells react to changing intra- and extracellular signals by
dynamically modulating complex biochemical networks,
and cellular responses to extracellular signals lead to
changes in gene and protein expression. These processes
can be monitored using genomics and proteomics meth-

ods. A number of supervised and unsupervised clustering
techniques are routinely applied to classify and group
genes based on their expression profiles [1]. While these
approaches are sufficient for a general grouping of genes,
they do not explain why various genes are coexpressed or
whether different regulatory mechanisms are involved.
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Some studies have focused on the properties of coex-
pressed genes, such as chromosomal location [2-4], regu-
latory regions and promoters [5,6]. Correlations have also
been observed for some of the properties of encoded pro-
teins, such as function and classification of expressed pro-
teins, including those annotated in MIPS [7,8], gene
ontologies [9-11], and structural classes [7]. Furthermore,
proteins encoded by coexpressed genes are more likely to
interact than proteins in general [12,13].

Since the majority of genes encode proteins, we investi-
gated possible correlations between protein-related prop-
erties and gene expression patterns to identify proteome-
wide features indicative of trends common to expressed
proteins. For example, because the cytoplasm, nucleus
and extracellular space have different physicochemical
properties, such as pH, ionic composition, and protein
concentration, the properties of the proteins that are tar-
geted to different cellular compartments are also different.
Because there is variation in the specific proteins that
comprise the various proteomes, it is intriguing to
hypothesize that cellular signaling leads to significant
changes in the protein properties of cells. This idea is sup-
ported by studies of the relationship between the overall
properties of proteins and their amino acid composition,
which has been correlated with protein surface properties
[14], subcellular localization [15-17], protein structural
class [18], and thermal stability [19].

Results and discussion
A number of microarray datasets for several different cell
types and organisms were analyzed to study possible tran-
scriptome-proteome correlations. Expression studies have
revealed certain correlations between genome-related fea-
tures and coexpressed genes, including co-localization [2-
4] and the conservation of 5' regions containing regula-
tory sequences [5,6]. Cells respond to changes in intra- or
extracellular environment by altering gene expression to
produce proteins that are appropriate for the response.
Here we applied the Spearman linear correlation to mon-
itor covariations between a number of proteome parame-
ters and gene expression levels along a time series. We
observed very significant and dynamic correlations in all
the datasets we investigated. We investigated several high-
quality datasets for different cell types, treatments, and
organisms, including human T cell stimulation [20] and B
cell stimulation datasets [8,21], yeast cell cycle data [22],
and Drosophila melanogaster life cycle data [23].

T cell receptor (TCR) activation on the surface of T cells is
essential for mounting an adaptive immune response
against viruses and microbes. The TCR is a multiprotein
complex that activates a large number of signaling path-
ways [24]. Both the CD3 subunit and a co-receptor such
as CD28 must be engaged for optimal activation [25].

Microarray analysis at the transcriptome level has revealed
changes in the expression of a large number of TCR-
related genes [20]. We have now developed a robust
method to identify significant correlations between gene
expression levels and 114 protein properties over six time
points following TCR activation. We found that amino
acid composition and several other protein properties
covary with gene expression. These results indicate, for the
first time, that gene expression profiles and the properties
of the encoded proteins have an integral and dynamic
relationship and that the protein constituents and overall
properties of the proteome are tightly linked and
regulated.

Time point-oriented analysis
To study transcriptome-proteome correlations, we intro-
duced time point-oriented analysis. Protein sequence-
derived parameters were correlated to gene expression
separately at each time point. Time point-oriented cluster-
ing (TOC), in which the expression of genes at each time
point is clustered separately, was used for other features.
Fig. 1 presents the general overview of the strategy for the
statistical analysis. For sequence-based parameters, direct
correlation with gene expression levels was calculated. For
other protein features, genes were organized into clusters
separately in each time point with TOC after which corre-
lation of the expression and protein parameters was calcu-
lated. Following TOC, the Spearman correlation was used
to test linear correlations between the median of gene
expression level and the protein variables in the corre-
sponding clusters. Due to the nature and scarceness of
functional and structural data, it was necessary to cluster
the data prior to conducting the correlation test. Moreo-
ver, we were able to compare the correlation coefficients
by unifying the sample sizes using a fixed number of clus-
ters (20) for each data type. The resulting correlation
matrix was clustered to group the data based on the pro-
tein characteristics, and then the results were visualized.
See Methods for a detailed description.

Correlation between transcriptome and proteomes
The 114 variables at six time points in two data sets (CD3
and CD3/CD28 costimulation) yielded 1,368 correlation
tests. The huge amount of information was organized
according to time points and variables, clustered using the
Self Organizing Map (SOM) method and visualized as in
Figs. 2 and 3. A total of 177 results (13% of the tests) were
statistically significant (with a correlation coefficient
either ≥ 0.12 or ≤ (-0.12) for sequence-derived parame-
ters, or ≥ 0.7 or ≤ (-0.7) with TOC). The p value for the cor-
relation study and for the permutation test had to be ≤
0.05. When considering the large numbers of genes in the
datasets, the correlation coefficient value of 0.12 is nota-
ble especially since the results were statistically significant
based on the p values of both the correlation coefficients
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and permutation tests of 1,000 rounds. The results indi-
cate clear trends and correlations at subsequent time
points as well. It is unlikely that the properties of all the
proteins would correlate with gene expression; still the
increased/decreased production of certain kinds of pro-
teins is very clear and statistically significant.

Of particular interest are the characteristics that indicated
trends in more than one data set or at more than one time
point. Of the 75 and 102 significant results in the CD3
stimulation and CD3/CD28 costimulation experiments,
respectively, 44 (25%) were common to both (Fig. 3). Not
a single parameter showed opposite correlation between
the two experiments, indicating that CD28 activation
mainly strengthens the signaling downstream of CD3

stimulation. Very early and late time points after CD3 or
costimulation generally yielded stronger correlations.
Some examples of these correlations are shown in Fig. 4.

Subcellular localization data were obtained from three
individual sources: gene ontology [26], SCOP [27], and
prediction. The consistency of the results from the three
independent sources reflects the overall high quality of
the analysis (Figs. 2 and 3). Membrane proteins showed a
negative correlation; i.e., they are relatively underrepre-
sented according to each of the three sources, although
the extent of significance varies.

