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Abstract

We collected personal, dense, dynamic data for 108 individuals over 9 months, including whole 

genome sequence; clinical tests, metabolomes, proteomes and microbiomes at three time points; 

and daily activity tracking. Using these data we generated a correlation network and identified 

communities of related analytes that were associated with physiology and disease. We demonstrate 

how connectivity within these communities identified known and candidate biomarkers, e.g. 

gamma-glutamyltyrosine was densely interconnected with clinical analytes for cardiometabolic 

disease. We calculated polygenic scores from GWAS for 127 traits and diseases, and identified 

molecular correlates of polygenic risk, e.g. genetic risk for inflammatory bowel disease was 

negatively correlated with plasma cystine. Finally, behavioral coaching informed by personalized 

data helped participants improve clinical biomarkers. Personal, dense, dynamic data clouds will 

improve understanding of health and disease, especially for early transition states. This approach 

to “scientific wellness” represents an opportunity largely missing in contemporary health care.
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Introduction

In order to understand the basis of wellness and disease, we and others have pursued a 

global and holistic approach termed systems medicine1. The defining feature of systems 

medicine involves the collection of diverse longitudinal data for each individual that help to 

better decipher the immense complexity of human biology and disease—assessing both 

genetic and environmental determinants of health and their interactions. We refer to this 

collection of data as personal, dense, dynamic data clouds: personal, because each data 

cloud is unique to an individual; dense, because of the high number of measurements; and 

dynamic, because we monitor longitudinally. The convergence of advances in systems 

medicine, big data analysis, individual measurement devices, and consumer-activated social 

networks leads to a vision of healthcare that is predictive, preventive, personalized and 

participatory (P4)2. Such personal, dense, dynamic data clouds are needed to enable this 

vision and indeed underlie the essence of what Precision Medicine should be3. The U.S. 

healthcare system invests 97% of its resources on disease care4; accordingly, wellness and 

disease prevention have not been broadly explored to date. We believe this should change 

and give rise to the in-depth study of what we call scientific wellness, which is a quantitative 

data-informed approach to maintaining and improving health, as well as avoiding disease.

Several recent studies have illustrated the utility of multi-omic longitudinal data to look for 

signs of reversible early disease or disease risk factors in single individuals. David et al. 
characterized the dynamics of human gut and salivary microbiota in two individuals in 

response to travel abroad and enteric infection, using daily stool and saliva samples5. Chen 

et al. followed a single individual over a 14-month period using daily multi-omic data 

collection, identifying signatures of respiratory infection and the onset of type 2 diabetes6. 

Larry Smarr has tracked the progression of Crohn’s disease using regular blood and stool 

measurements over many years7. What is striking is that in essentially every personal 

trajectory followed we gain fascinating new insights into system dynamics.

We report here on the generation and analysis of personal, dense, dynamic data clouds for 

108 individuals over the course of a 9-month study that we call the Pioneer 100 Wellness 

Project (P100). Our study included the whole genome sequence; clinical tests, metabolomes, 

proteomes, and microbiomes at three-month intervals; and frequent activity measurements 

(i.e. wearing a Fitbit). This study takes a different approach from previous studies, in that a 

broad set of assays were measured at a fewer number of time points in a (comparatively) 

large number of people. Furthermore, we identified ‘actionable possibilities’ for each 

individual to enhance her/his health. Risk factors that we observed in participants’ clinical 

markers and genetics were used as a starting point to identify actionable possibilities for 

behavioral coaching. In this manuscript, we focus our analyses on the correlations across 

different data types and identify population-level changes in clinical markers. This project is 

the pilot for the 100,000 (100K) person wellness project that we proposed in 20148. At the 

end of the P100, we launched a consumer-facing scientific wellness company, Arivale, 

which implements a data collection and coaching model based on this pilot study. Through 

the Arivale program (over 95% have consented to research of de-identified data thus far), we 

are on track to reach our goal of 100,000 individuals by 2020 with the expectation to grow 

significantly beyond our initial goal in the years ahead. This scale of personal, dense, 
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dynamic data clouds holds the potential to ultimately revolutionize our understanding of 

scientific wellness and the early warning signs for human diseases.

Results

The P100 study had four objectives as listed in our original IRB: 1) Establish cost-efficient 

procedures for generating, storing and analyzing multiple sources of health data obtained 

over time from participants and analyzed in combination with genomic data; 2) Develop and 

deploy analytic tools for integrating these diverse datasets and deriving actionable 

information from their observed interrelationships; 3) Identify novel patterns within the 

streams of health data that indicate either wellness, or transitions between wellness and 

disease; 4) Learn how to best interface with and present longitudinal health information to 

individuals by studying the reactions and feedback from participants as they are presented 

actionable information.

Individuals in Washington state and California were informally identified as interested in the 

P100 via personal communication and social networks of the authors. These individuals 

were then sent a formal email announcement of the study from Leroy Hood with an 

invitation to join. Procedures for the P100 were run under the Western Institutional Review 

Board (IRB Protocol Number 20121979) at the Institute for Systems Biology (ISB). All 108 

participants gave written informed consent for analysis of their data.

Data collection in the P100

108 individuals (age 21–89+ years; 59% males, 41% females; 89% Caucasian; not recruited 

based on any specific phenotype) (see Supplementary Table 1) participated in an IRB-

approved study from April 2014 to January 2015. Health history and behavioral assessments 

were performed at the beginning of the study to establish a baseline for health coaching. 

Each individual had the genome sequenced in full. Blood was collected in clinics every three 

months. Additionally, participants completed at-home collections of saliva, stool, and first 

morning void urine every three months. Stool and saliva samples were shipped directly to 

the vendor by the participant, while urine was given back to the study coordinators for 

distribution to the proper sample vendor (Figure 1). We named each of these three collection 

periods “rounds”. For each successful participant in each round we carried out 218 clinical 

laboratory tests, measured up to 643 metabolites and 262 proteins, and measured the 

abundance of 4616 operational taxonomic units (OTUs) in the gut microbiome using 16S 

rRNA sequencing. We used the whole genome sequence to calculate 127 polygenic scores 

for disease risks and quantitative traits based on previous studies selected from the NHGRI 

GWAS catalog9. Three common CNVs were also included as genomic features, bringing the 

total to 130 (see Online Methods). All vendor measurements are listed in Supplementary 

Table 1. Participants were asked to record weight, blood pressure and resting heart rate 

weekly, and to track activity and sleep daily using a wearable device (Fitbit), although 

compliance with this quantified-self tracking was relatively low. While data were used 

throughout the study for coaching, all results presented in this paper were analyzed after the 

conclusion of the 9-month study using uniform standardized bioinformatics pipelines. See 

Online Methods for details of data collection, analysis, and source code. All raw data 
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collected as part of the P100 have been submitted to dbGaP with accession ID 

phs001363.v1.p1. Processed data are made available as part of the supplement to this paper.

Community structure in the correlation networks

We built two age- and sex-adjusted correlation networks based on Spearman correlations 

across our cohort of individuals (Figure 2 and Supplementary Figure 1). Cross-sectional 
correlations were calculated from mean measurements of analytes calculated using all three 

rounds (mean A is correlated with mean B across all individuals). Delta correlations were 

calculated on the change in analytes between rounds (the change in A between time points is 

correlated with the change in B across all individuals). In these networks, vertices (V) 

correspond to analytes, and an edge (E) exists between two vertices if and only if a 

significant (padj<0.05) correlation was observed after correction for multiple hypotheses10. 

The inter-omic cross-sectional correlation network contains 766 nodes and 3,470 edges. The 

majority of edges involved a metabolite (3,309) or a clinical laboratory test (3,366), with an 

additional 20 edges involving the 130 tested genetic traits, 46 with microbiome taxa or 

diversity score, and 207 with quantified proteins. The inter-omic delta correlation network 

contains 822 nodes and 2,406 edges. 375 of the edges in the delta correlation network are 

also present in the cross-sectional network. The cross-sectional correlation network is 

provided in Supplementary Table 2 (inter-omic only) and Supplementary Table 3 (full). The 

delta correlation network is provided in Supplementary Table 4 (inter-omic only) and 

Supplementary Table 5 (full)).

