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A B S T R A C T

NAD (Nicotinamide Adenine Dinucleotide) -related metabolic reprogramming in tumor cells in
volves multiple vital cellular processes. However, the role of NAD metabolism in immunity and 
the prognosis of gastric cancer (GC) remains not elucidated. Here we identified and clustered 33 
NAD + metabolism-related genes (NMRGs) based on 808 GC samples from the Cancer Genome 
Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases. Survival analysis between 
different groups found a poor prognosis in the GC patients with high NMRGs expression. Gene 
SGCE, APOD, and PPP1R14A were identified and performed high expression in GC samples, while 
the qRT-PCR results further confirmed that their expression levels in GC cell lines were signifi
cantly higher than those from normal human gastric mucosa epithelial cells. Based on the single- 
cell analysis, Gene SGCE, APOD, and PPP1R14A can potentially be novel biomarkers of tumor- 
associated fibroblasts (CAFs). In parallel, the proliferation and migration of GC cells were 
significantly hampered following the knockdown of SGCE, APOD, and PPP1R14A, particularly 
APOD, we confirmed that APOD knockdown can inhibit β-catenin and N-cadherin expression, 
while promote E-cadherin expression. This study unveils a novel NMRGs-related gene signature, 
highlighting APOD as a prognostic biomarker linked to the tumor microenvironment. APOD 
drives GC cell proliferation and metastasis through the Wnt/β-catenin/EMT signaling pathway, 
establishing it as a promising therapeutic target for GC patients.

1. Introduction

Gastric cancer (GC) is the fifth most common tumor worldwide, and its incidence performs great geographic diversity [1]. East Asia 
reported the highest gastric cancer incidence rate at 0.0224 % among all continents in 2020 [2]. The 5-year survival rate of GC patients 
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is lower than 20 % due to the lack of early GC diagnosis methods, efficient treatment techniques, and intervention targets [3–5], which 
can be benefited from the appropriate biomarkers for gastric carcinogenesis [6]. To date, the traditional biomarkers, including CEA, 
CA125, and CA19-9, have been clinically validated, although their efficiency and precision are somehow limited to a wide range of GC 
patients [7]. The positive diagnostic rates of CEA, CA125, and CA19-9 in GC were reported as low as 4.4–21.1 %, 6.7–42.4 %, and 
11.7–27.8 %, respectively [8–10]. It is therefore, urgent to find novel diagnostic markers that can be applied to the secondary pre
vention of GC.

Metabolic reprogramming plays a vital role in tumorigenesis, such as the Warburg effect [11]. It is closely related to the level of 
Nicotinamide Adenine Dinucleotide (NAD), which supports multiple critical cellular processes in tumors [12]. NAD is a crucial redox 
coenzyme in cellular metabolism in gluconeogenesis and the production of ketone and lipids [12]. NAD can be found in oxidized and 
reduced forms (NAD/NADH) from mitochondria. The imbalance of NAD/NADH homeostasis in mitochondria has been confirmed to be 
related to multiple human diseases, including cancer, heart failure, aging, Alzheimer’s disease, Merger’s disease, diabetes, and obesity 
[13–16]. Increased NAD levels have a protective effect on tumorigenesis at the early stage of tumors but convert into a detrimental 
factor at the late stage of tumor progression [17–19]. During cancer progression, increased NAD + levels can contribute to the tumor’s 
malignancy process, which leads to rapid cell growth, increased resistance, and improved survival of tumors [20]. Previous studies 
have shown that targeting NAD + synthesis in GC cells can effectively inhibit energy and metabolite production [21].