Amino acid frequencies for about half of the residues cor-
related with the level of gene expression. Lysine

Schematic overview of the analysisFigure 1
Schematic overview of the analysis. Schema for data mining and statistical analysis. Correlation analysis at each time point 
was carried out between calculated protein parameters and gene expression levels. In the time point-oriented clustering 
(TOC) at each time point, correlations were analyzed between the medians of expression levels of the clusters and the medi-
ans of the proportions of variables for corresponding proteins.
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dominated the (R+K)/total parameter, correlating posi-
tively in both the CD3 and CD3/CD28 costimulation
datasets. The aliphatic index, which measures the propor-

tion of aliphatic residues (A, I, L, and V), correlated nega-
tively in the CD3 dataset. The individual aliphatic
residues, however, generally gave positive correlations,

Correlation analysis of the dataset for stimulated T cellsFigure 2
Correlation analysis of the dataset for stimulated T cells. Visualization of Spearman's linear correlations between gene 
expression and protein properties in T cells stimulated with CD3 (left) or costimulated with CD3/CD28 (right). The columns 
represent time points 1 to 6 corresponding to 1, 2, 6, 12, 24 and 48 hr after stimulation. The 114 variables (rows) consist of 20 
amino acid proportions described by three-letter abbreviations, 29 sequence- or amino acid composition-derived parameters 
(panels to the left), 50 gene ontologies (marked by GO at the beginning), four predicted subcellular localizations (specified by 
SubLoc), and 11 structural parameters from SCOP (panels to the right). Correlation coefficients are color-coded. Red indi-
cates a positive correlation; i.e., increased production of proteins, which is either attributed to a property (within the catego-
ries of GO, SCOP, or SubLoc) or to higher proportions of a property (including amino acids and physicochemical parameters), 
leading to relative enrichment of that property. Green indicates a negative correlation; i.e., reduced production of proteins, 
which is either attributed to the property or to higher proportions of the property, leading to relative depletion of that prop-
erty. The magnitude of the correlation coefficients is represented by color intensity, as indicated at the bottom. The range is 
from -0.12 to 0.12 for sequence-derived parameters and -0.7 to 0.7 for categorical data used in the TOC approach. The num-
bers in brackets indicate the genes for which gene ontologies, subcellular localization or structural classes were identified. The 
correlation coefficients are clustered using the SOM method so as to group features manifesting similar patterns.
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with the exception of L and V. The frequency of S and T
correlated negatively with gene expression in both data-
sets. The data also suggest that aromatic residues do not
generally covary with gene expression. The ratio of polar
and large, negative, positive, as well as nonpolar and
small residues correlated positively in both datasets. The

effect was stronger in the costimulation dataset. Nonpolar
residues correlated negatively. Overall hydropathy param-
eters correlated negatively with expression levels,
although this type of correlation varied across time points,
due most likely to differences in the parameters contribut-
ing to the hydropathy scales. The metabolic cost of amino

The most statistically significant observations for CD3-stimulated (left) and CD3/CD28-costimulated (right) datasetsFigure 3
The most statistically significant observations for CD3-stimulated (left) and CD3/CD28-costimulated (right) 
datasets. Only those features with p ≤ 0.05 for both the correlation coefficient and permutation test are shown. Features are 
organized by SOM clustering. Sequence-derived parameters are on top, with the others below. Color-coding is as in Fig. 2. The 
numbers in brackets indicate the genes for which gene ontologies, subcellular localization or structural classes were identified. 
Amino acids composition parameters were calculated for all the proteins. The actual number of proteins used in any individual 
analysis varied due to different amounts of missing data in different experiments and at different time points.
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acid production has been previously evaluated; e.g., for
Escherichia coli [28]. However, the number of high-energy
phosphate bonds required did not correlate with the
results shown in Fig. 3. The most costly residues, W, F and
Y, were not underrepresented, and the least costly amino
acids, G and A (except for A at two time points in CD3/
CD28 data), were not enriched.

Of particular interest are the characteristics that yielded
negative correlations at early time points and positive cor-
relations at late time points, and vice versa. The trend is
from a negative towards a positive correlation for the ratio

of positive amino acids and (R+K)/total parameters in the
CD3 dataset, and D in the costimulation dataset. Serine
showed the opposite trend in the CD3 dataset. The pro-
portion of neutral residues and oxidoreductase activity
correlated negatively at early time points, but only in the
CD3 dataset. The ratio of nonpolar and small amino acids
correlated negatively at early time points in the CD3 data-
set and positively only at late time points in the costimu-
lation dataset. These results clearly indicate a strong
correlation between gene expression and the amino acid
composition of protein products. In particular, polar and
charged residues correlate strongly, and there is a biased

Examples of correlations between gene expression and proteome parametersFigure 4
Examples of correlations between gene expression and proteome parameters. Comparison of the medians of gene 
expression (● ) and medians of the observed/expected ratio of proteins associated with functional and structural variables (�). 
a, Protein amino acid phosphorylation, time point 3 in the CD3 dataset; b, SCOP classification of α/β proteins, time point 6 in 
the CD3 dataset; c, Gene ontology for receptor activity, time point 5 in the CD3/CD28-costimulated dataset; and d, Gene 
ontology for protein biosynthesis, time point 3 in the CD3/CD28-costimulated dataset. The graphs indicate both positive and 
negative correlations. The clusters are arranged so that the medians of gene expression along the time points are in descending 
order.
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occurrence of hydrophobic and aliphatic residues.
Interestingly, leucine and isoleucine, which are hydro-
phobic structural isomers, had opposite correlations.

Protein molecular size and weight are weak indicators,
because only MWRES (molecular weight per residue) cor-
related significantly in the costimulation dataset. Of the
volume-related parameters, nonpolar and polar volume
correlated negatively, and Polfrac max correlated posi-
tively in costimulated cells. Protein flexibility correlated
positively in the CD3 dataset at one time point. The most
flexible residues, G and A, did not correlate with the tran-
scriptome (except for A at two time points).

SCOP [27] contains information about classification of
protein structures at four levels. In addition to membrane
and cell surface proteins and peptides, intracellular pro-
teins correlated positively with gene expression in the
CD3/CD28 costimulation dataset.

Gene expression in enriched Gene Ontology classes in the T cell datasetFigure 5
Gene expression in enriched Gene Ontology classes 
in the T cell dataset. The left array shows the gene ontol-
ogy group receptor activity (4872), the middle array shows 
protein amino acid phosphorylation (6468), and the right 
array shows transcription factor activity (3700). Genes and 
proteins were annotated extensively. Signaling activities in 
the first two ontology classes are indicated by color coding 
of the block to the left of the expression patterns: protein 
tyrosine kinase (PTK, red), protein serine/threonine kinase 
(PSK, blue), dual-specificity kinase (DSK, cyan), receptor (R, 
black), and protein phosphatase (green). Genes are sorted 
based on their expression at time point 3. The box "*" indi-
cates the boundaries for significantly overexpressed, 
unchanged, and underexpressed genes at time point 3. Only 
9% of receptor activity genes are significantly overexpressed, 
whereas 31% are significantly suppressed. All PSKs are 
located in the middle (i.e., changes in their gene expression at 
time point 3 are insignificant). Hypergeometric analysis 
revealed significant overrepresentation (p < 0.0008) of PSKs 
as well as significant underrepresentation of PTKs and Rs in 
this group. PTKs are overrepresented among the underex-
pressed genes (p < 0.005). When the genes are grouped 
according to the significance of their expression at time point 
6, very significant over- and underrepresentation of PSKs is 
apparent among the groups of over- and underexpressed 
genes, respectively. A similar hypergeometric analysis for 
protein amino acid phosphorylation indicates consistently 
significant PSK underrepresentation and PTK overrepresen-
tation among underexpressed genes at time point 3 and rela-
tive PSK enrichment and R depletion at time point 6. 
Significant depletion of membrane proteins and those integral 
to the plasma membrane appears at late time points (Figs. 2 
and 3).
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Fifty ontology classes had a large number of entries, 26 of
which correlated significantly with expression (Fig. 3).
Many of the ontologies were related either to signal trans-
duction or subcellular localization (9 and 11 ontology
groups, respectively), with 23 significant findings
altogether. Surprisingly, ontologies for immunological or
inflammatory responses were not significantly enriched.
In fact, the ontology for immune response correlated neg-
atively at time point 5 in the coexpression dataset. Fig. 5
shows the gene expression patterns for some of the largest
ontologies.