We identified clusters of related measurements from the cross-sectional inter-omic 

correlation network using community analysis, an unsupervised approach that iteratively 

prunes the network (removing the edges with the highest betweenness) to reveal densely 

interconnected subgraphs (communities)11. Seventy communities of at least two vertices 

(mean of 10.9 V and 34.9 E) were identified in the cross-sectional inter-omic network at the 

cutoff with maximum community modularity12 (Supplementary Figure 2), and are fully 

visualized as an interactive graph in Cytoscape13 (Supplementary File 1). 70% of the edges 

in the cross-sectional network remained after community edge pruning. The communities 

often represented a cluster of physiologically-related analytes, as described below.

The largest community (246 V; 1645 E) contains many clinical analytes associated with 

cardiometabolic health, such as C-peptide, triglycerides, insulin, HOMA-IR, fasting glucose, 

HDL cholesterol, and small LDL particle number (Figure 3). The four most connected 

clinical analytes by degree (the number of edges connecting a particular analyte) are C-

peptide (degree 99), insulin (88), HOMA-IR (88), and triglycerides (75). The four most 

connected proteins measured using targeted (SRM) mass spectrometry or Olink proximity 

extension assays by degree are leptin (18), C-reactive protein (15), fibroblast growth factor 

21 (FGF21) (14), and inhibin beta C chain (INHBC) (10). Leptin and C-reactive protein are 

indicators for cardiovascular risk14,15. FGF21 is positively correlated with the clinical 

analytes C-peptide (Spearman’s ρ=0.51; padj=3.1e-3), triglycerides (ρ=0.50; padj=3.3e-3), 

HOMA-IR (ρ=0.50; padj=3.6e-3), insulin (ρ=0.47; padj=9.0e-3), and small LDL particle 

number (ρ=0.42; padj=4.3e-3), and is a recently reported biomarker for cardiometabolic 

disorders16. INHBC, a member of the TGF-beta superfamily, is positively correlated with 
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the clinical analytes triglycerides (ρ=0.45; padj=3.0e-3), small LDL particle number (ρ=0.43; 

padj=6.8e-3), C-peptide (ρ=0.40; padj=1.8e-2), HOMA-IR (ρ=0.38; padj=3.4e-2), and insulin 

(ρ=0.38; padj=3.8e-2); it has not been reported to be a marker for cardiovascular risk and 

therefore represents an interesting candidate for follow-up. Serum amyloid P component 

(SAP) was positively correlated with LDL particle number (ρ=0.39; padj =1.8e-3). SAP is a 

universal constituent of amyloid deposits observed in Alzheimer’s disease17, and is 

associated with myocardial infarction18.

Total cholesterol and LDL cholesterol (LDL-C) segregate into a separate community from 

the cardiometabolic community (22 V; 48 E) with a broad array of plasma lipids (Figure 

4A). Thyroid hormone L-thyroxine is also present and is negatively correlated with total 

cholesterol levels (ρ=−0.44; padj=5.0e-4) as well as LDL cholesterol (ρ= −0.41; 

padj=2.1e-3). Hypothyroidism has long been recognized clinically as a cause of elevated 

cholesterol values19.

A community formed around plasma serotonin (18 V; 25 E) containing twelve proteins 

listed in Supplementary Table 6, for which the most significant enrichment identified in a 

STRING ontology analysis20 was platelet activation (padj=1.7e-3) (Figure 4B). Serotonin is 

known to induce platelet aggregation21; accordingly, selective serotonin reuptake inhibitors 

(SSRIs) may protect against myocardial infarction22.

We identified several communities containing microbiome taxa, suggesting that there are 

specific microbiome-analyte relationships. Hydrocinnamate, L-urobilin, and 5-

hydroxyhexanoate clustered with the bacterial class Mollicutes and family 

Christensenellaceae (8 V; 8 E). Another community emerged around the 

Verrucomicrobiaceae and Desulfovibrionaceae families and p-cresol-sulfate (7 V; 6 E). The 

Coriobacteriaceae and Mogibacteriaceae families were associated (12 V; 19 E) with 

phenylacetic acid, eicosadienoic acid, p-cresol-glucuronide, taurine, and 

phenylacetylglutamine. Phenylacetylglutamine, a known microbial metabolite23, was 

recently identified as a risk factor for mortality and cardiovascular disease in chronic kidney 

disease patients24. Finally, the bile acid cholate clusters with the Peptostreptococcaceae 

family (2 V; 1 E).

A community formed around microbiome α-diversity (8 V; 7 E), a measure of the number of 

OTUs observed and the evenness of their distributions; elevated diversity is generally 

thought to be associated with better health in part by ameliorating inflammation25. 

Microbiome α-diversity was negatively correlated with inflammatory and immune-related 

proteins, including interleukin-8 (IL-8), FMS-related tyrosine kinase 3 (FLT3LG), and 

macrophage colony-stimulating factor 1 (CSF1) (Figure 4C). In contrast, β-nerve growth 

factor (NGF) was positively correlated with microbiome α-diversity. An analysis using 

STRING20 on α-diversity community members revealed a significant enrichment in the 

KEGG pathway cytokine-cytokine receptor interaction (padj=1.1e-4); other pathway 

members have been implicated in the pathogenesis of inflammatory bowel disease.26
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Mining multi-omic communities for potential biomarkers

One highly interconnected metabolite in the cardiometabolic community, gamma-

glutamyltyrosine (degree 27), was significantly correlated with markers of cardiometabolic 

disease: glucose (ρ=0.41; padj=1.6e-3), HOMA-IR (ρ=0.38; padj=6.0e-3), and insulin 

(ρ=0.36; padj=9.7e-3), as well as triglycerides (ρ=0.41; padj=1.5e-3), small LDL particle 

number (ρ=0.35; padj =1.5e-2), and HDL cholesterol (ρ= −0.35; padj=1.6e-2). Gamma-

glutamyltyrosine is produced by the enzyme gamma-glutamyl transferase (GGT), a known 

biomarker of diabetes risk independent of BMI27,28. We carried out an ordinary least squares 

(OLS) regression with homeostatic risk assessment (HOMA-IR, a common marker for 

insulin resistance), as the dependent variable and GGT, gamma-glutamyltyrosine, age, sex, 

and BMI as the regressors (R2
adj=0.46) (Supplementary Table 7). In this model, gamma-

glutamyltyrosine has a more significant effect on HOMA-IR (p=4.3e-6) than does GGT 

(p=0.09). If this finding is confirmed in a larger number of unrelated samples, gamma-

glutamyltyrosine could be a candidate biomarker for diabetes risk independent of BMI.

Delta correlation network identifies changes over time

Thirty-three communities of at least two vertices (mean of 24.9 V and 59.2 E) were 

identified in the inter-omic delta correlation network at the cutoff with maximum community 

modularity12 (Supplementary File 2). 81% of the edges in the delta network remained after 

community edge pruning. This network contains many interesting relationships not found in 

the cross-sectional network. For example, changes in HDL cholesterol were positively 

correlated with changes in galanin (ρ=0.36; padj=4.8e-3), a neuropeptide hormone with 

many physiological functions, including therapeutic associations with diabetes and 

Alzheimer’s disease29. One of the delta communities (V=15; E=28) involved the omega-3 

fatty acids eicosapentaenoic acid and docosahexaenoic acid (DHA), as well as the clinical 

analyte omega-3 index. Also present in this delta community is the furan fatty acid 

metabolite 3-carboxy-4-methyl-5-propyl-2-furanpropanoate (CMPF). CMPF is elevated in 

the plasma of type 2 diabetes patients and directly implicated in β cell dysfunction30, and 

has previously been observed to increase in response to omega-3 fatty acid supplements in 

diabetic patients31.

Polygenic scores correlate with disease-risk analytes

Several edges in the cross-sectional network represented correlations between genetic traits 

and corresponding biomarkers already identified in published studies. For example, blood 

levels of dihomo-γ-linolenic acid (DGLA) in our study were strongly correlated (ρ=0.52; 

padj=1.8e-4) with a polygenic score computed from genotypes in 6 variants that were 

previously associated with DGLA levels32 (Figure 5A). We observed similar results for 

other omega-6 fatty acids including arachidonic acid, linoleic acid, and eicosadienoic acid as 

well as bilirubin, a marker of liver dysfunction (ρ=0.52; padj=2.3e-4)33 (Figure 5B). All 

tested associations with quantitative traits are presented in Supplementary Table 8.

Although GWAS studies that model quantitative traits are most directly applicable to the 

measurements made in our study, other edges in the network occurred between polygenic 

disease risk and specific analytes. For example, the genetic risk of inflammatory bowel 

disease (IBD) in Europeans has been associated with 110 SNVs26. In our cohort, the 
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polygenic score for IBD calculated from all 110 SNVs was significantly negatively 

correlated with plasma cystine, the disulfide form of cysteine (ρ= −0.46; padj=7.4e-3) 

(Figure 4D and 5C).

