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SHORT COMMUNICATION

Quality of breeding value predictions 
from longitudinal analyses, with application 
to residual feed intake in pigs
Ingrid David1*   , Anne Ricard2,3, Van‑Hung Huynh‑Tran1, Jack C. M. Dekkers4 and Hélène Gilbert1 

Abstract 

Background:  An important goal in animal breeding is to improve longitudinal traits. The objective of this study was 
to explore for longitudinal residual feed intake (RFI) data, which estimated breeding value (EBV), or combination of 
EBV, to use in a breeding program.  Linear combinations of EBV (summarized breeding values, SBV) or phenotypes 
(summarized phenotypes) derived from the eigenvectors of the genetic covariance matrix over time were considered, 
and the linear regression method (LR method) was used to facilitate the evaluation of their prediction accuracy.

Results:  Weekly feed intake, average daily gain, metabolic body weight, and backfat thickness measured on 2435 
growing French Large White pigs over a 10-week period were analysed using a random regression model. In this 
population, the 544 dams of the phenotyped animals were genotyped. These dams did not have own phenotypes. 
The quality of the predictions of SBV and breeding values from summarized phenotypes of these females was evalu‑
ated. On average, predictions of SBV at the time of selection were unbiased, slightly over-dispersed and less accurate 
than those obtained with additional phenotypic information. The use of genomic information did not improve the 
quality of predictions. The use of summarized instead of longitudinal phenotypes resulted in predictions of breeding 
values of similar quality.

Conclusions:  For practical selection on longitudinal data, the results obtained with this specific design suggest that 
the use of summarized phenotypes could facilitate routine genetic evaluation of longitudinal traits.
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Background
Selecting animals for a better feed efficiency is one of 
the key levers to improve farm profitability while reduc-
ing the environmental impact of livestock farming [1, 
2]. Thanks to the development of electronic devices on 
farms, the recording of repeated phenotypes over time 
is facilitated in different livestock species [3–5]. This 
recording of longitudinal data is beneficial in a genetic 
context because it allows the extraction of useful infor-
mation for selection on more complex criteria than 

the estimated breeding value (EBV) for the mean value 
of the trait over the studied period; thus, selection for 
an optimal shape of the curve [6–8] and/or for specific 
components of the curve, such as persistency of milk 
production [9] becomes possible. Longitudinal measure-
ments are often correlated at both the genetic and envi-
ronmental level, with, generally, a structured covariance 
pattern. To analyze such data with a limited number of 
parameters to be estimated, approaches that model the 
shape of the covariance functions, such as character pro-
cess models (CP) [10], or that model the functions of the 
random effects, such as random regression (RR) [11, 12] 
or structured antedependence (SAD) [13] models, have 
been proposed. These models have proven to be effi-
cient to model the covariance structure of the data and to 
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accurately estimate breeding values for each time point 
in numerous studies [14–17]. However, these models are 
not widely used for routine genetic evaluation in live-
stock except for milk production traits in dairy cattle [6], 
for several reasons. First, combining time point EBV in a 
selection index remains an issue, and second, fitting these 
models is computationally demanding, especially when 
accounting for genomic information. To overcome these 
challenges, the use of eigenvectors of the genetic covari-
ance matrix to linearly combine the time point breeding 
values into several summarized breeding values (SBV) 
has been proposed [18]. These eigenvectors have been 
shown to make sense biologically for several longitudinal 
traits [18–21] and allow predictions for independent SBV 
to be obtained for selection. In addition, the use of SBV 
results in fewer equations in the mixed model and better 
convergence properties [22].

Thanks to new genotyping technologies that render 
the genotyping of numerous single nucleotide poly-
morphisms (SNPs) cost-effective, genomic prediction 
(GP) has been implemented in multiple livestock spe-
cies [23–28]. For example, genomic EBV (GEBV) can 
be obtained by single-step genomic best linear unbiased 
prediction (ssGBLUP), which combines in a single-step 
pedigree data, phenotypes, and genotypes for genetic 
evaluation [29]. The efficiency of genomic selection on 
these GEBV depends on their bias and accuracy [30]. 
Traditionally, the accuracy of GEBV is obtained by cross-
validation approaches, based on the computation of cor-
relations between adjusted phenotypes and GEBV of 
hypothetical selection candidates. This is, however, not 
straightforward for predictions of SBV. As an alternative, 
Legarra and Reverter [31] proposed the linear regression 
method (LR method), which provides a series of statistics 
to quantify the quality of predictions that can be used in 
complex scenarios where adjusted phenotypes or coeffi-
cients of determination are not straightforward to obtain, 
such as for SBV.