Intracellular proteins correlated positively towards the
end of the time series in both datasets. Membrane pro-
teins in general and those integral to the plasma mem-
brane were significantly underrepresented at several time
points. Based on the prediction data, extracellular pro-
teins correlated negatively with gene expression in the
CD3/CD28 dataset.

Our results are somewhat related to previous analyses of
the yeast proteomes [7,29], data from which indicate that
the abundance of some amino acids and certain overall
structural and functional properties correlate with protein
abundance. However, no statistically significant differ-
ences were observed when studying time points in the
diauxic shift data [7]. Some of the yeast results [7,29] do
not agree with the T cell data (e.g., the enrichment of
amino acids). Lymphocytes function as individual cells,
and in this respect are similar to unicellular organisms like
yeast; however, lymphocyte function and development
are critically linked to the presence and activities of other
cells. Of the observations made in yeast, only the enrich-
ment of lysine agrees with our results. Some of the differ-
ences are undoubtedly due to the different organisms
used in these studies, whereas others may have arisen
from differences in experimental goals and methods.

The previous yeast study [29] was aimed at calculating the
abundance of protein products; however, we did not
attempt such calculations due to the lack of experimental
data as well as the problems inherent in correlating pro-
tein abundance with that of mRNAs [30,31].

T cell signaling
TCR stimulation activates several signaling pathways
[24,32,33], and the detailed annotations of the genes hav-
ing prominent changes in expression that were generated
by our analyses facilitated the identification of these proc-
esses and pathways. Receptor activity had a significant
negative correlation at time point 5 in the costimulation
dataset. There were only a few activated receptors, includ-
ing IgG receptor, IL-7 receptor, some forms of TNF recep-
tor and G protein-coupled receptors (GPCRs) (Fig. 5).
Another significantly affected ontology group was protein

amino acid phosphorylation (time point 3 in the CD3
experiment), which was the most characteristic property
of the numerous signaling-related observations. There
were few changes in signaling molecules in the first hour
after stimulation. Several known components of the TCR
signaling pathway were overexpressed, including those of
the MAP kinase, Ca2+-related signaling, and NF-κB path-
ways. Subsequently, transcription factors became acti-
vated, and a significant positive correlation was observed
at time point 3 in CD3-stimulated cells. The enriched
transcription factors included early growth response fac-
tors 1, 2 and 4, NFAT, NF-κB, Jun, Fos, B cell translocation
gene, and interferon regulatory factor. Thus, all the major
transcription factor components active in TCR signaling
were present (i.e., Fos and Jun forming AP-1, NFAT, and
NF-κB). In agreement with these results, transcription fac-
tors expressed in lymphocytes have highly regulated
expression patterns [21].

We analyzed a number of additional datasets to address
whether the associations seen in the T cell data analysis
represent sporadic observations that are cell type-specific.
Dynamic covariation occurred between gene expression
profiles and a number of proteome characteristics describ-
ing amino acid proportions and physicochemical proper-
ties in all the investigated cell types and organisms,
suggesting that our T cell data is representative of cells in
general.

Human B cell data analysis
The B cell dataset [8,21] represents genes involved in mat-
uration in anti-immunoglobulin M-stimulated Ramos
cells. The development of adaptive immunity and
responses to foreign molecules and organisms is based on
the highly regulated production of hundreds of proteins.
B cell maturation is a multi-step process that requires the
ordered expression of a large number of genes. B cell dif-
ferentiation is activated by non-covalent cross-linking of
the B cell receptor (BCR), initiating cellular signaling cas-
cades that ultimately activate nuclear transcription factors.
Then, transcriptional activation represses or activates gene
expression leading to B cell proliferation, upregulation of
surface activation markers, and increased antibody
synthesis.

Proline and R/(R+K) were significantly enriched during
several consecutive late time points, and neutral and small
residues were enriched in the last time point (Fig. 6),
whereas I, K, Y; and nonpolar and small residues were
underrepresented at all late time points. Among the gene
ontologies, only transcription factor activity and signal
transduction were significantly positively correlated, both
at one time point. None of the protein subcellular locali-
zation predictions correlated significantly. Maximum cor-
relations are generally seen at late time points, concurrent
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with the largest alterations in gene expression. This dataset
yielded the least amount of significant findings, which is
most likely due to the smaller number of genes in the
dataset.

S. cerevisiae cell cycle data analysis
Microarrays have been used to study gene expression in S.
cerevisiae cultures synchronized by three independent
methods: α factor arrest, elutriation, or arrest of a CDC15
temperature-sensitive mutant [22]. Expression of several
yeast genes is known to vary periodically during the cell
cycle, and the corresponding gene products may be
involved in processes occurring only once during the
cycle. To investigate these genes, cell cultures must be syn-
chronized so that the cells are simultaneously in the same
cell cycle stage. Several approaches are available for syn-
chronization, three of which were used in this study. The
first was elutriation whereas other two were cyclin-
dependent. In addition, the effects of the G1 cyclin,
Cln3p, and the B-type cyclin, Clb2p, were tested. Cyclins
are special cell cycle regulators. Note that the CDC28 data
was obtained from ref [34].

Several significant correlations are apparent in Fig. 7.
Almost all the investigated sequence-based parameters
covary with gene expression, but correlations at adjacent
time points are rare. At some time points, there are no sig-
nificant correlations, a recognizable difference compared
with the other datasets. This leads to patchy patterns of
covariation. If we ignore the time points for which there
were few or no correlations, we notice that the different
cell culture synchronization treatments yielded rather
similar patterns. In the elutriation data, the positively cor-
related parameters are stronger at the beginning of the
time series. Another feature typical for the yeast data is
that the correlations are stable in the sense that they sel-
dom change from positive to negative (or vice versa) dur-
ing a treatment.

At the early time points, the correlations are positive
(especially in the elutriation treatment) for F, G, I, L, V, W,
Y, hydropathy values, as well as for ratios of nonpolar and
large, nonpolar, and neutral amino acids. Correlations are
mainly negative for E, K, (R+K)/total, rho, and ratios of
positive, and polar and small residues. The correlation of
V to gene expression is consistent with a previous yeast
study [7]; however, since we analyzed dynamic changes,
amino acids may appear enriched or underrepresented
depending on the time point and the effectors.

Large numbers of correlations occur in the CDC15 and
CDC28 experiments, in which the largest fraction of sig-
nificant MIPS functional classifications was observed in a
previous study [35]. This implies that there is consistency
among the observations regarding physicochemical

properties of proteins and their functional attributes in
association with gene expression. Only one gene ontology
class, cytoplasm, shows significant correlation – at just
one time point. Presumably, the reason for the low abun-
dance of significantly correlated ontologies lies in the
smaller number of significantly altered genes compared
with the other datasets.