We computed a bladder cancer polygenic score for all of our participants from 9 SNVs 

previously associated with bladder cancer in a European cohort34. We identified an edge 

between this polygenic bladder cancer score and plasma levels of 5-acetylamino-6-

formylamino-3-methyluracil (AFMU), an acetylated metabolite of caffeine, in our cohort. 

(ρ=0.43; padj=1.9e-2). One variant is located downstream of the gene NAT2 for the enzyme 

N-acetyltransferase 2 responsible for acetylating carcinogenic compounds in urine. 

Polymorphisms in NAT2 are known to produce ‘fast’ and ‘slow’ acetylator phenotypes, of 

which the latter conveys higher risk for bladder cancer35 (Figure 4E and 5D).

Coaching and clinical lab improvements

In order to help participants modify their behavior and potentially improve their health 

throughout the 9-month period of this study, a behavioral coach talked participants through 

actionable possibilities from their data. Each month the coach worked with the participant 

and made recommendations for lifestyle changes with the aim of altering markers of known 

clinical significance and/or compensating for genetic predispositions (Figure 1 and 

Supplementary Figure 3). Specific coaching recommendations based on personal data were 

customized by the coach, in consultation with the study physician. These individual 

recommendations typically fell into one of several major categories: diet, exercise, stress 

management, dietary supplements, or physician referral. Coaching focused on four primary 

health areas: Cardiovascular, Diabetes, Inflammation, and Nutrition. The clinical tests used 

to quantify these health areas are provided in Supplementary Table 9. We used generalized 

estimating equations (GEE) to estimate the average population change in each clinical 

analyte by round while controlling for the effects of age, sex, and self-reported ancestry. 

Complete results are shown in Table 1 and Supplementary Table 10. The most significant 

improvements for those who began the study out-of-range were observed in vitamin D (+7.2 

ng/mL/round), mercury (−0.002 mcg/g/round), and HbA1c (−0.085 %/round). We observed 

consistent improvements in total cholesterol measured by both Quest and Genova (−6.4 

mg/dL/round and −5.4 mg/dL/round, respectively). LDL cholesterol, measured only with 

Genova, significantly decreased (−4.8 mg/dL/round), while HDL cholesterol significantly 

increased (+4.5 mg/dL/round). Other significant improvements were observed in other 

diabetes risk factors (fasting glucose, fasting insulin, and HOMA-IR), and inflammation 

(IL-8 and TNF-alpha). Lipoprotein fractionation, performed by both lab companies, 

produced significant but discordant results for LDL particle number.

During the introductory coaching call one participant, a 65-year old male, reported 

decreased mobility during hiking trips with his family and that his primary care physician 

had identified cartilage damage in his ankle. The baseline blood collection revealed that he 

had ferritin levels of 399 ng/mL, above the clinical reference range, and subsequent genetic 

analysis revealed he was homozygous for HFE C282Y, the primary genetic risk factor for 

hereditary hemochromatosis (HH). Given his reported ferritin levels and genetic risk factors, 

our clinical team referred him to a hematologist, who diagnosed HH and prescribed 
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therapeutic phlebotomy. At the next blood draw, ferritin levels had dropped to 175 ng/mL 

and remained normal throughout the remainder of the study (Supplementary Figure 4). HH 

leads to excessive accumulation of dietary iron in various tissues and can be associated with 

serious complications later in life, including cartilage damage, liver disease, diabetes, and 

cardiac decompensation. Post diagnosis, this individual’s primary care physician attributed 

his cartilage damage to early symptoms of HH. Six other males presented with high ferritin 

levels but neither of the common genetic risk factors; four of the six were of Asian ancestry, 

out of only six male Asians in our study. It has previously been observed that Asians and 

Pacific Islanders have the highest mean population levels of ferritin despite a very low 

prevalence of risk factors for hemochromatosis36. These individuals were referred to their 

physicians for monitoring.

Discussion

This paper focuses on four main findings from the P100 Wellness Project. First, thousands 

of statistically significant inter-omic correlations were computed using personal, dense, 

dynamic data clouds to identify many associations that could be followed up with 

perturbation experiments. Second, we partitioned the correlations into data communities, 

which placed biomarkers in context within biological networks. This in turn led to the 

identification of putative biomarkers such as gamma-glutamyltyrosine, which was highly 

interconnected with clinical analytes for cardiometabolic disease. Third, we identified 

molecular correlates of polygenic disease risk scores computed from published GWAS data, 

revealing possible ways in which genetic predisposition is manifested through analyte 

changes. Finally, on average participants significantly improved their clinical biomarkers 

(Table 1 and Supplementary Table 10) during the course of this pilot study (e.g. type 2 

diabetes and cardiovascular risk factors). These personal, dense, dynamic data clouds 

embody the essence of precision medicine3 and present possibilities for the discovery of 

important medical applications.

Data integration generated 3,470 significant (padj<0.05) cross-sectional correlations and 

2,406 significant delta (change over time) correlations after multiple hypothesis correction. 

Two known correlations point to the potential existence of therapeutically valuable 

relationships. First, our analysis identified FGF21 as a potential contributor to 

cardiometabolic health. Indeed, obese diabetic patients treated with an FGF21 analog have 

shown improvements in triglycerides and other cardiovascular markers37. Second, L-

thyroxine, through a negative correlation, was placed in a data community with cholesterol 

markers; supplementation with L-thyroxine lowered total cholesterol and LDL-C levels in 

patients with hypothyroidism in a clinical trial38. These two examples were identified from 

our data in an unsupervised manner.

A novel association we detected was for gamma-glutamyltyrosine, a metabolite of the 

enzyme biomarker gamma-glutamyl transferase (GGT). GGT is a clinical biomarker for 

liver disease, diabetes27,28, and cardiovascular disease risk39. GGT catalyzes the transfer of 

the gamma-glutamyl moiety of glutathione to a substrate, commonly another amino acid, 

producing gamma-glutamyl dipeptides40. One of these dipeptides, gamma-glutamyltyrosine, 

is highly interconnected within the cardiometabolic community and much more predictive of 
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HOMA-IR (insulin resistance) than GGT; so it may be a useful diagnostic marker for 

diabetes risk if these findings are replicated in an unrelated larger cohort. In clinical studies 

gamma-glutamyl dipeptides also discriminate different forms of liver disease41 and predict 

28-day mortality in intensive care unit patients42. These are just a few of our hundreds of 

community correlations that may provide deeper insights into known biology or reveal 

interesting biological associations.

We identified correlations between calculated polygenic scores derived from common 

GWAS variants and measured blood analytes. For several studies (see Supplementary Table 

8) we were able to independently validate the cumulative associations of these variants with 

the expected quantitative trait (e.g. DGLA, LDL cholesterol, or bilirubin) – a nice 

confirmation of the ability for these polygenic scores for quantitative traits to reproduce 

well. We also found new genetic trait/metabolite associations. For example, the polygenic 

score for IBD was significantly negatively correlated with levels of cystine in plasma across 

our cohort. In a case-control study of IBD patients with either Crohn’s disease or ulcerative 

colitis, plasma cystine and cysteine levels were abnormally low in affected individuals 

relative to controls, with the effect increasing with disease severity43. Decreased availability 

of the limiting substrate cystine suggests an impairment of glutathione synthesis in the 

intestine. Glutathione is an important intracellular antioxidant that is depleted in IBD 

inflammatory episodes, leading to excess reactive oxygen species (ROS) and subsequent 

colonic inflammation and oxidative damage. Although Sido et al. discuss cystine deficiency 

as an effect rather than a cause of IBD, our preliminary data suggest that lower levels of 

blood cystine may be more common in individuals at higher genetic risk for IBD before the 

disease ever manifests itself.

Specific genetic variants have been used to explain metabolite profiles using targeted 

variant-pathway interactions44. Our data suggest that GWAS polygenic scores can identify 

analyte associations with disease risk in a non-targeted manner (e.g. AFMU vs. bladder 

cancer) and in the absence of direct associations between GWAS loci and plausible 

metabolic pathways (e.g. cystine vs. IBD). It is possible that supplementation with cystine in 

healthy individuals with high IBD genetic risk could avoid the long-term low grade 

inflammation and oxidative damage—and thus avoid the wellness to disease transition to 

IBD. Such hypotheses could be tested in future studies.