Thus, our goal was to propose and test operational 
solutions that could facilitate the implementation of 
selection for longitudinal traits, using the example of feed 
efficiency. Using the LR method, the objectives of the pre-
sent study were to evaluate the quality of the predictions 
of SBV for longitudinal RFI in pigs, as well as the benefit 
of adding genomic information. In addition, for practical 
selection on longitudinal profiles, we evaluated the effect 
of using summarized phenotypes instead of longitudinal 
phenotypes on the quality of predictions of SBV.

Methods
Material
Phenotypes on feed intake (FI) and production (metabolic 
body weight (MBW), average daily gain (ADG), and backfat 

thickness (BFT)) records measured weekly on 2397 growing 
French Large White pigs over a 10-week period from ~ 13 
to ~ 22 weeks of age were used in this study (descriptive sta-
tistics are in Additional file 1 Table S1). These animals were 
from seven generations of a divergent selection experiment 
for RFI applied at the end of each test period (110 kg) [1]. 
Animal management and phenotype measurements are 
described in David et al. [32] and Huynh-Tran et al. [19]. The 
numbers of animals and records per low (LRFI), high RFI 
(HRFI) lines and generation are in Additional file 1: Table S2. 
All sires and dams (660 pigs) of the phenotyped animals of 
generations G1 to G7 were genotyped using the Illumina 
SNP60 Beadchip V2 (64,232 SNPs) or the Illumina Porcine 
HD Array GGP (68,516 SNPs). None of the parents had own 
phenotypes. After quality control, genotyped or imputed 
genotypes for 64,487 SNPs on 624 pigs were available for fur-
ther analyses (see Additional file 1: Table S2). The inverse of 
the H matrix that combines genomic and pedigree informa-
tion was obtained using the method proposed by Legarra 

et al. [29] as H−1
= A−1

+

[
0 0

0 �
−1
ω

− A−1
22

]
 , where A22 is 

the pedigree-based numerator relationship matrix for the 
genotyped animals and �ω = (1− 0.05)�∗

+ 0.05A22 . 
Matrix �∗ was obtained by scaling the genomic relationship 
matrix � [33], to make the means of the diagonal and off-
diagonal elements of �∗ and A22 matrices equal to each 
other. The A matrix was obtained for all animals in the pedi-
gree plus ancestors (grandparents), and comprised 3095 
individuals over 10 generations. The H matrix was obtained 
and formatted using the PreGSf90 software [34] and modi-
fied with R to be supplied to ASReml as a user defined rela-
tionship matrix.

Methods
Longitudinal production and FI records of all phenotyped 
animals (whole data) were used to compute longitudi-
nal RFI by a phenotypic regression of FI on production 
and maintenance traits, using the following RR model of 
degree 2 for the genetic and permanent environmental 
effects:

where FIij , MBWij , ADGij , and BFTij are the FI, MBW, 
ADG and BFT of animal i in week j , β1 , β2 , and β3 are the 
phenotypic regression coefficients linking production 
and maintenance traits to FI, and ϕq

(
j
)
 is the (q + 1)th 

Legendre polynomial at time j . Vectors 
a = (a1, a2, . . . a3095), ai = (ai0, ai1, ai2) , and 
b = (b1,b2, . . .b2397),bi = (bi0, bi1, bi2) are the vectors 
of random coefficients for the genetic and permanent 

FIij = xijβ+ β1MBWij + β2ADGij + β3BFTij

+

2∑

q=0

aiqϕq
(
j
)
+

2∑

q=0

biqϕq
(
j
)
+ eij ,



Page 3 of 8David et al. Genetics Selection Evolution           (2022) 54:32 	

environmental effects, respectively, with 
a ∼ N (0,A ⊗ Ka) and b ∼ N (0, I⊗ Kb) , Ka and Kb being 
the 3 × 3 covariance matrices between genetic and per-
manent random coefficient, respectively and e is the 
residual vector, with heterogeneous variances over weeks 
( e ∼ N (0, I⊗D) , where D is a 10 × 10 diagonal matrix. 
Thus, the distribution of the additive genetic 
( uij =