D. melanogaster life cycle data analysis
The D. melanogaster study was performed to follow devel-
opment and gene expression in a multicellular model
organism. In this dataset [23], the transcriptional profiles
were investigated throughout the life cycle, from fertiliza-
tion to aging adults. Samples of both males and females
were taken during a complete time course of development
of wild type fruit flies up to 30 days of adulthood.

There are dynamic correlation patterns between gene
expression and proteome properties during the embry-
onic period and especially the pupae period (Fig. 8). Cor-
relations are relatively stable in larva as well as during
adulthood, especially in males. Continuity and strength
of the correlations are unique to the D. melanogaster data,
in that once a significant correlation occurs it remains for
a prolonged period (i.e., over several consecutive time
points).

The data contain two major transitions of correlations
that do not coincide with developmental stages (Fig. 8).
The first transition occurs during the embryo stage, from
approximately 11 to 20 h, whereas the other occurs during
the pupae period, from 4 to 48 h. There is a somewhat
more stable period between 12 to 36 h. Interestingly, cov-
ariation patterns are very similar between the transition
periods. The observed significant correlations from 15–16
h from the embryo stage until the end of the larval stage
are quite similar to the time period from 60 h (pupae)
through adulthood (especially in males). On the other
hand, the pattern from the beginning of the embryonic
stage to 10 h has a covariation pattern that is opposite to
the two other conserved time periods. Those parameters
having positive correlation at the beginning of the embry-
onic stage are negatively correlated at late embryo/larvae
and late pupae/adult time points, and vice versa. If we
associate the covariation patterns between proteome and
gene expression during the early embryonic and larval
periods to growth and differentiation, respectively, we can
infer that pupae have a mixture of both patterns, reflecting
a transition from growth to differentiation and then back
to growth. Only a few significant correlations are apparent
during the transitions, suggesting that the gene expression
profile is not in balance (i.e., it changes from one stage to
another).
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Data analysis for human B cell differentiationFigure 6
Data analysis for human B cell differentiation. (Left) Correlation coefficients for 1,358 genes involved in maturation in 
Ramos B cells at 11 sequential time points. (Right) Only the highly significant cases are shown.
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Data analysis for the yeast cell cycleFigure 7
Data analysis for the yeast cell cycle. (Top) Correlation coefficients for 590 yeast genes in separate experiments. (Bot-
tom) Only significant correlations are shown.
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Data analysis of the D. melanogaster life cycleFigure 8
Data analysis of the D. melanogaster life cycle. (Top) Correlation coefficients of 2,976 genes in wild-type flies examined at 
66 time points beginning at fertilization and spanning the embryonic, larval, and pupal periods as well as the first 30 days of 
adulthood. (Bottom) The most significant cases are shown. Two transition periods are apparent from the correlations. The 
continuity and strength of the correlations are unique to the D. melanogaster data.
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The larval and adulthood data show stable and constant
patterns, in which correlations occur between gene expres-
sion and a large number of parameters, including a
negative correlation for charged and polar residues, their
ratios, Polfrac max, rho and flexibility. Positive correla-
tions are seen for aliphatic, aromatic and hydrophobic
amino acids, aliphatic index, and hydropathy parameters.
Contrary to the observations for T cells, I and L show
similar trends. As noted above, the patterns of positive
and negative correlations are almost mirror images when
comparing the first half of the embryo stage with the two
constant regions (i.e., late embryo and larval time points
or the late pupae and adult period). Almost all protein
properties have statistically significant correlations; the
exceptions are N, T and the ratio of neutral and small res-
idues, for which significant correlations occur
sporadically.

Several gene ontologies (17 classes) have significant corre-
lations. Six ontologies are related to gene expression/DNA
binding. They all have positive correlations during the
first half of the embryonic stage and negative correlations
thereafter. Nuclear localization follows the same pattern.
The correlation motifs for the other ontologies are less
clear. Oxidoreductase activity correlates negatively at
several time points during the embryonic stage and corre-
lates positively at other time points throughout the
experiment. The signal transduction ontology has a simi-
lar overall pattern, but only in the pupa and adult females.

Conclusion
Strong correlations between transcriptome and proteome
characteristics appear in all the datasets we studied. One
could not expect to obtain similar results from the differ-
ent studies, which differed with respect to both the proc-
esses (growth, differentiation, stimulation, and cell cycle)
and proteins produced. The strength of the correlations is
apparently associated with the intensity of gene expres-
sion. Thus, proteins having significantly altered expres-
sion do not have a random distribution of
physicochemical properties. In particular, the yeast and D.
melanogaster life cycle datasets have obvious recurring
cycles of enrichment and underrepresentation of different
properties. The magnitudes of underrepresentation and
enrichment are proportional to gene expression in all
experiments. These observations along with our findings
related to the functional and structural properties of pro-
teins as well as MIPS classification in earlier studies [7,21]
suggest that protein characteristics, including function,
structure, subcellular location, and physicochemical
properties, are closely associated with gene expression.
Furthermore, our method clearly detects dynamic shifts in
the gene expression profiles, as exemplified in the D. mel-
anogaster dataset.

Similar, although not identical correlations were obtained
when analyzing time series datasets for human T and B
cells, yeast, and D. melanogaster, indicating that the
dynamic correlations between proteome-related parame-
ters and gene expression likely represent a general para-
digm. Since the association is strong and is observed at
many levels, cells and organisms, and appears to be a
widespread phenomenon, it likely reflects fundamentally
important biological processes.

Only a few studies of system-wide transcriptome-pro-
teome correlations have been published, including
human heart [36] and platelets [37], mouse liver and kid-
ney [38], and mosquito salivary gland [39]. Only func-
tional features, mainly gene ontologies, were investigated
in these articles. Certain ontologies were clearly enriched
in all the cases. There was statistically significant colocali-
zation of coexpressed genes in the mouse assay.

Proteome-wide isoelectric points and molecular masses,
the two properties used for separation in 2D gels, have
been analyzed for 103 organisms, including bacteria,
archae and eukaryotes [40]. The comparison of properties
of theoretical proteomes for 11 bacteria to the usage of 95
different carbon sources indicated that the ecological
niche of bacteria correlates with their proteome parame-
ters [40]. Comparable to these organism-wide, macro-
level correlations, we observed several micro-level (time
point) correlations in the different datasets of our present
study.

There are presumably several reasons for the observed
enrichment/depletion of protein properties, which might
be related, for example, to cellular processes involved in
changes in metabolism and signaling, localization of pro-
teins within cells and compartments, and complexes and
interactions formed between proteins. There are indica-
tions for the organellar enrichment of proteins having cer-
tain types of properties; for example, the need for positive
charge in DNA-binding proteins (including histones). In
certain disease conditions, the overall amino acid compo-
sition of proteins changes in cells, organs, or body fluids
[41,42]. Thus, proteome parameters might have diagnos-
tic value and may indicate that health and disease states
are linked to both the production and properties of
expressed proteins.