Most (89%) of our study participants were of Caucasian ancestry, and most (87%) of the 127 

GWAS used as features for the correlation network were determined using European 

ancestry populations (Supplementary Table 1). We are currently evaluating approaches to 

control for ancestry of individuals in the computation of polygenic scores. This study was 

constrained to a small population of individuals living primarily in Seattle and northern 

California, but as we expand to other geographic areas our population diversity will increase. 

PCA plots of the population distribution of the P100 participants are shown in 

Supplementary Figure 5 and Supplementary Figure 6.

While we did provide activity trackers (Fitbits) to our participants with the goal of 

measuring activity and sleep, we observed only modest compliance. We required a minimum 

of 40 days of Fitbit usage in order to estimate the average activity for each participant; 64% 
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of the participants met this criterion. We included mean activity calories as a feature in our 

correlation network, but did not observe any statistically significant correlations with this 

feature. We observed even lower compliance with sleep tracking (see Online Methods).

The opportunities for observing health transitions in a cohort of 108 individuals over 9 

months are limited. For this reason, we are extending this pilot program to very large 

populations45. The main vehicle for obtaining these data will be through Arivale, an Institute 

for Systems Biology spin-out company that plans to scale to more than 100,000 individuals 

by 2020. For those who sign up for Arivale and consent for their data to be used 

anonymously for research (over 95% have agreed thus far), these de-identified data are 

shared with ISB by partnership and can be used for scientific discovery to improve 

understanding in biology and medicine. Critically, it is via individuals being willing to share 

their data that we best learn how to interpret it, and this is what maximizes the value back to 

each individual as well.

The broad nature of such a study as the P100 necessarily includes limitations. First, we 

didn’t follow a randomized clinical trial design: none of the participants were denied 

wellness coaching or access to personal data. While this makes statistical analysis more 

difficult, such models need to be built to learn from data in the real world where these kinds 

of approaches are going to scale very large—and individuals will expect to get best practices 

in every case. Such approaches are very relevant to major efforts such as those aimed at 

translating ‘omics-based data and building a learning healthcare system, as recently 

advocated by the U.S. National Academy of Medicine46. Second, while we demonstrate the 

usefulness of our initial correlation-based strategy, we recognize its limitations. Even after 

stringent multiple hypothesis correction, false discoveries are statistically inevitable. 

Nonetheless, many of our strongest associations recapitulated known biology, while the rest 

represent incipient hypotheses for follow-up studies. Conversely, in the face of human 

biological complexity no doubt many important interactions are obscured or missed entirely 

using this approach.

With a larger cohort we expect to be able to observe transitions from wellness to disease for 

many common diseases, as well as transitions to improved health. Analyses of these 

longitudinal data should enable the identification of network perturbations that result in 

common diseases, the design of diagnostics to detect early disease transitions, and the 

development of drugs and other interventions to reverse disease at its very earliest state. 

Personal, dense, dynamic data clouds will place on a solid foundation the emerging field of 

scientific wellness, drive the predictive, preventative, personalized, and participatory (P4) 

medicine of the 21st century, and they are the essence of what Precision Medicine should be.

Online Methods

Procedures for the P100 were run under the Western Institutional Review Board (IRB 

Protocol Number 20121979) at the Institute for Systems Biology (ISB). All 108 participants 

gave written informed consent. See Supplementary Figure 3 for a flowchart on recruitment/

dropout and important events in the P100. At three time points throughout the study blood 

and urine samples from each participant were collected and processed using the procedures 
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outlined by Genova Diagnostics and Quest Diagnostics and couriered to the testing facilities 

to maintain maximum sample stability.

Additional whole blood and plasma samples were collected from participants and shipped to 

BioStorage Technologies, an international CAP-accredited biorepository. Additional 

samples were used for metabolomics (Metabolon), SRM proteomics (ISB), Proseek 

Multiplex protein panels (Olink), and whole genome sequencing (Complete Genomics and 

the New York Genome Center). Participants collected stool samples at home for 16S rRNA 

sequencing (Second Genome), and were asked to provide daily activity and sleep data using 

personal monitoring devices (Fitbit).

Participants were asked to fast for 12 hours before all blood collections. We observed a 

99.3% compliance rate in fasting. Participants were asked by the phlebotomist to confirm 

compliance with the 12-hour fast before each blood draw, and this was recorded on the 

requisition document. The P100 project manager sent out reminder emails prior to each 

blood draw period (‘round’) with instructions on how long to fast. Our clinical team 

reviewed the clinical data from each blood draw prior to its use in coaching.

Clinical Laboratory Tests

For Genova, a total of one urine tube and nine blood tubes were collected. The blood tubes 

consisted of two Na-Heparin Trace Element tubes, three SST tubes, three EDTA purple top 

tubes, and one NMR black-top LipoTube. First morning void urine was collected in the 

Genova-provided green-top tube by participants the morning of their blood draw. Urine was 

sent frozen to Genova. Both Na-Heparin tubes were spun for 15 minutes at 3000rpm. The 

plasma from one Na-Heparin tubes was transferred to a blue-top preservative tube provided 

by Genova and shaken and spun for 5 minutes at 2500rpm. Supernatant was then transferred 

to the yellow top transfer tube provided by Genova and shipped frozen. Plasma from the 

second Na-Heparin was transferred to an amber top transfer tube and shipped frozen. Each 

SST tube was left to clot for 15 minutes then spun for 15 minutes at 3000rpm. The plasma 

for all three was pipetted to transfer tubes and shipped frozen. All three EDTA-lavender top 

tubes were refrigerated after collection and shipped refrigerated. The single NMR black-top 

LipoTube was clotted for 30 minutes then spun for 15 minutes at 3000rpm. The specimen 

was left in the tube and shipped refrigerated.

Each saliva collection consisted of four samples within a single day (four-point cortisol test). 

For collection of the four saliva samples, participants were instructed to abstain from eating 

or drinking 30 minutes prior to each collection. All participants were given the following 

collection times for each of their four samples: Sample 1: Collect before breakfast, between 

7am – 9am and one hour after waking up. Sample 2: Collect before lunch, between 11am – 

1pm. Sample 3: Collect before dinner, between 3pm – 5pm. Sample 4: Collect before 

bedtime, between 10 pm–12am. All samples were frozen overnight after collection and 

shipped directly to Genova.

Two SST tubes were collected for Quest Diagnostics. After collection the two tubes were 

left to clot for 15 minutes and then spun for 15 minutes at 3000rpm. Samples were left in the 

tube and shipped at ambient temperature.
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All clinical labs measured using both vendors are listed in Supplementary Table 1.

Whole Genome Sequencing

Participant whole blood samples were submitted to either Complete Genomics Inc. (41 

participants) or the New York Genome Center (67 participants) for whole genome 

sequencing (WGS). Complete Genomics conducted the whole genome sequencing using 

their standard complete sequencing platform employing high-density DNA nanoarrays 

populated with DNA nanoballs for 40X average coverage. The New York Genome Center 

used Illumina’s 2x150bp HiSeq X technology for 30X average coverage, using TruSeq kits 

for library prep. Both vendors aligned sequenced reads to human reference sequence 

GRCh37/hg19. NYGC used BWA v0.7.8-r455.

Complete Genomics provided a vcfBeta file for each sequenced sample calculated with 

CGAPipeline v2.5.0.20. NYGC provided a VCF4.1 file for each sequenced sample 

calculated with GATK HaplotypeCaller, following duplicate marking with Picard v1.83, and 

indel realignment and base quality recalibration. GATK v3.1.1-g07a4bf8 was used for BAM 

file post-processing and variant calling. Only variants with a FILTER value of PASS were 

used in downstream analyses for both CGI and Illumina data. Copy number variant status 

was determined using Reference Coverage Profiles47. Variant frequencies were annotated 

using Kaviar48. For comparison of the two technologies, we used monozygotic twins 

sequenced using separate technologies. We observed 99.12% concordance in variant calls 

across technologies in 6601 distinct loci from the GWAS catalog, while 0.21% were fully 

observed and discordant. Supplementary Table 11 lists the full statistics of this comparison.

Gut Microbiome 16S rRNA Sequencing

Gut microbiome data in the form of 16S OTU (Operational Taxonomic Unit) read counts 

were provided by Second Genome. 250bp paired end MiSeq profiling of the 16S v4 region 

was performed as described previously49, with 50,000–150,000 reads generated per sample. 