∑2
q=0 aiqϕq

(
j
)
) and permanent environmental 

effects ( pij =
∑2

q=0 biqϕq
(
j
)
) are u ∼ N (0,A ⊗G) and 

p ∼ N (0, I⊗ P) , respectively, with G = ψKaψ
′ , where ψ 

is the (10 × 3) matrix of the Legendre polynomials for all 
time points and P = ψKbψ

′ . For selection purposes, the 
10 breeding values per animal (one for each time point) 
are summarized into a reduced number of values (SBV) 
that are interpretable and of interest for selection (i.e. 
that give information about the shape of the BV trajec-
tory). These SBV were obtained by an Eigen decomposi-
tion of the genetic covariance matrix G . The lth SBV for 
animal i is then SBVl,i = LGlui , where LGl is the lth eigen-
vector from the decomposition of the G matrix and ui the 
vector of breeding values for animal i 
( ui = (ui1, ui2, . . . , ui10) ). Fixed effects included in the 
model ( xijβ ) were the combination week by generation 
(10 × 8 levels), the combination batch by sex (66 × 3 lev-
els), birth herd (2 levels), age at start of the test (covari-
ate), and pen (16 levels). Variance components for this 
full dataset were estimated using the REML approach in 
ASReml 4.0 [35] and were considered as known in all 
subsequent analyses. Estimates of heritability of each 
SBV l , obtained by the Eigen decomposition of the genetic 
covariance matrix G , were computed as 

h2SBV l
=

L
′

Ĝ,l
ĜL

Ĝ,l

L
′

Ĝ,l

(
Ĝ+P̂+D̂

)
L
Ĝ,l

.

The LR method applied to the SBV of a group of focal 
individuals (i.e. individuals of interest) consists in com-
paring the estimated SBV (ESBV) of these focal individu-
als based on less information to their ESBV based on 
more information, considering that more information 
provides a reasonable reference. ESBV of the focal indi-
viduals based on less information (partial) are referred to 
as ESBV p and their ESBV based on more information 
(whole) as ESBVw . For the sake of simplicity, the sub-
script of SBV is not added, thus ESBV refer to the first, 
second or third ESBV, indifferently. Three of the five sta-
tistics based on the comparison of these two sets of 
ESBV, as proposed by Legarra and Reverter [31], were 
used here, each referring to properties of ESBV p for the 
focal individuals. The estimate of the standardized bias of 
ESBV p was computed as (for the lth SBV) ESBV p−ESBVw

L
′

Ĝ,l
ĜL

Ĝ,l

 , 

where ESBV p and ESBVw  are the mean of ESBV p and 
ESBVw , respectively. Its expected value is 0 if the evalua-
tion with the partial dataset is unbiased. Dispersion of 

ESBV p was evaluated by the regression of ESBVw on 
ESBV p : bw,p =

cov(ESBV p ,ESBVw)
var(ESBV p)

 . Its expected value is 1, if 
there is no over-/under-dispersion. Finally, the ratio of 
the prediction accuracy (i.e. the correlation between true 
and estimated breeding values) of ESBV p to the predic-
tion accuracy of ESBVw was evaluated by the correlation 
between these ESBV: ρw,p =

cov(ESBV p ,ESBVw)
√

var(ESBV p)var(ESBVw)
 . The 

lower this correlation is, the higher is the relative gain in 
accuracy due to additional information. We evaluated the 
quality of SBV predictions for genotyped dams, which 
did not have own phenotypes (but had phenotyped half-
sibs and full-sibs, on average 24 and 4 per dam, respec-
tively), as focal individuals by comparing their SBV 
estimated with less and more information. The additional 
information considered were the phenotypes of their 
descendants or their genomic information. To do so, five 
cut-offs were considered, corresponding to the number 
of generations with phenotypes in the dataset (from 3 
generations (G0, G1, G2, cut-1) to 7 generations (cut-5)), 
as described in Fig. 1. Based on these cut-offs, five groups 
of focal individuals were defined (group_FIi , i = 1,…,5), 
which corresponded to the dams of the first generation of 
animals without phenotypes. For instance, the first group 
of focal individuals (group_FI1) consisted of the dams of 
the first generation without phenotypes in cut-1, i.e. the 
dams of the phenotyped animals in G3. For each group of 
focal individuals, the three LR statistics were computed 
to compare predictions obtained with less information to 