Methods
Gene expression data were derived from peripheral T cells
subjected to seven treatments: mock (untreated) cells;
CD3- or CD28-stimulated cells; CD3 and CD28-costimu-
lated cells; and cells treated with ionomycin along with
phorbol 12-myristate 13-acetate (PMA), phytohemagglu-
tinin, or FK506. Data were acquitted at six time points up
to 48 hr [20]. We did not investigate the chemical
Page 13 of 18
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treatment results in detail because they were quantita-
tively similar to CD3/CD28 co-treatment. Because there
were only a few genes that had a significant change in
expression (>1.5 fold) in the mock and CD28-stimulated
datasets, we focused exclusively on the CD3-stimulated
and CD3/CD28-costimulated datasets. In total, 4,359
cDNA elements (of about 18,000 genes and ESTs on the
chip) representing 2,926 genes were significantly altered
after CD3 stimulation or CD3/CD28 costimulation [20].
The data were taken from http://genome-www.stan
ford.edu/costimulation/data/figure1.txt.

The B cell dataset for genes involved in maturation in anti-
immunoglobulin M-stimulated Ramos cells indicated
that close to 1,500 genes had significantly altered expres-
sion, at least at one time point [8,21]. These data were
from our own experiments. In the D. melanogaster micro-
array data set, the transcriptional profiles were investi-
gated throughout the life cycle [23]. RNA expression levels
of 4,028 genes in wild-type flies were examined at 66 time
points. Expression of 3,483 out of 4,028 (86%) changed
significantly [P < 0.001; analysis of variance (ANOVA)
during the 40-day survey period [23]. The data for genes
were obtained from http://www.sciencemag.org/cgi/con
tent/full/297/5590/2270/DC1 from file
Arbeitman.SOMtables.zip. Gene expression information
was from http://genome.med.yale.edu/Lifecycle/
Data_download/.

A total of about 600 genes had altered gene expression
patterns in yeast cultures synchronized by four independ-
ent methods (α factor arrest, elutriation, cdc28, and arrest
of a cdc15 temperature-sensitive mutant) [22]. We also
studied the effect of treatment with either the G1 cyclin,
Cln3p, or the B-type cyclin, Clb2p. The data were col-
lected from http://genome-www.stanford.edu/cellcycle/
figures/figure1Anames.html and http://genome-
www.stanford.edu/cellcycle/data/rawdata/combined.txt.

Data mining
We used numerous bioinformatics methods to filter and
merge information regarding gene and protein annota-
tions in a number of databases and further calculated and
predicted a large number of characteristics for each gene/
protein. A dedicated database (Siermala et al., unpub-
lished data) constructed for gene and protein information
was extensively used for annotations and sequence
identification. To identify the corresponding proteins, we
used Locus Link ID numbers of ESTs and genes to retrieve
UniProt sequences. FlyBase [43] was used to identify D.
melanogaster protein sequences, and NCBI genome
sequences were used for yeast.

Sequence-derived variables
Physicochemical parameters and amino acid proportions
were directly calculated from protein sequences. Amino
acids were further investigated by analyzing the propor-
tions of different groups of residues, namely positive (R,
H, K), negative (D, E), neutral (A, N, C, Q, G, I, L, M, F, P,
S, T, W, Y, V), polar (D, E, H, K, N, Q, R, S, T, Y), and non-
polar (A, C, F, G, I, L, M, P, V, W). Combinations of char-
acteristics were also investigated, namely neutral and
small (A, G, P, S, T), nonpolar and large (F, W, Y), nonpo-
lar and small (I, L, M, V), polar and large (H, K, R), polar
and small (D, E, N, Q). In addition, the ratio of Glx (E, Q)
and Asx (D, N) to total amino acids, the ratio of R to R
plus K, and the ratio of R and K to total amino acids were
calculated.

Several parameters for physicochemical features described
in the literature were calculated. The aliphatic index is
defined as the relative volume occupied by aliphatic side
chains (i.e., A, I, L, and V) and was calculated as follows

AI = X(Ala) + 2.9 × X(Val) + 3.9 × (X(Ile) + X(leu)),

where X(Ala), X(Val), X(Ile), and X(Leu) are mole per-
cents for the amino acids [44]. Residues were classified as
polar and non-polar as per Fisher's definition [45]. The
volumes of each category were calculated by summing the
products of the number of each residue [46]. rho is the
ratio of polar to non-polar volumes. Nonpolar side chains
(NPS), the frequency of nonpolar side chains, was calcu-
lated according to Waugh's definition by counting W, N,
T, F, P, L, and V residues and expressing the sum as a frac-
tion of the total number of residues [47]. MWRES is the
molecular weight per residue. The average hydrophobicity
of proteins [46] was calculated from:

where ni is number of residue i, and Hi is the hydrophobic-
ity value of the residue. Four different hydropathy scales
[48-51] were used.

POLFRAC_MAX (polar fraction) in an extended chain
conformation is calculated as:

where NRES is the total number of residues in the protein
and POLFRAC_MAX is in units of e, the electronic charge,
SURF is maximal accessible surface area, and POLSURF is
polar surface area [52]. Molecular weight was calculated
from the sequence as well as the number of amino acids.
Isoelectric point was calculated with the EMBOSS http://
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emboss.sourceforge.net/ program iep. In vivo half-life of
proteins was calculated according to [53].

Average flexibility [54,55] for each protein was predicted
from the amino acid sequence using a 9-residue sliding
window averaging technique with the formula:

where

 and Bnc is the flexibility parameter of the residue in posi-
tion i.

For the T cell experiment [20], we identified 1,687 amino
acid sequences for 2,926 genes. Sequences were found for
761 proteins in human B cell data and 415 for the yeast
dataset. For D. melanogaster [23], 2,976 amino acid
sequences for 4,028 genes/ESTs with significant changes
in expression were identified and included in the analysis.
The actual number of proteins used in any individual
analysis varied due to different amounts of missing data
in different experiments and at different time points.

Subcellular localization
Subcellular localization of proteins was predicted using
SubLoc software [56]http://www.bioinfo.tsing
hua.edu.cn/SubLoc/, which yielded predictions for four
categories (cytoplasmic, nuclear, mitochondrial, and
extracellular). Transmembrane regions were further pre-
dicted using the TMHMM server [57]http://
www.cbs.dtu.dk/services/TMHMM/. To assign each
protein to a compartment, we used the SubLoc reliability
index and the length of the predicted transmembrane
region. If the value of the SubLoc prediction parameter
was ≥ 5, the assignment was accepted for the most
accurate prediction. In cases where the parameter was
between 2 and 4, the length of the transmembrane
stretch(es) was taken into account. If the transmembrane
region was longer than 36, the protein was predicted to be
membrane associated. In cases where the SubLoc predic-
tion value was 1 and the transmembrane region was ≥ 18
residues (the average length of a transmembrane α-helix),
the protein was predicted to be membrane spanning. We
made predictions in T cell data for 443 proteins, 177 of
which were transmembrane, 167 nuclear, 67 extracellular,
7 mitochondrial, and 25 cytoplasmic. Predictions were
made for 224 proteins in the B cell data.

Gene ontology
Gene ontology [26] information was extracted from Ent-
rez Gene [58] or from annotated genome data for yeast

sequences. In total, we identified the cell component
ontology for 2,448 proteins, molecular function for 2,760
proteins, and biological processes for 2,748 proteins in
the T cell dataset. Ontologies were available for 1,260
entries in the B cell dataset, for 590 in the yeast dataset,
and for 2,293 genes/ESTs in the fruit fly dataset.