Niacinate and nicotinamide metabolism could be involved in NAD + biosynthesis and degradation pathways [22]. Niacinate 
metabolism is associated with NAD + de novo and Preiss-Handler pathways, whereas nicotinamide metabolism is associated with 
NAD + salvage synthesis and NAD + depletion [23]. The genes related to NAD + metabolism (NMRGs) thus have been studied in 
human diseases, and their role in carcinogenesis would provide new strategies for cancer diagnosis and treatment [24]. NMRGs have 
been confirmed to be a risk factor for ovarian cancer (OC), and the expression of NMRGs showed a negatively correlated with the level 
of immune cell infiltration in OC patients, which can be related to the poor prognosis of patients [25]. Previous studies have shown that 
the immune microenvironment plays an essential role in cancer development. The prognosis of cancer patients with the same his
tological type was also affected by other immune cell infiltration [26]. Continuous communication has been found between GC cells 
and their surrounding environments. The complex tumor microenvironment (TME) of GC includes fibroblasts, immune cells, adipo
cytes, vascular endothelial cells, and extracellular matrix [27,28]. However, rare studies on the relationship between NMRGs, the 
prognosis, and the immune infiltration of GC patients have been raised.

APOD is a plasma high-density lipoprotein (HDL)-related glycoprotein with a putative role in the cholesterol (CHOL) transport 
pathway [29]. Significant downregulation of APOD is observed in hepatocellular carcinoma, colorectal cancer, epithelial ovarian 
cancer, and breast cancer, and its close association with tumor progression and poor prognosis in these cancer types has been reported 
[30–33]. However, the specific mechanisms pertaining to APOD and GC cells proliferation, migration and related pathways remain 
unclear.

This study aimed to investigate the relationship between the expression of NMRGs and the prognosis and immune infiltration of GC 
patients, based on bioinformatics analysis. Furthermore, in vitro experiments were conducted to verify the molecular mechanisms by 
which NMRGs, particularly APOD, affect the proliferation and migration of GC cells. A prognostic model has been constructed through 
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NMRGs NAD + metabolism-related genes
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GEO Gene Expression Omnibus
KEGG Kyoto Encyclopedia of Genes and Genomes
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GSVA Gene Set Variation Analysis
ROC: Receiver operating characteristic curve
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TMB Tumor mutation burden
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the Least Absolute Shrinkage and Selection Operator (LASSO) regression analysis. The association between risk score and tumor tissue 
immune cell infiltration, gene mutation, and tumor stemness score was explored given this model. APOD and the proliferation, 
migration and related mechanisms of GC cells were studied.

2. Results

2.1. Consistent clustering

To understand the roles of NMRGs and their related genes in GC, 33 overlapping NMRGs were used to perform consistent clustering 
of GC samples. The results showed that the most appropriate grouping (Criterion: there was the most significant difference between 
groups and the slightest difference within groups) was achieved when the samples were divided into 3 clusters (Fig. 1a and b). The 
survival analysis of the three cluster samples showed that the GC patients of cluster C with the lower expression of NMRGs showed 
better survival times (Fig. 1c). This result revealed that NMRGs were associated with the prognosis of GC patients and prompted us to 
explore the underlying mechanisms further.

2.2. GSVA pathway enrichment analysis

The relationship of differentially expressed NMRGs between different clusters and clinical information is shown in a heatmap. In 
cluster C, the expression levels of 19 NMRGs were significantly lower than those in cluster A (P < 0.05). We conducted the Gene Set 
Variation Analysis (GSVA) to explore the biological characteristics among these three distinct clusters. The results showed that the 
enrichment of glycosaminoglycan biosynthesis of chondroitin sulfate, ECM receptor interactions, and focus adhesion signaling 
pathways in the high NMRGs expression group was significantly higher than in the low NMRGs expression group (P < 0.05)(Sup
plementary Fig. S1).

2.3. Construction of risk models

To screen out the prognostic-related hub genes, we intersected the differential genes among the three clusters and obtained 27 

Fig. 1. Consistent cluster analysis. (a) When k = 3, GC samples can be best discriminated based on NMRGs. (b) The relative change of the area 
under the CDF curve is the largest when the consensus matrix k is from 3 to 4. (c) The blue line represents the cluster with higher expression of 
NMRGs; the yellow line represents the cluster with median NMRGs expression; the red line represents the cluster with lower NMRGs expression and 
survival analysis showed that GC patients from cluster C with the lower expression of NMRGs had better survival time (P < 0.05).
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DEGs for the following analysis (Supplementary Fig. S2). LASSO regression analysis was conducted to identify SGCE, APOD, and 
PPP1R14A for constructing the prognostic model (Fig. 2a and b). The risk score was calculated based on the corresponding Cox 
regression model coefficients. Based on hub genes risk scores, the GC samples were divided into high-risk and low-risk groups. The 
results showed that GC patients in the low-risk group had better overall survival (OS) compared with the high-risk group (Fig. 2c), and 
the area under the ROC curve (AUC) for the OS of one year, three years, and five years were all greater than 0.5, indicating the 
reliability of the model (Fig. 2d).