Fig. 1  Scenarios retained to test the effect of additional phenotypic 
or genomic information on predictions, depending on the number 
of phenotyped generations. Blue box: animals with phenotypes, 
green box: animals without phenotypes, red indicates the progeny 
of the focal individuals genotyped (sires and dams of the previous 
generation that do not have own phenotype). For instance in cut1, 
focal animals are the genotyped sire and dams of G3 animals
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those obtained with more information. Thus, the follow-
ing comparisons made were:

(1) SBV predicted for the group of focal individuals 
(group_FIi ) obtained with phenotypes in cut_i com-
pared to SBV predicted for the group of focal individuals 
obtained with phenotypes in cut_(i+1), cut_(i+1) corre-
sponding to the full dataset if ( i = 5) using (a) pedigree 
information only (i.e. A matrix) or (b) genomic informa-
tion (i.e. the A matrix is then replaced by the H matrix for 
the distribution of genetic effects in the RR model);

(2) SBV predicted for the group of focal individuals 
(group_FIi ) obtained with phenotypes in cut_i com-
pared to SBV predicted for the group of focal individu-
als obtained with phenotypes of the full dataset using (a) 
pedigree information only (i.e. A matrix)) or (b) genomic 
information (i.e. H matrix);

(3) SBV predicted for the group of focal individuals 
using pedigree information (i.e. A matrix) compared to 
SBV obtained with phenotypes of the same dataset using 
genomic information (i.e. H matrix). SBV were obtained 
using phenotypes in (a) cut_i or (b) phenotypes of the 
full dataset.

The first two comparisons allowed us to evaluate the 
quality of the model to predict SBV based on pheno-
typic information on ascendants and collateral relatives 
of the focal individuals. For these two comparisons, two 
“whole” datasets were considered as the gold standard 
(cut-(i+1) or full data) to account for random errors in 
the estimates of the LR statistics [36]. The third compari-
son allowed us to evaluate the benefit of genomic infor-
mation for predictions.

The comparisons were performed separately for each 
line and for the three first SBV. These comparisons led to 
108 estimates of the three LR statistics when evaluating 
the quality of the model to predict SBV based on pheno-
typic information on ascendants and collateral relatives 
of the focal individuals (2 lines, 3 SBV, A or H matrix, 5 
cut-offs), and 30 estimates of the three LR statistics when 
evaluating the quality of the model to predict SBV based 
on phenotypic and pedigree information (gold stand-
ard being GSBV, 2 lines, 3 SBV, 5 cut-offs). Tests of the 
impact of the different factors (line, SBV, type of genetic 
information) on the LR statistics were evaluated using 
linear models including these three factors, and likeli-
hood ratio tests. The two-by-two interactions between all 
factors were tested and kept in the model only when they 
were significant for one LR statistic.

Mirroring the SBV, fixed effects and variance compo-
nent estimates obtained for the full dataset and the pedi-
gree relationship matrix were used to compute the 
following three summarized phenotypes 

(
ySBV l

, l = 1, 2, 3
)
 : 

ySBV l
= L

′

Ĝ,l

(
FI− Xβ̂− β̂1MBW − β̂2ADG− β̂3BFT

)
 . 

In order to obtain summarized phenotypes for all animals 

for which one of the longitudinal phenotype (FI, MBW, 
ADG or BFT) was missing (4.2% of the data correspond-
ing to 20% of the animals with at least one missing weekly 
phenotype), missing values for FI− Xβ̂− β̂1MBW−

β̂2ADG− β̂3BFT were replaced by the average value per 
week of the full population before multiplying by L′

Ĝ,l
 . 

Breeding values for the summarized phenotypes were 
obtained using the following model: 
ySBV l ,i = µl + uySBV l ,i

+ eSBV l ,i , with variance compo-
nents derived from estimates obtained from the model for 
longitudinal RFI: uySBV l

∼ N
(
0,AL

′

Ĝ,l
ĜL

Ĝ,l

)
 and 

eSBV l
∼ N

(
0, IL

′

Ĝ,l

(
P̂+ D̂

)
L
Ĝ,l

)
 . To further evaluate 

the applicability of longitudinal models for routine genetic 
evaluation, we then compared the EBV of ySBV l

(
ûySBV l

)
 

to those obtained for SBV l , assuming that the eigenvec-
tors do not have to be re-computed for each new 
evaluation.