Structural description
Hidden Markov Models (HMMs), downloaded from
Superfamily [59]http://supfam.mrc-lmb.cam.ac.uk/
SUPERFAMILY/, were used to search SCOP-derived
domains [27] against the protein sequences in T cell data
using the program HMMER [60], setting the e-value to
<10e-6 as a limit. SCOP information was available for
2,022 entries. The limit of e-values was set so that false
positives were unlikely. Moreover, we compared a
number of findings with those acquired using the Inter-
ProScan sequence searching service [61], which yielded
nearly identical results.

Correlation analysis
To monitor dynamic covariations between a number of
proteome parameters and gene expression levels along the
time series, we applied the Spearman linear correlation
test. The schema of the analysis is presented in Fig. 1. The
value of the correlation coefficient is dependent on the
number of genes/proteins. A value of 0.12 was used for
the B cell, T cell, and yeast datasets, and 0.3 was used for
the much larger Drosophila dataset. To estimate the signif-
icance of the observations, a permutation test was per-
formed. One-thousand permutations were calculated for
each parameter at each time point in the B cell, T cell, and
yeast datasets, and 100 permutations were calculated in
the D. melanogaster dataset. To be regarded as significant,
the p value had to be ≤ 0.05, both in the correlation and
permutation calculations.

For TOC, the expression of genes at each time point are
separately clustered. For the actual clustering, we used the
SOM method, which organized the clusters according to
the shapes of the expression profiles of genes. During the
method development, we also monitored the clustering
process visually; SOMs served as ideal visualization tools.
Following TOC, the Spearman correlation was used to test
the linear correlations between the medians of gene
expression and protein variables in the corresponding
clusters.

TOC was an essential step in facilitating the analysis of
functional and structural attributes (ontology, subcellular
localization, SCOP) because, due to the nature (binary
and categorical) and scarceness of some of these data, a
clustering measure was required before conducting the
correlation test. Furthermore, all correlation coefficients
could be compared by unifying the sample sizes with a
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fixed number of clusters (20) for each of the different
types and data samples.

Since the functional and structural information variables
were categorical (e.g., a hierarchy of ontology), we con-
ducted correlation tests between the medians of the clus-
ters of expression levels and medians of the ratios
(observed/expected in each cluster) of the sequences
attributed to the functional or structural variables. The
expected number of a given ontology, subcellular localiza-
tion, or structural variable for each cluster was calculated
based on the size of the cluster and the total number of
occurrences of the variable.

The correlation coefficients and p values for correlation
and permutation tests are in Additional files 1, 2, 3, 4, 5
(CorrelationDataNumbersTCELLCD3.xls, CorrelationDa-
taNumbersTCELLBCDs.xls, CorrelationDataNumbersB-
CELL.xls, CorrelationDataNumbersYEAST.xls,
CorrelationDataNumbersDROSOPHILA.xls) for CD3-
induced T cells, CD3/CD28-costimulated T cells, B cells,
yeast, and Drosophila datasets, respectively.

Visualization
To provide an intelligible report on the very large correla-
tion analyses, we introduced a new type of visualization.
Correlation matrices were formed in which columns and
rows represent time points and variables, respectively.
Each cell represents a correlation coefficient (theoretically
ranging from -1 to 1) between the expression levels of the
time point and the values of the variable. Red and green
represent positive and negative correlations, respectively.
The intensities of the colors are relative to the absolute
value of the correlation coefficients. A significant red-
colored proteome variable implies an increase in produc-
tion (i.e., overexpression of proteins either attributed to a
property concerning functional or structural variables
[GO, SCOP, and SubLoc] or containing higher propor-
tions of a property [amino acids and physicochemical
parameters]) compared with the changes in expression of
other proteins, which implies the enrichment of the prop-
erty at that time point. Likewise, a significant green-
colored variable implies a reduction in the production of
proteins either associated with or containing lower pro-
portions of the property (i.e., underrepresentation of the
property at the time point). To determine which variables
covary in a similar manner with expression levels over
time, the matrix was clustered using SOMs.

Tools and software
Script from CPAN http://www.cpan.org/ was used for
clustering. We developed the software for all other analy-
ses and calculations as well as for all visualizations.

Authors' contributions
MTAS participated in the statistical analysis, preliminary
program development, and drafted the manuscript. MS
carried out the data mining and statistical analysis, devel-
oped computer tools, and drafted the manuscript. TOL
participated in data analysis and developed data mining,
analysis and visualization tools. MV conceived of the
study, participated in its design and coordination, and
drafted the manuscript. All authors read and approved the
final manuscript.

Additional material

Acknowledgements
Teemu Kivioja, Petteri Sintonen and Timo Tiirikka are thanked for spirited 
discussions and helpful comments. We gratefully acknowledge the financial 
support from the National Technology Agency of Finland and the Medical 
Research Fund of Tampere University Hospital.

References
1. Slonim DK: From patterns to pathways: gene expression data

analysis comes of age.  Nat Genet 2002, 32 Suppl:502-508.
2. Niehrs C, Pollet N: Synexpression groups in eukaryotes.  Nature

1999, 402:483-487.
3. Cohen BA, Mitra RD, Hughes JD, Church GM: A computational

analysis of whole-genome expression data reveals chromo-
somal domains of gene expression.  Nat Genet 2000, 26:183-186.

4. Caron H, van Schaik B, van der Mee M, Baas F, Riggins G, van Sluis P,
Hermus MC, van Asperen R, Boon K, Voute PA, Heisterkamp S, van

Additional File 1
CD3-stimulated T cells
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-6-215-S1.xls]

Additional File 2
CD3/CD28-costimulated T cells
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-6-215-S2.xls]

Additional File 3
B cells
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-6-215-S3.xls]

Additional File 4
Synchronized yeast cells
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-6-215-S4.xls]

Additional File 5
Drosophila life cycle dataset
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-6-215-S5.xls]
Page 16 of 18
(page number not for citation purposes)

http://www.biomedcentral.com/content/supplementary/1471-2105-6-215-S1.xls
http://www.biomedcentral.com/content/supplementary/1471-2105-6-215-S2.xls
http://www.biomedcentral.com/content/supplementary/1471-2105-6-215-S3.xls
http://www.biomedcentral.com/content/supplementary/1471-2105-6-215-S4.xls
http://www.biomedcentral.com/content/supplementary/1471-2105-6-215-S5.xls
http://www.cpan.org/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12454645
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12454645
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10591207
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11017073
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11017073
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11017073


BMC Bioinformatics 2005, 6:215 http://www.biomedcentral.com/1471-2105/6/215
Kampen A, Versteeg R: The human transcriptome map: clus-
tering of highly expressed genes in chromosomal domains.
Science 2001, 291:1289-1292.

5. Brazma A, Jonassen I, Vilo J, Ukkonen E: Predicting gene regula-
tory elements in silico on a genomic scale.  Genome Res 1998,
8:1202-1215.

6. Roth FP, Hughes JD, Estep PW, Church GM: Finding DNA regula-
tory motifs within unaligned noncoding sequences clustered
by whole-genome mRNA quantitation.  Nat Biotechnol 1998,
16:939-945 [http://www.nature.com/nbt/journal/v16/n10/pdf/
nbt1098-939.pdf].