16S sequence clustering and open reference OTU picking50 were performed using 

USEARCH with a proprietary strain database. Each OTU was then represented as a fraction 

of an individual’s total microbiome composition. These OTU proportions were placed in a 

vendor-provided taxonomy and aggregated at the kingdom, phylum, class, order, family, 

genus, and species levels (Supplementary Table 1 and Supplementary Table 12). α-

diversity51, a measure of the number of OTUs observed as well as the evenness of their 

distributions, was calculated as the within-sample Shannon diversity index:

where pij is the relative abundance of OTU i in sample j.

Second Genome performed our microbiome OTU picking using their proprietary strain 

database. Many microbiome studies are performed using OTU picking against the publicly 

available Greengenes database, but Second Genome recommended that we use their curated 

database. Their database is specifically customized for microbes that exist in the human gut, 
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whereas the Greengenes database spans a broad range of microbes, for example soil and 

water microbes and those found in other organisms. The proprietary strain database used for 

microbiome analyses can be downloaded using the following URL:

http://secondgenome.com/solutions/resources/data-analysis-tools/strain-select/

We used β-diversity to assess the degree to which each participant’s microbiome 

composition resembled itself over time (Supplementary Figure 7). In nearly all cases, 

individuals’ microbiome composition was more similar to their previous sample than to 

other individuals. For these inter-individual comparisons, representative sequences were 

aligned using PyNAST 1.2.252 via QIIME 1.9.153 with the Greengenes54 85% OTU 

representative sequences as a template. The alignment was filtered to remove high entropy 

positions using the Lane mask55. A phylogeny was reconstructed using FastTree 2.1.7. 

Unweighted UniFrac distances56–58 were computed on the table using QIIME. scikit-bio 

0.2.3 (http://scikit-bio.org) was used in a custom Jupyter Notebook59 with matplotlib60 and 

seaborn to process the distance matrix. Specifically, for each sample, the distance between it 

and the participant’s successive time point was determined (the red points in Supplementary 

Figure 7). All the distances from that sample to all other samples at the successive time point 

were then retrieved (the box-whisker plots in Supplementary Figure 7). Subsequent statistics 

were computed using SciPy 0.17.0.

Metabolomics

Metabolon Inc. conducted the metabolomics assays on participant plasma samples at three 

time points for each participant throughout the course of the study. Metabolon Inc. generated 

the data using their DiscoveryHD4 platform in addition to their Fatty Acid Metabolism 

(FAME) panel that use a combination of ultra-high-performance liquid chromatography with 

tandem mass spectrometry (MS) and gas chromatography (GC) in the identification of 

metabolites and fatty acids. The metabolite values were reported relative to their 

concentrations among all participants, except for lipids that were measured via GC-FID, 

which were reported as molar percentages of each participant’s total fatty acids. For 

analysis, the metabolomics data was median scaled, such that the median value for each 

metabolite was one and values that fell beneath the range of detection were imputed to be 

the minimum observed value. This scaling was performed across all samples. All time points 

were run as a single batch. Counts of metabolites detected using each technology are listed 

in Supplementary Table 13. See Supplementary Table 1 for all metabolites detected.

Olink Proximity Extension Assays

Protein levels in plasma were determined by Proximity Extension Assays using two Olink 

(Uppsala, Sweden) Proseek Multiplex 96×96 kits and quantified by real-time PCR using the 

Fluidigm (South San Francisco, California) BioMark HD system. Each kit provides a 

microtitre plate for measuring 92 protein biomarkers in 90 samples. Each well contains 96 

pairs of DNA-labeled antibody probes. When a matched pair of probes bind to their target 

protein, their DNA labels are brought into close proximity and a PCR target sequence is 

formed by a proximity-dependent DNA polymerization. One plate contains 96 wells for 

processing 90 samples, 3 positive controls, and 3 negative controls to determine the lower 

detection limit. Each sample is also spiked with four controls to monitor variation in the 
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three steps of the PEA process. Two non-human antigens serve as incubation controls, one 

DNA-labeled antibody serves as an extension control, and an oligonucleotide serves as a 

detection control.

The Proseek cardiovascular (CVD I) and inflammation (Inflammation I) panels target 158 

different proteins with 19 overlapping measurements. Plasma samples from 80 subjects 

drawn at three intervals were assayed. One sample was assayed in triplicate on all plates and 

additional samples were replicated for a total of 270 multiplex cardiovascular and 270 

multiplex inflammation assays. A total of 41,085 data points were collected. Assays were 

run according to the manufacturer’s instructions. In short, 1 μl of each sample was incubated 

with the antibody probes at 4°C overnight. After binding, the extension mix was added and 

the products were extended and amplified using 17 cycles of PCR (Applied Biosystems 

9700, Life Technologies, Carlsbad, California). Next, 2.8 μl of each PCR product was added 

to the detection mix and loaded into the sample wells of a Fluidigm 96.96 Dynamic Array 

plate (Fluidigm Corporation) while kit primers were loaded into the primer wells. The 

Dynamic Array was primed in a Fluidigm HX IFC controller and then loaded into the 

Fluidigm Biomark imaging thermocycler for quantitative PCR. Quantification cycle (Cq) 

values for each measurement were determined using Fluidigm’s Real-Time PCR Analysis 

software and BiomarkDataCollection version 4.1.3. Data was normalized using the 

extension positive control and the negative control Cq values. The limit of detection was 

defined as three times the standard deviation of the negative controls. See Supplementary 

Table 1 for all proteins detected using Olink proximity extension assays.

Selected Reaction Monitoring (SRM) Analysis

SRM Assay and Method Development—SRM assays were developed for 200 peptides 

representing 100 proteins. See Supplementary Table 1 for all SRM peptides. For each 

peptide sequence the heavy isotope labeled analogue was synthesized (PEPotec SRM library 

Grade 1, Thermo-Fisher Scientific, Huntsville, AL) with cysteine residues 

carbamidomethylated and the C-terminal arginine as R[13C6, 15N4] or lysine as K[13C6, 

15N2] to allow for relative quantification. The 200 synthetic peptides were individually 

analyzed on a 6530 accurate-mass Q-TOF liquid chromatography mass spectrometry (LC-

MS) system (Agilent Technologies, Santa Clara, CA) using a ProtID-Chip-150 (II) (Agilent 

Technologies, Santa Clara, CA) to verify and confirm successful peptide synthesis. The 200 

peptides were pooled as internal standard. Multiplexed SRM assays were established with 

the human SRMAtlas61 (www.srmatlas.org) and the synthetic peptides on a 6460 QQQ MS 

system equipped with Jet Stream ESI technology and a 1290 Series UHPLC (Agilent 

Technologies, Santa Clara, CA). SRM assays were optimized with regard to sensitivity and 

specificity, and with the aim to target 200 peptides in a single analysis. 1200 transitions were 

determined, 3 transitions to target each light endogenous peptide and 3 transitions to target 

each isotope labeled heavy peptide, and peptides separated on a reversed phase column 

(Zorbax SB-C18, 50mm x 2.1 mm I.D., 1.8 μm dp, Agilent Technologies, Santa Clara, CA) 

using a gradient from 3% to 30.5% acetonitrile / 0.1% formic acid / water over 55 min at a 

flow rate of 0.2 mL/min. Data were acquired in dynamic MRM mode with a fixed cycle time 

of 2500 ms and a minimum dwell time of 10 ms.
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Plasma Sample Preparation—Plasma samples were thawed on ice and centrifuged for 

10 min at 14,000 rpm to separate tissue debris or a lipid layer. 110 μL plasma were depleted 

from the 14 most abundant plasma proteins using the multiple affinity removal system 

(MARS Hu-14, 4.6x100 mm, Agilent Technologies, Santa Clara, CA) according to the 

manufacturer’s protocol. The depleted fraction was collected in 1.25 mL of MARS14 Buffer 

A and denatured by adding 600 mg urea to 8 M final concentration. Samples were reduced 

with 5 mM dithiothreitol for 30 min at 55°C, alkylated with 14 mM iodoacetamide for 30 

min at room temperature in darkness and desalted using a GE HiPrep 26/10 column (GE 

HealthCare Life Sciences, Pittsburgh, PA) and 1200 HPLC system (Agilent Technologies, 

Santa Clara, CA). The protein concentration of the desalted samples was determined by 

bicinchoninic acid assay (BCA) (Thermo-Fisher Scientific, San Jose, CA). An aliquot of the 

pooled 200 synthetic peptides was spiked into an aliquot of each plasma sample (equal 

protein amounts) prior to the digestions with trypsin (Promega, Madison, WI) at 1:50 

enzyme:substrate ratio for 16 h at 37°C. Digests were dried under centrifugal vacuum 

evaporation (Savant, Thermo-Fisher Scientific, San Jose, CA) and reconstituted to 1 μg/μL 

protein concentration.