Results
The genetic parameters were estimated based on the 
full dataset and the pedigree relationship matrix. The 
three first eigenvalues from the eigen decomposition of 
Ĝ represented 59, 26 and 15% of the total genetic vari-
ance, respectively. Heritability estimates of the corre-
sponding first three SBV were 0.36 ± 0.05, 0.20 ± 0.04, 
and 0.16 ± 0.05, respectively. The LR statistics and 
p-values of the different factors evaluating the quality 
of (G)ESBV obtained at the time of selection are sum-
marized in Table 1. On average, ESBV were unbiased, 
slightly overdispersed and less accurate than ESBV 
predicted with more phenotypic information ( �µwp = 
0.00, 95% Confidence Interval: [− 0.01,0.01], bw,p = 
0.84 [0.79,0.89], and ρw,p = 0.61 [0.58, 0.64]). Overdis-
persion was significantly larger for the LRFI line than 
for the HRFI line ( bw,p = 0.75 [0.68,0.82] versus 0.93 
[0.86,1.00]) and for SBV3 compared to SBV2 ( bw,p = 
0.76 [0.69,0.85] versus 0.93 [0.85,1.00]) (see Additional 
file  2: Fig. S1). The ratio of accuracy between SBV 
obtained with more or less phenotypic information 
was significantly lower for SBV3 than for SBV2 ( ρw,p = 
0.56 [0.51,0.61] versus 0.67 [0.61,0.72]). Considering 
the SBV obtained using pedigree and genomic infor-
mation as the gold standard, on average, SBV obtained 
with pedigree information only were biased down-
wards ( �µwp =− 0.08 [− 0.09,− 0.07]). The bias dif-
fered between SBV: underestimated for SBV1 and SBV2 
and overestimated for SBV3 (see Additional file 2: Fig. 
S2). Finally, the SBV predicted using longitudinal phe-
notypes and EBV predicted using summarized pheno-
types ( ûySBVp ) for genotyped animals in the full dataset 
are summarized in Table  2: the EBV obtained from 
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summarized phenotypes were unbiased, neither over- 
nor under-dispersed, and were as accurate as the SBV 
predicted using longitudinal phenotypes, when com-
puted with the pedigree information only ( A matrix) 
or combining pedigree and genotypes ( H matrix).

Discussion
The objectives of the present study were to evaluate, for 
longitudinal RFI in pigs, the quality of the model predic-
tions for SBV that are useful for selection, and the benefit 
of adding genomic information. In addition, for practical 
selection on longitudinal profiles, we evaluated the 

consequences of using summarized phenotypes instead 
of longitudinal phenotypes on estimates of (summarized) 
breeding values. To compare estimates of breeding values 
obtained in different situations, we applied the LR 
method proposed by Legarra and Reverter [31]. The use 
of the LR method in place of traditional cross-validation 
tests overcomes the limitations of the latter since it does 
not need “true” BV (i.e. highly accurate EBV) or pre-cor-
rected phenotypes. Thus, the method is particularly suit-
able for pig populations where selection candidates do 
not necessarily have own performance or numerous 
recorded progeny, and it is all the more useful for longi-
tudinal data for which missing data are frequent. In addi-
tion, the BV of interest for selection in the longitudinal 
case, i.e. SBV, are a linear combination of EBV that accu-
mulates those aforementioned difficulties for each time 
point, making the computation of the accuracy of the 
resulting SBV with traditional approaches quite complex 
when information is heterogeneous across time points 
and candidates. To be relevant, the LR method should be 
applied to a set of focal individuals that is sufficiently 
large and diverse (i.e. animals from several families), that 
should represent the population of interest (selection 
candidates in our case), for which the quantity of “infor-
mation” used to estimate SBV should be similar for the 
different focal individuals in the partial dataset as well as 
in the whole dataset and for which the reference EBV 
should be reasonably accurate. In the present study, prog-
eny from all families were candidates to selection, while 
focal individuals were the genotyped dams used for 
breeding in the next generation. The dams were ran-
domly selected within sire, one female replacing its dam, 
to maintain the genetic diversity, so they represent the 
population of interest and fulfilled the requirement in 
terms of diversity. Because experimental lines have a lim-
ited number of breeding animals, the groups of focal 
individuals were small and thus did not fulfil the ‘suffi-
ciently large’ requirement. To partially counteract this, 