7. Jansen R, Gerstein M: Analysis of the yeast transcriptome with
structural and functional categories: characterizing highly
expressed proteins.  Nucleic Acids Res 2000, 28:1481-1488.

8. Ollila J, Vihinen M: Microarray analysis of B-cell stimulation.
Vitam Horm 2002, 64:77-99.

9. Doniger SW, Salomonis N, Dahlquist KD, Vranizan K, Lawlor SC,
Conklin BR: MAPPFinder: using Gene Ontology and Gen-
MAPP to create a global gene-expression profile from
microarray data.  Genome Biol 2003, 4:R7.

10. Draghici S, Khatri P, Bhavsar P, Shah A, Krawetz SA, Tainsky MA:
Onto-Tools, the toolkit of the modern biologist: Onto-
Express, Onto-Compare, Onto-Design and Onto-Translate.
Nucleic Acids Res 2003, 31:3775-3781.

11. Zeeberg BR, Feng W, Wang G, Wang MD, Fojo AT, Sunshine M, Nar-
asimhan S, Kane DW, Reinhold WC, Lababidi S, Bussey KJ, Riss J, Bar-
rett JC, Weinstein JN: GoMiner: a resource for biological
interpretation of genomic and proteomic data.  Genome Biol
2003, 4:R28.

12. Ge H, Liu Z, Church GM, Vidal M: Correlation between tran-
scriptome and interactome mapping data from Saccharo-
myces cerevisiae.  Nat Genet 2001, 29:482-486.

13. Kemmeren P, van Berkum NL, Vilo J, Bijma T, Donders R, Brazma A,
Holstege FC: Protein interaction verification and functional
annotation by integrated analysis of genome-scale data.  Mol
Cell 2002, 9:1133-1143.

14. Fukuchi S, Nishikawa K: Protein surface amino acid composi-
tions distinctively differ between thermophilic and mes-
ophilic bacteria.  J Mol Biol 2001, 309:835-843.

15. Cedano J, Aloy P, Perez-Pons JA, Querol E: Relation between
amino acid composition and cellular location of proteins.  J
Mol Biol 1997, 266:594-600.

16. Drawid A, Jansen R, Gerstein M: Genome-wide analysis relating
expression level with protein subcellular localization.  Trends
Genet 2000, 16:426-430.

17. Hegyi H, Gerstein M: The relationship between protein struc-
ture and function: a comprehensive survey with application
to the yeast genome.  J Mol Biol 1999, 288:147-164.

18. Andrade MA, O'Donoghue SI, Rost B: Adaptation of protein sur-
faces to subcellular location.  J Mol Biol 1998, 276:517-525.

19. Tekaia F, Yeramian E, Dujon B: Amino acid composition of
genomes, lifestyles of organisms, and evolutionary trends: a
global picture with correspondence analysis.  Gene 2002,
297:51-60.

20. Diehn M, Alizadeh AA, Rando OJ, Liu CL, Stankunas K, Botstein D,
Crabtree GR, Brown PO: Genomic expression programs and
the integration of the CD28 costimulatory signal in T cell
activation.  Proc Natl Acad Sci U S A 2002, 99:11796-11801.

21. Ollila J, Vihinen M: Stimulation-induced gene expression in
Ramos B-cells.  Genes Immun 2003, 4:343-350.

22. Spellman PT, Sherlock G, Zhang MQ, Iyer VR, Anders K, Eisen MB,
Brown PO, Botstein D, Futcher B: Comprehensive identification
of cell cycle-regulated genes of the yeast Saccharomyces cer-
evisiae by microarray hybridization.  Mol Biol Cell 1998,
9:3273-3297.

23. Arbeitman MN, Furlong EE, Imam F, Johnson E, Null BH, Baker BS,
Krasnow MA, Scott MP, Davis RW, White KP: Gene expression
during the life cycle of Drosophila melanogaster.  Science 2002,
297:2270-2275.

24. Mustelin T, Tasken K: Positive and negative regulation of T-cell
activation through kinases and phosphatases.  Biochem J 2003,
371:15-27.

25. Viola A, Schroeder S, Sakakibara Y, Lanzavecchia A: T lymphocyte
costimulation mediated by reorganization of membrane
microdomains.  Science 1999, 283:680-682.

26. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM,
Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-
Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M,
Rubin GM, Sherlock G: Gene ontology: tool for the unification
of biology. The Gene Ontology Consortium.  Nat Genet 2000,
25:25-29.

27. Andreeva A, Howorth D, Brenner SE, Hubbard TJ, Chothia C, Murzin
AG: SCOP database in 2004: refinements integrate structure
and sequence family data.  Nucleic Acids Res 2004, 32 Database
issue:D226-9.

28. Akashi H, Gojobori T: Metabolic efficiency and amino acid
composition in the proteomes of Escherichia coli and Bacil-
lus subtilis.  Proc Natl Acad Sci U S A 2002, 99:3695-3700.

29. Greenbaum D, Jansen R, Gerstein M: Analysis of mRNA expres-
sion and protein abundance data: an approach for the com-
parison of the enrichment of features in the cellular
population of proteins and transcripts.  Bioinformatics 2002,
18:585-596.

30. Anderson L, Seilhamer J: A comparison of selected mRNA and
protein abundances in human liver.  Electrophoresis 1997,
18:533-537.

31. Gygi SP, Rochon Y, Franza BR, Aebersold R: Correlation between
protein and mRNA abundance in yeast.  Mol Cell Biol 1999,
19:1720-1730.

32. Nel AE: T-cell activation through the antigen receptor. Part
1: signaling components, signaling pathways, and signal inte-
gration at the T-cell antigen receptor synapse.  J Allergy Clin
Immunol 2002, 109:758-770.

33. Nel AE, Slaughter N: T-cell activation through the antigen
receptor. Part 2: role of signaling cascades in T-cell differen-
tiation, anergy, immune senescence, and development of
immunotherapy.  J Allergy Clin Immunol 2002, 109:901-915.

34. Cho RJ, Campbell MJ, Winzeler EA, Steinmetz L, Conway A, Wodicka
L, Wolfsberg TG, Gabrielian AE, Landsman D, Lockhart DJ, Davis
RW: A genome-wide transcriptional analysis of the mitotic
cell cycle.  Mol Cell 1998, 2:65-73.

35. Gerstein M, Jansen R: The current excitement in bioinformat-
ics-analysis of whole-genome expression data: how does it
relate to protein structure and function?  Curr Opin Struct Biol
2000, 10:574-584.

36. Ruse CI, Tan FL, Kinter M, Bond M: Intregrated analysis of the
human cardiac transcriptome, proteome and
phosphoproteome.  Proteomics 2004, 4:1505-1516.

37. McRedmond JP, Park SD, Reilly DF, Coppinger JA, Maguire PB, Shields
DC, Fitzgerald DJ: Integration of proteomics and genomics in
platelets: a profile of platelet proteins and platelet-specific
genes.  Mol Cell Proteomics 2004, 3:133-144.