Plasma Sample Analysis—20 μg of each plasma sample spiked with the 200 isotope 

labeled peptides was subjected to SRM analysis using the method described above. SRM 

data were analyzed with Skyline62. SRM traces were integrated with default settings and 

manual inspected to verify correct peak assignment and co-elution of endogenous and 

isotope labeled standard peptides. The relative peptide abundance level was reported as ratio 

of endogenous light to the heavy standard.

Quantified Self Tracking

Participants were asked to wear a Fitbit activity tracker throughout the 9-month study. 

Participants were offered either a Fitbit Flex (wrist) or a Fitbit One (clip-on). These Fitbit 

models measure activity using the number of steps an individual takes each day. The models 

available at the time of the study did not measure heart rate, as current models do, resulting 

in inconsistent activity measurements for e.g., running vs. cycling. Furthermore, the devices 

required manual entry and exit of ‘sleep mode’ for sleep tracking, for which compliance was 

too low to provide useful data. We required a minimum of 40 days of Fitbit usage in order to 

estimate the average activity for each participant; 64% of the participants met this criterion. 

The Fitbit device estimates user-specific ‘activity calories’ independently of basal metabolic 

rate (BMR). For all calculations, we used only the estimated ‘activity calories’, excluding 

BMR. We used these data only as a relative indicator of activity levels rather than an 

absolute measure of caloric burn.

Genomic traits

The National Human Genome Research Institute’s GWAS catalog lists results from more 

than 2000 published studies comprising over 1000 genetic traits9. We applied a strict 

filtering procedure to identify GWAS used for this study. First, we excluded studies which 

did not contain at least one SNV with p<1.0e-8. Studies which contain few SNVs are likely 

to produce a vector of cumulative genetic variation with low entropy, where almost all 

values are identical save a few. Such low entropy measurements are more likely to produce 
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spurious correlations in our relatively small number of samples. We therefore excluded all 

traits associated with five or fewer SNVs. Furthermore, we required studies to have a sample 

size of at least 5000 individuals. In the event that multiple studies examined the same trait, 

we kept the study with the largest sample size. Finally, we manually excluded traits with too-

generic descriptions (e.g. ‘common traits’ or ‘metabolic traits’), which did not provide a 

useful description of the purpose of the original study. The combination of these filters 

retained 127 genetic traits that we used for further analysis. Three common CNVs were 

included as additional genetic features computed using Reference Coverage Profiles47, 

bringing the total to 130. See Supplementary Table 1 for all genetic traits computed for this 

manuscript.

Included in the GWAS catalog are the beta-coefficients/odds ratios as well as the p-values 

for the predicted effect of each variant for that trait based on the association models from the 

original paper. We made two assumptions to simplify the calculation of the polygenic scores. 

First, we assumed that the beta-coefficients (or log odds ratios) combined in an additive 

manner based on the number of effect alleles present in each individual. Therefore, if a 

single effect allele were present we added the beta-coefficient for that variant into the 

cumulative polygenic score. If two copies of the effect allele were present we added twice 

the value of the beta-coefficient into the cumulative genetic effect for that individual. The 

second assumption was that the effects of each variant are independent of the effects of all 

other variants used in the model. In other words, the values of all interaction terms are zero. 

These two simplifying assumptions allowed us to calculate the polygenic score for each trait 

across each individual in our study.

There are a number of pitfalls to this approach that served to temper our expectations. First, 

GWAS only identify variants that occur commonly enough in the population to be associated 

statistically with a trait. Unless one is able to genotype a substantial fraction of the human 

population at risk for a particular trait, many rare variants will never rise above the level of 

noise in a GWAS. Furthermore, because they employ genotyping chips most GWAS ignore 

copy number variations (CNVs) or structural variations (SVs) that may have a significant 

effect on genetic traits. We included as part of our study three common CNVs as additional 

genomic features. Finally, many GWAS are applied to cohorts of individuals from similar 

ancestries to improve their likelihood of discovering associated variants; it is therefore 

possible that results from these studies do not generalize to individuals from differing 

ancestral populations.

There are other analysis options available for WGS data that would be appropriate for 

subsequent studies with an ‘N of 1’ focus. For example, one could perform rare or de novo 
variant analysis, which identify genetic variants that are either very rare in the population or 

unique to an individual, respectively. GWAS focus on variants which are common enough in 

the population to find significant associations with quantitative traits or diseases. The 

interpretation of rare and de novo variants can be difficult, as each variant must be 

interpreted in the context of functional impact. Sequencing and phenotyping relatives (e.g. 

family-based analysis) is a method to assist in interpreting the functional impact of de novo 
variants. Another possible analysis technique for WGS data is burden analysis, which 
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calculates a cumulative burden score on each gene and attempts to associate these scores 

with phenotypes.

Coaching, charting, and compliance tracking

The P100 was designed as a prospective study that attempted to help participants modify 

their behavior to enhance their health throughout the 9-month period. Participants were 

assigned to a behavioral coach, who walked them through actionable possibilities from their 

data and made recommendations on lifestyle changes. These lifestyle changes were 

recommended in an attempt to alter markers of known clinical significance and/or 

compensate for genetic predispositions for which reliable published evidence is available. 

Each participant was eligible for one 30-minute coaching session per month, though 

participants were not penalized or excluded from the study if they chose not to participate in 

the coaching sessions. Participants were also able to communicate privately and securely 

with the coach via a website portal created specifically for this project. Participants also 

received their data through the website portal. The P100 collected statistics on participation 

in the coaching calls and compliance with sample collection.

As previously stated, clients were offered specific coaching recommendations based on their 

genetics and clinically actionable data. These recommendations were customized prior to 

each call by the study clinician and coach, in consultation with the study physician. All 

clinical markers and recommendations were reviewed and approved by the study physician 

prior to their communication to each participant. While these recommendations were 

specific to each individual based on their data, they typically fell into one of several major 

categories, including diet, exercise, stress management, dietary supplements, or physician 

referral. Coaching focused on four primary health areas: Cardiovascular, Diabetes, 

Inflammation, and Nutrition. The clinical tests we used to quantify these health areas are 

provided in Supplementary Table 9. We used generalized estimating equations (GEE) to 

estimate the average change for each clinical lab by round while controlling for the effects of 

age, sex, and self-reported ancestry. Coefficients, 95% confidence intervals, and p-values for 

all participants as well as those who began the study out-of-range are listed in 

Supplementary Table 10. See also Table 1.

Action items were recorded in each participant’s chart by our behavioral coach during each 

coaching call. These charts were used to keep participants on track and follow standard 

clinical practice guidelines. Post-study we reviewed each de-identified chart in detail with 

our behavioral coach to extract compliance data for each recommendation. We learned a 

great deal about how to merge standard clinical practice (e.g. charting in free-text fields, as 

practiced by clinicians) with the need for automated database storage of pre-defined and 

enumerated recommendations. Subsequent studies will investigate specific effects of 

recommendations and compliance on clinical data as well as other omics data with far larger 

N

Data preprocessing

Each dataset was transformed into comparable data vectors for statistical analysis. All 

measurements were mean centered and scaled by the standard deviations of the observed 
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measurements. The microbiome measurements were compared independently at the phylum, 

class, order and family taxonomic levels. With the exception of the median-scaled 

metabolomics data, missing data were not imputed; participants that had a missing value 

were dropped from pairwise comparisons utilizing that value. Each analyte was age- and/or 

sex-corrected if a trimmed mean robust regression identified a significant relationship 

(p<0.01, unadjusted) between age and/or sex and the dependent variable. Age and sex 

correction were performed independently, so it was possible for an analyte to be age 

corrected but not sex corrected, and vice versa. If an analyte was corrected the residuals of 

the model were used in place of the original observations. If no corrections were made, the 

original mean centered and scaled measurements were used. See Supplemental Table 14 for 

statistics on age and sex correction.