Table 1  Average LR statistics and p-values of the tested factors for the prediction of SBV

a 95% confidence interval in bracket

Bias: �µwp =
ESBVp−ESBVw

L
′

Ĝ,l
ĜL

Ĝ,l

 ; dispersion: bw,p =
cov(ESBVp ,ESBVw)

var(ESBVp)
 ; Ratio of accuracy: ρw,p =

cov(ESBVp ,ESBVw)
√

var(ESBVp)var(ESBVw )

Indices w = estimates obtained with more information,p = estimates obtained with less information

Partial data Whole data �µwp bw,p ρw,p

No phenotypic information from 
candidates’ descendants

With phenotypic 
information from 
candidates’ descend‑
ants

Meana 0.00 [− 0.01,0.01] 0.84 [0.79,0.89] 0.61 [0.58,0.64]

p_value SBV 0.78 0.03 0.02

Line 0.22  < 0.01 0.25

A or H matrix 0.76 0.71 0.70

Phenotypes, pedigree information Phenotypes, pedi‑
gree and genomic 
information

Meana − 0.08 [− 0.09,− 0.07] 0.96 [0.92,1.00] 0.89 [0.87,0.92]

p_value SBV  < 0.01 0.68 0.37

Line 0.41 0.97 0.61

Table 2  Comparison of SBV predicted using longitudinal 
phenotypesa and EBV predicted using summarized phenotypesb, 
using pedigree and pedigree plus genomic information for the 
low (LRFI) and high (HRFI) RFI lines

a Longitudinal phenotypes = weekly 
measurements of FI analyzed with an RR model: 
FIij = xijβ+ β1MBWij + β2ADGij + β3BFT ij +

∑2
q=0 aiqϕq(j)+

∑2
q=0 biqϕq(j)+ eij , 

SBVl,i = LGlui , where LGl is the lth eigenvector from the decomposition of the G 
matrix
b Summarized phenotypes:ySBVl

= L
′

Ĝ,l

(
FI− Xβ̂− β̂1MBW − β̂2ADG− β̂3BFT

)

Pedigree Pedigree + genomics

LRFI HRFI LRFI HRFI

Bias SBVw − uySBVw

 SBV1 0.00 0.02 0.00 0.02

 SBV2 0.03 0.00 0.02 0.00

 SBV3 0.01 0.00 0.01 0.00

Dispersion bSBVw ,uySBVw
 SBV1 1.05 1.03 1.04 1.03

 SBV2 1.03 1.02 1.03 1.03

 SBV3 1.00 1.01 0.97 1.00

Ratio of accuracies ρSBVw ,uySBVw
 SBV1 1.00 1.00 1.00 1.00

 SBV2 1.00 0.99 0.99 0.99

 SBV3 0.98 0.98 0.98 0.98
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we repeated, as Macedo et al. [36], the estimation of LR 
indicators in successive focal groups. In order to meet the 
requirement for the focal individuals to have the same 
quantity of information to predict their EBV, only geno-
typed dams were considered as focal individuals, and not 
genotyped sires. Indeed, the quantity of information to 
predict the SBV of sires and dams would have been simi-
lar in the partial dataset (phenotypes from ascendants), 
but not in the whole dataset, because sires had on aver-
age six times more phenotyped progeny than females. 
Finally, the theoretical accuracy of the reference EBV 
(whole population) for the focal individuals was around 
0.6 for SBV1 and 0.5 for SBV2 and SBV3, and thus ful-
filled the requested reasonable accuracy (Andres Legarra, 
personal communication). In this study, we were not 
interested in estimating the accuracy of SBV of the focal 
animals themselves, as the ratio of accuracies was suffi-
cient to judge the quality of the SBV at the time of selec-
tion and to evaluate the gain from genomic information 
for selection. Nevertheless, it is possible to estimate the 
(selected) reliability of SBV at the time of selection with 
the LR method by computing cov(SBV p ,SBVw)

σ 2
u∗

 , where σ 2
u∗ is 

the genetic variance of the group of individuals of inter-
est, which can be estimated by Gibbs sampling [37].