38. Mijalski T, Harder A, Halder T, Kersten M, Horsch M, Strom TM,
Liebscher HV, Lottspeich F, de Angelis MH, Beckers J: Identification
of coexpressed gene clusters in a comparative analysis of
transcriptome and proteome in mouse tissues.  Proc Natl Acad
Sci U S A 2005, 102:8621-8626.

39. Ribeiro JM, Charlab R, Pham VM, Garfield M, Valenzuela JG: An
insight into the salivary transcriptome and proteome of the
adult female mosquito Culex pipiens quinquefasciatus.  Insect
Biochem Mol Biol 2004, 34:543-563.

40. Knight CG, Kassen R, Hebestreit H, Rainey PB: Global analysis of
predicted proteomes: functional adaptation of physical
properties.  Proc Natl Acad Sci U S A 2004, 101:8390-8395.

41. Benga G, Ferdinand W: Amino acid composition of rat and
human liver microsomes in normal and pathological
conditions.  Biosci Rep 1995, 15:111-116.

42. Forli L, Pedersen JI, Bjortuft, Vatn M, Kofstad J, Boe J: Serum amino
acids in relation to nutritional status, lung function and
energy intake in patients with advanced pulmonary disease.
Respir Med 2000, 94:868-874.

43. The FlyBase database of the Drosophila genome projects
and community literature.  Nucleic Acids Res 2003, 31:172-175.

44. Ikai A: Thermostability and aliphatic index of globular
proteins.  J Biochem (Tokyo) 1980, 88:1895-1898.

45. Fisher HF: A Limiting Law Relating the Size and Shape of Pro-
tein Molecules to Their Composition.  Proc Natl Acad Sci U S A
1964, 51:1285-1291.

46. Bigelow CC: On the average hydrophobicity of proteins and
the relation between it and protein structure.  J Theor Biol
1967, 16:187-211.
Page 17 of 18
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11181992
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11181992
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9847082
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9847082
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9788350
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9788350
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9788350
http://www.nature.com/nbt/journal/v16/n10/pdf/nbt1098-939.pdf
http://www.nature.com/nbt/journal/v16/n10/pdf/nbt1098-939.pdf
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10684945
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10684945
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10684945
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11898398
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12540299
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12540299
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12540299
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12824416
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12824416
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12702209
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12702209
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11694880
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11694880
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11694880
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12049748
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12049748
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11399062
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11399062
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11399062
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9067612
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9067612
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11050323
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11050323
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10329133
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10329133
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10329133
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9512720
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9512720
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12384285
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12384285
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12384285
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12195013
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12195013
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12195013
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12847549
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12847549
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9843569
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9843569
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9843569
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12351791
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12351791
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12485116
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12485116
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9924026
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9924026
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9924026
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10802651
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10802651
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14681400
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14681400
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11904428
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11904428
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11904428
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12016056
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12016056
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12016056
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9150937
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9150937
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10022859
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10022859
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11994696
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11994696
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11994696
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12063516
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12063516
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12063516
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9702192
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9702192
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11042457
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11042457
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11042457
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15188417
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15188417
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15188417
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14645502
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14645502
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14645502
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15939889
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15939889
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15939889
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15147756
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15147756
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15147756
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15150418
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15150418
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15150418
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7579035
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7579035
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7579035
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11001078
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11001078
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12519974
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12519974
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7462208
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7462208
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14215653
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14215653
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6048539
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6048539


BMC Bioinformatics 2005, 6:215 http://www.biomedcentral.com/1471-2105/6/215
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

47. Waugh DF: Protein-protein interactions.  Adv Protein Chem 1954,
9:325-437.

48. Kyte J, Doolittle RF: A simple method for displaying the hydro-
pathic character of a protein.  J Mol Biol 1982, 157:105-132.

49. Eisenberg D, Weiss RM, Terwilliger TC: The helical hydrophobic
moment: a measure of the amphiphilicity of a helix.  Nature
1982, 299:371-374.

50. Janin J: Surface and inside volumes in globular proteins.  Nature
1979, 277:491-492.

51. Hopp TP, Woods KR: Prediction of protein antigenic determi-
nants from amino acid sequences.  Proc Natl Acad Sci U S A 1981,
78:3824-3828.

52. Baumann G, Frommel C, Sander C: Polarity as a criterion in pro-
tein design.  Protein Eng 1989, 2:329-334.

53. Bachmair A, Finley D, Varshavsky A: In vivo half-life of a protein
is a function of its amino-terminal residue.  Science 1986,
234:179-186.

54. Vihinen M: Relationship of protein flexibility to
thermostability.  Protein Eng 1987, 1:477-480.

55. Vihinen M, Torkkila E, Riikonen P: Accuracy of protein flexibility
predictions.  Proteins 1994, 19:141-149.

56. Hua S, Sun Z: Support vector machine approach for protein
subcellular localization prediction.  Bioinformatics 2001,
17:721-728.

57. Krogh A, Larsson B, von Heijne G, Sonnhammer EL: Predicting
transmembrane protein topology with a hidden Markov
model: application to complete genomes.  J Mol Biol 2001,
305:567-580.

58. Maglott D, Ostell J, Pruitt KD, Tatusova T: Entrez Gene: gene-
centered information at NCBI.  Nucleic Acids Res 2005, 33:D54-8.

59. Gough J, Karplus K, Hughey R, Chothia C: Assignment of homol-
ogy to genome sequences using a library of hidden Markov
models that represent all proteins of known structure.  J Mol
Biol 2001, 313:903-919.

60. McClure MA, Smith C, Elton P: Parameterization studies for the
SAM and HMMER methods of hidden Markov model
generation.  Proc Int Conf Intell Syst Mol Biol 1996, 4:155-164.

61. Mulder NJ, Apweiler R, Attwood TK, Bairoch A, Barrell D, Bateman
A, Binns D, Biswas M, Bradley P, Bork P, Bucher P, Copley RR, Cour-
celle E, Das U, Durbin R, Falquet L, Fleischmann W, Griffiths-Jones S,
Haft D, Harte N, Hulo N, Kahn D, Kanapin A, Krestyaninova M,
Lopez R, Letunic I, Lonsdale D, Silventoinen V, Orchard SE, Pagni M,
Peyruc D, Ponting CP, Selengut JD, Servant F, Sigrist CJ, Vaughan R,
Zdobnov EM: The InterPro Database, 2003 brings increased
coverage and new features.  Nucleic Acids Res 2003, 31:315-318.
Page 18 of 18
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=13217921
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7108955
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7108955
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7110359
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7110359
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=763335
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6167991
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6167991
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2928295
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2928295
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3018930
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3018930
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3508295
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3508295
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8090708
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8090708
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11524373
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11524373
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11152613
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11152613
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11152613
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15608257
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15608257
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11697912
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11697912
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11697912
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8877515
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8877515
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8877515
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12520011
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12520011
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Results and discussion
	Time point-oriented analysis
	Correlation between transcriptome and proteomes
	T cell signaling
	Human B cell data analysis
	S. cerevisiae cell cycle data analysis
	D. melanogaster life cycle data analysis

	Conclusion
	Methods
	Data mining
	Sequence-derived variables
	Subcellular localization
	Gene ontology
	Structural description
	Correlation analysis
	Visualization
	Tools and software

	Authors' contributions
	Additional material
	Acknowledgements
	References