Correlation network and community analysis

We created two different types of correlation networks: ‘cross-sectional’ and ‘delta’ 

correlations. Cross-sectional correlations were calculated from mean measurements of 

analytes calculated across all rounds (i.e. mean A is correlated with mean B across all 

individuals). Delta correlations were calculated on the change in analytes between rounds 

(i.e. the change in A for an individual between time points is correlated with the change in 
B, where the correlation is again calculated across all individuals). We used each pair of 

adjacent time points (r2–r1) and (r3–r2) to build the delta correlation network, where all such 

comparisons were used in the two vectors that were being compared. Therefore, each 

individual with three observations is represented twice for each calculated delta correlation. 

For example, while the cross-sectional correlation network was created by correlating 

vectors of maximum length N=108, the delta correlation network was created by correlating 

vectors of maximum length N=216. Our reasoning is that each pair of adjacent time points is 

an independent observation of a potential correlation in time, even though they are not 

drawn from a completely independent set of individuals. For each pairwise set of data (e.g. 

clinical tests vs. proteomics, clinical tests vs. metabolomics, etc.), each measurement from 

the first dataset was correlated with every measurement from the second dataset using 

Spearman’s ρ. P-values were adjusted for multiple hypothesis testing using the method of 

Benjamini and Hochberg10; we chose an adjusted p-value (padj) cutoff of 0.05 as our 

significance level. Only inter-omic correlations were used for community analysis. Both 

inter-omic and intra-omic (e.g. metabolomics vs. metabolomics) cross-sectional and delta 

correlations are reported in Supplementary Table 2, Supplementary Table 3, Supplementary 

Table 4, and Supplementary Table 5 and visualized in Figure 2 and Supplementary Figure 1. 

We assessed reproducibility of duplicate measurements across two clinical laboratories 

(Supplementary Figure 8). As correlations between repeat measurements do not represent 

physiologically relevant information, they are not included in our network or subsequent 

analysis.

We performed community analysis using the method of Girvan and Newman 11. This 

method involves iteratively calculating edge betweenness centrality on a network: the 

number of weighted shortest paths from all vertices to all other vertices that pass over that 

edge. After each iteration, the edge(s) with the highest betweenness centrality were removed 
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and the process was repeated until only individual nodes remain. All communities can also 

be dynamically visualized in Cytoscape13 (Supplementary File 1 and Supplementary File 2).

Community analysis forms a dendrogram that can be analyzed at multiple hierarchical 

levels. For this manuscript we analyzed our network at a cut level determined using an 

unbiased method, the modularity of the community structure12. Briefly, modularity of 

community structure corresponds to an arrangement of edges which is statistically 

improbable when compared to an equivalent network with edges placed at random. At every 

iteration of the community analysis, we computed the modularity, and analyzed the 

communities at the iteration which maximized this quantity. A visualization of community 

modularity vs. iteration is shown in Supplementary Figure 2.

OLS Regression Tests

To test for heteroscedasticity in our HOMA-IR regression model, we fit the model using 

White’s heteroscedasticity-consistent estimator (HCE), and the results were consistent with 

those reported in the manuscript: gamma-glutamyltyrosine was still significantly more 

predictive (p=2.3e-4) of HOMA-IR than GGT (p=0.02). To test for the effects of outliers, we 

fit a robust regression model and again the results were consistent with those reported in the 

manuscript. To test for multicollinearity, we calculated the variance inflation factors (VIF) 

for each predictor. The maximum VIF was 1.7, indicating a low amount of correlation 

between the predictors of the model.

Statistical Analyses

All data types used in the cross-sectional and delta correlation networks were normalized as 

described in their respective method sections. Additionally, where we were able to identify a 

significant effect (p<0.01, unadjusted) with age and/or sex using trimmed mean robust 

regression we used the residuals as the comparison value. These adjustments were 

performed independently for age and sex. We report the calculated p-values for age and sex 

with every variable, as well as whether the variable was age and/or sex adjusted in 

Supplementary Table 14. All transformations were performed with the Python Statsmodels 

package (v0.6) with robust linear models using the trimmed mean norm. Unadjusted 

analytes were compared using the original mean centered and scaled measurements.

We created two different types of correlation networks: ‘cross-sectional’ and ‘delta’ 

correlations. Cross-sectional correlations were calculated from mean measurements of 

analytes calculated across all rounds (i.e. mean A is correlated with mean B across all 

individuals). Delta correlations were calculated on the change in analytes between rounds 

(i.e. the change in A for an individual between time points is correlated with the change in 
B, where the correlation is again calculated across all individuals). We used each pair of 

adjacent time points (r2–r1) and (r3–r2) to build the delta correlation network, where all such 

comparisons were used in the two vectors that were being compared. Therefore, each 

individual with three observations is represented twice for each calculated delta correlation. 

For example, while the cross-sectional correlation network was created by correlating 

vectors of maximum length N=108, the delta correlation network was created by correlating 

vectors of maximum length N=216. For each pairwise set of data (e.g. clinical tests vs. 
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proteomics, clinical tests vs. metabolomics, etc.), each measurement from the first dataset 

was correlated with every measurement from the second dataset using Spearman’s ρ. P-

values were adjusted for multiple hypothesis testing using the method of Benjamini and 

Hochberg10; we chose an adjusted p-value (padj) cutoff of 0.05 as our significance level. 

Only inter-omic correlations were used for community analysis. We assessed reproducibility 

of duplicate measurements across two clinical laboratories (Supplementary Figure 8). As 

correlations between repeat measurements do not represent physiologically relevant 

information, they are not included in our network or subsequent analysis.

We performed community analysis using the method of Girvan and Newman 11. This 

method involves iteratively calculating edge betweenness centrality on a network: the 

number of weighted shortest paths from all vertices to all other vertices that pass over that 

edge. After each iteration, the edge(s) with the highest betweenness centrality were removed 

and the process was repeated until only individual nodes remain.

For this manuscript we analyzed our network at a cut level determined using an unbiased 

method, the modularity of the community structure12. At every iteration of the community 

analysis, we computed the modularity, and analyzed the communities at the iteration which 

maximized this quantity (Supplementary Figure 2).

OLS regression on the dependent variable HOMA-IR, with regressors including sex, GGT, 

gamma-glutamyltyrosine, age, and body mass index was performed (Supplementary Table 

7). To test for heteroscedasticity in our HOMA-IR regression model, we fit the model using 

White’s heteroscedasticity-consistent estimator (HCE), testing for the effects of outliers 

using a robust regression model and testing for multicollinearity by calculating the variance 

inflation factors (VIF) for each predictor.

Generalized estimating equations (GEE) were used to estimate the average change in each 

clinical analyte by round while controlling for the effects of age, sex, and self-reported 

ancestry (Table 1 and Supplementary Table 10). An independence working correlation 

structure was used in the GEE.

Software packages

NYGC used BWA v0.7.8-r455 to align sequences. Complete Genomics CGAPipeline 

v2.5.0.20. NYGC provided a VCF4.1 file for each sequenced sample calculated with GATK 

HaplotypeCaller, following duplicate marking with Picard v1.83, and indel realignment and 

base quality recalibration. GATK v3.1.1-g07a4bf8 was used for BAM file post-processing 

and variant calling. Copy number variant status was determined using Reference Coverage 

Profiles47. Variant frequencies were annotated using Kaviar48

OTU picking for the microbiome was performed using USEARCH with a proprietary strain 

database, which can be downloaded at http://secondgenome.com/solutions/resources/data-

analysis-tools/strain-select/. Inter-individual comparisons were performed using PyNAST 

1.2.252 via QIIME 1.9.153 with the Greengenes54 85% OTU representative sequences as a 

template. The alignment was filtered to remove high entropy positions using the Lane 

mask55. A phylogeny was reconstructed using FastTree 2.1.7. Unweighted UniFrac 
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distances56–58 were computed on the table using QIIME. scikit-bio 0.2.3 (http://scikit-

bio.org) was used in a custom Jupyter Notebook59 with matplotlib60 and seaborn to process 

the distance matrix.

Olink Cq values for each measurement were determined using Fluidigm’s Real-Time PCR 

Analysis software and BiomarkDataCollection version 4.1.3.

Multiplexed SRM assays were established with the human SRMAtlas61 (www.srmatlas.org) 

and analyzed with Skyline62.

All pairwise statistical tests (Spearman) were performed using the Python scipy.stats 

package (v0.14). All regression models (OLS regressions and GEE) were fit using the 

Python Statsmodels package (v0.6)63. An independence working correlation structure was 

used for GEEs. Variance inflation factors were calculated using Python Statsmodels (v0.6) 

package. Correlation network p-values were adjusted for multiple hypothesis using the 

Benjamini-Hochberg10 method via the Python Statsmodels (v0.6) package for each inter-

datatype comparison. Community analysis and modularity calculations were performed in 

Python with the NetworkX64 package, the python-louvain package (v0.3), and custom code. 