The bias ( �µwp) and dispersion ( bw,p) obtained when 
evaluating the quality of predictions of (G)ESBV at the 
time of selection give indications on the errors that can be 
made on the expected genetic gain at the stage of selec-
tion [31]. On the one hand, the bias was null on average. 
On the other hand, the (G)ESBV were over-dispersed, 
especially in the LRFI line, which is in line with the dif-
ference in dispersion between the two lines reported for 
the same population by Aliakbari et  al. [38]. This over-
dispersion results in overestimation of the expected 
genetic gain (by ≃ 0.2σSBV  , [31]). As expected, ESBV of 
the focal individuals predicted without phenotypes from 
descendants were significantly less accurate than ESBV 
predicted using all the phenotypic information ( ρw,p sig-
nificantly lower than 1). We did not detect differences 
in bias, dispersion, and relative gain in accuracy due to 
additional phenotypes, between ESBV obtained using 
genomic and pedigree information or pedigree informa-
tion only. Yet, it is expected that “additional phenotypic 
records would have lower impact on GEBV (compared to 
EBV) because they would contribute with less information 
than the direct genomic value” [39]. The lack of effect of 
genomic information on SBV prediction in the present 
study is confirmed by the high correlation between ESBV 
and GSBV and the high regression coefficient of GSBV 
on ESBV that we obtained. In our study, the small ben-
efit from genomic information is likely due to the small 
number of available genotyped animals with accurate 
phenotype information, much smaller than the expected 

number (1690, [40]) that is necessary to represent the 
genomic structure of the population [41]. Consequently, 
too little of the genetic variance could be captured by the 
genomic information in this dataset to have a significant 
impact on ESBV. In addition, there were no animals with 
both genotype and phenotype, and the number of pheno-
typed progeny for each focal genotyped animal was small. 
It should be noted that a single set of scaling factors to 
construct the H matrix has been tested, although their 
values may impact bias and dispersion of GEBV [42].

Breeding values that summarized the trajectory of RFI 
over time using eigenvectors of the estimated variance–
covariance structure of the longitudinal data were obtained 
using two approaches: SBV l , which were extracted from the 
genetic analysis of the longitudinal phenotypes (considered 
as the reference), and uSBV l

 , which corresponds to the breed-
ing values in the analysis of summarized phenotypes. The 
latter requires much less computing time, and thus is more 
suitable for routine evaluation. When, in the model for sum-
marized phenotypes ySBV  , the longitudinal phenotypes are 
pre-corrected for fixed effects and the variance components 
are assumed known and fixed, our results (Table  2) show 
that these two approaches give exactly the same EBV. In 
practice, pre-correction for all fixed effects is not always pos-
sible (i.e. contemporary group effects). To evaluate the addi-
tional noise generated in such a situation, we performed the 
same comparison between SBV l and uSBV l

 using summa-
rized phenotypes that were not corrected for fixed effects, 
except for regression on other phenotypes to obtain RFI (i.e. 
ySBV l

= L
′

Ĝ,l

(
FI− β̂1MBW − β̂2ADG− β̂3BFT

)
 ), but by 

including and estimating the effect of the fixed effects in the 
model used for their analysis (the same fixed effects as used 
in the longitudinal model except for time and interactions 
with time). This analysis resulted in similar bias and disper-
sion as those obtained when pre-correcting phenotypes for 
all fixed effects. The correlations between SBV l and uySBV l

 
were slightly lower but still large for SBV1 (0.92 and 0.95 for 
LRFI and HRFI, respectively) and SBV2 (0.94 for both lines), 
but lower for SBV3 (0.78 for both lines). Since the first two 
SBV have been identified as sufficient to select for a desired 
trajectory pattern of RFI over time in pigs [32], using the 
model on summarized phenotypes seems a good alternative 
(similar accuracy with less computing time) to select for RFI 
trajectories in routine evaluation.

Conclusions
Using the LR method, we evaluated, the quality of pre-
diction of breeding values for candidates without own 
phenotypes in the study of longitudinal data, by using 
two different approaches (analysis of longitudinal or 
summarized phenotypes), and evaluated the benefit 
of adding genomic information for prediction. Predic-
tions were of similar quality with the two approaches, 
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meaning that, in this population design, the use of 
summarized phenotypes would be of interest for rou-
tine evaluation of longitudinal traits. We did not high-
light any benefit of genomic information for prediction 
in this study, which is certainly due to the number of 
genotyped animals with accurate estimation being too 
small in this dataset, contrary to the usual expectation.
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