All custom code used in this manuscript can be downloaded from Github using the link 

below and is also available for download as Supplementary File 3. The Github version used 

for the manuscript is ‘v-release’.

https://github.com/trueprint/p100-network-code/tree/v-release

Running the custom code

This code is meant to be run in a Jupyter59 notebook that has the scipy stack installed. We 

recommend using the datascience docker image created by the Jupyter group at

https://github.com/jupyter/docker-stacks/tree/master/datascience-notebook

The raw data are available from dbGap in a compressed tar.gz file and should be extracted to 

the same directory containing the code. We recommend downloading the Jupyter docker 

image using docker pull jupyter/datascience-notebook on a machine with docker installed. 

This is not required, but is recommended and all instructions will be based on the use of this 

image. An example shell script is provided with the custom code (startup-notebook.sh). The 

startup command is:

docker run -d -p [SOME LOCAL PORT]:8888 -e USE_HTTPS=yes -e 

GRANT_SUDO=yes -v [LOCAL PATH TO p100-network-code]:[ROOT PATH 

OF NOTEBOOKS ON JUPYTER]/p100-network-code -v [LOCAL PATH TO 

UNZIPPED data]:[ROOT PATH OF NOTEBOOKS ON JUPYTER]/data jupyter/

datascience-notebook

Then, navigate in your browser to https://[your url]:[SOME LOCAL PORT]. For example, if 

you ran this on your localhost, with SOME LOCAL PORT = 8888, then you would navigate 

to https://localhost:8888. Note: it will give you a warning about an invalid certificate. The 

default password for datascience-notebook is empty, i.e. just hit ENTER. The notebooks 

provided are: Generate correlation network.ipynb which generates a correlation network of 

all data for the p100 project, Community Generation-DELTA.ipynb which generates a 
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correlation network for change in data measurements for the p100 project. Community 
Generation.ipynb which performs community analysis using the intraomic correlation 

network, Community Generation-DELTA.ipynb which performs community analysis using 

the intraomic delta(change) correlation network and GEE longitudinal clinical 
changes.ipynb which uses GEE (generalized estimating equations) to calculate average 

change over the course of the study in clinically relevant biomarkers. We also provide the 

notebook Convert csvs to pickles.ipynb, which converts raw CSV files and associated meta 

data in JSON from the csv folder of the data into Python pickles appropriate to the currently 

installed pandas version.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Types of longitudinal data collected
(A) Timeline of important events in the P100. (B) Schematic of the data collected every 

three months throughout the study.
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Figure 2. Top 100 correlations per pair of data types
Subset of top statistically-significant Spearman inter-omic cross-sectional correlations 

between all datasets collected in our cohort. Each line represents one correlation that was 

significant after adjustment for multiple hypothesis testing using the method of Benjamini 

and Hochberg10 at padj<0.05. The mean of all three time points was used to compute the 

correlations between analytes. Up to 100 correlations per pair of data types are shown in this 

figure. See Supplementary Figure 1 for the complete inter-omic cross-sectional network.
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Figure 3. Cardiometabolic community
All vertices and edges of the cardiometabolic community, with lines indicating significant 

(padj<0.05) correlations. Associations with FGF21 (red lines) and gamma-glutamyltyrosine 

(purple lines) are highlighted.
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Figure 4. Cholesterol, serotonin, α-diversity, IBD, and bladder cancer communities
(A) Cholesterol community (B) Serotonin community (C) α-diversity community (D) The 

polygenic score for inflammatory bowel disease is negatively correlated with cystine (E) 
The polygenic score for bladder cancer is positively correlated with 5-acetylamino-6-

formylamino-3-methyluracil (AFMU).
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Figure 5. Polygenic scores correlate with blood analytes
Spearman correlations between polygenic scores (x-axis) and analyte measurements (y-axis) 

from our correlation network. The number of measurements used for each pairwise 

comparison, correlation coefficients, and adjusted p-values are indicated on each figure. 

Values have been age and/or sex adjusted as described in Online Methods. The line shown is 

a y~x regression line, and the shaded regions are 95% confidence intervals for the slope of 

the line.
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Table 1
Longitudinal analysis of clinical changes by round

Generalized estimating equations (GEE) were used to estimate average changes in clinical labs over time. The 

Δ per round is an estimate of the average change in the population for that analyte by round adjusted for age, 

sex, and self-reported ancestry. ‘Out-of-range at baseline’ indicates the estimates using only those participants 

who were out-of-range for that analyte at the beginning of the study. Green rows indicate statistically-

significant improvement, while red rows indicate statistically-significant worsening. N/A values are present 

where no participants were out-of-range at baseline. For example, the mean improvement in vitamin D for the 

95 participants that began the study out-of-range was +7.2 ng/mL per round. Several analytes are measured by 

both Quest and Genova; with the exception of LDL particle number, the direction of effect for significantly 

changed analytes was concordant across the two labs. An independence working correlation structure was 

used in the GEE. See Supplementary Table 10 for the complete results.

Clinical Laboratory Test Out-of-range at Baseline Participants

Quadrant Name N Δ per round P-value

Nutrition Vitamin D 95 +7.2 ng/mL/round 7.1E-25

Nutrition Mercury 81 −0.002 mcg/g/round 8.9E-09

Diabetes HbA1c 52 −0.085 %/round 9.2E-06

Cardiovascular LDL particle number (Quest) 30 +130 nmol/L/round 9.3E-05

Nutrition Methylmalonic acid (Genova) 3 −0.49 mmol/mol creat/round 2.1E-04

Cardiovascular LDL pattern (A or B) 28 −0.16 /round 4.8E-04

Inflammation Interleukin-8 10 −6.1 pg/mL/round 5.9E-04

Cardiovascular Total cholesterol (Quest) 48 −6.4 mg/dL/round 7.2E-04

Cardiovascular LDL cholesterol 57 −4.8 mg/dL/round 8.8E-04

Cardiovascular LDL particle number (Genova) 70 −69 nmol/L/round 1.2E-03

Cardiovascular Small LDL particle number (Genova) 73 −56 nmol/L/round 3.5E-03

Diabetes Fasting glucose (Quest) 45 −1.9 mg/dL/round 8.2E-03

Cardiovascular Total cholesterol (Genova) 43 −5.4 mg/dL/round 1.2E-02

Diabetes Insulin 16 −2.3 IU/mL/round 1.5E-02

Inflammation TNF-alpha 4 −6.6 pg/mL/round 1.8E-02

Diabetes HOMA-IR 19 −0.56 /round 2.0E-02

Cardiovascular HDL cholesterol 5 +4.5 mg/dL/round 2.2E-02

Nutrition Methylmalonic acid (Quest) 7 −42 nmol/L/round 5.2E-02

Cardiovascular Triglycerides (Genova) 14 −18 mg/dL/round 1.4E-01

Diabetes Fasting glucose (Genova) 47 −0.98 mg/dL/round 1.5E-01

Nutrition Arachidonic Acid 35 +0.24 wt%/round 1.9E-01

Inflammation hs-CRP 51 −0.47 mcg/mL/round 2.1E-01

Cardiovascular Triglycerides (Quest) 17 −14 mg/dL/round 2.4E-01

Nutrition Glutathione 6 +11 micromol/L/round 2.5E-01

Nutrition Zinc 4 −0.82 mcg/g/round 3.0E-01

Nutrition Ferritin 10 −14 ng/mL/round 3.1E-01
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Clinical Laboratory Test Out-of-range at Baseline Participants

Quadrant Name N Δ per round P-value

Inflammation Interleukin-6 4 −1.1 pg/mL/round 3.8E-01

Cardiovascular HDL large particle number 8 +210 nmol/L/round 4.9E-01

Nutrition Copper 10 +0.006 mcg/g/round 6.0E-01

Nutrition Selenium 6 +0.035 mcg/g/round 6.2E-01

Cardiovascular Medium LDL particle number 20 +2.8 nmol/L/round 8.5E-01

Cardiovascular Small LDL particle number (Quest) 14 −2.3 nmol/L/round 8.8E-01

Nutrition Manganese 0 N/A N/A

Nutrition EPA 0 N/A N/A

Nutrition DHA 0 N/A N/A
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