By integrating multiple clinical factors and risk scores, we constructed a nomogram of GC patients and used a calibration curve to 
verify the accuracy of the nomogram. The results showed that risk score, age, and N stage were valuable for GC patients’ prognosis, and 
the calibration curve similarly demonstrated the model’s accuracy (Fig. 3a and b).

2.4. Immune infiltration of the tumor microenvironment

To explore differences in immune cell infiltration between the high-risk and low-risk groups, we quantified the level of immune 
infiltration in GC patients. We observed that the patients from the low-risk group obtained a lower estimate score, immune score, and 
stromal score than those from the high-risk group (Fig. 4a). Combining with different clusters, we further explored the relationship 
between the expression of SGCE, APOD, and PPP1R14A and various immune cells, and the results showed that follicular helper T cells 
and CD4 memory-activated T cells were negatively correlated with the expression levels of the three hub genes, while CD4 memory- 
resting T cells, Monocytes and resting Mast cells were positively correlated (Fig. 4b and c). We found that SGCE, APOD, and PPP1R14A 
were positively correlated with 22 differential NMRGs, among which AOX1 and PTGIS showed the strongest correlation with NMRGs 
(Supplementary Fig. S3). Survival analysis in GC samples showed that the low expression of SGCE, APOD, and PPP1R14A was asso
ciated with better prognosis of patients (Supplementary Fig. S4).

2.5. Correlation of risk scores with GC mutational status and microsatellite instability

The low-risk group showed a higher mutation rate than the high-risk group, and among the top 20 driver mutation genes, TTN and 
TP53 carried the highest mutation rates (Fig. 5a and b). The evidence indicated that patients with higher TMB had a better response to 
immunotherapy and thus performed a better prognosis than patients with lower TMB. TMB score was lower in the high-risk group than 
in the low-risk group (Fig. 5c). Tumor stemness analysis showed that stemness score based on mRNA expression (RNAss) was inversely 
correlated with risk score (Fig. 5d). Microsatellite stability status differed in GC patients, and the patients’ effect on immunotherapy 
varied. Risk scores significantly differed among the different microsatellite stability status groups (P < 0.05) (Fig. 5e). The proportion 

Fig. 2. LASSO regression analysis to construct a prognostic model. (a&b) Three genes significantly associated with the overall survival of GC 
patients were identified by LASSO regression analysis. (a) Ten-fold cross-validation was used to select the best parameters (lambda). (b) Optimal 
lambda determined the LASSO coefficient distribution. (c) Survival curve between the high-risk group and low-risk group. (d) The area under the 
ROC curve (AUC) for the OS of one year, three years, and five years.
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Fig. 3. The nomogram model of GC patients and the model’s calibration curves. (a) Prognostic nomogram for predicting 1-, 3-, and 5-year 
survival probabilities in GC patients. (b) Calibration curves of 1-, 3-, and 5-year overall survival predicted by the nomogram. The X-axis is the 
predicted survival probability of the nomogram, and the Y-axis is the observed survival probability. The solid red, green, and blue lines represent the 
performance of the column lines relative to the 45-degree line, indicating perfect predictions. *, P < 0.05; **, P < 0.01; ***, P < 0.001.

Fig. 4. TME characteristics. (a) The TME scores between different risk subgroups. Blue represents the low-risk group and red represents the high- 
risk group. (b) Heatmap of the correlation between different genes and immune cells. Red represents positive correlation and blue represents 
negative correlation. The darker the color, the stronger the correlation. (c) The relationship between the expression level of NMRGs and immune cell 
infiltration. The blue frame represents the cluster with higher expression of NMRGs; the yellow box represents the cluster with median-NMRGs 
expression; and the red rectangle represents the cluster with lower NMRGs expression. *, P < 0.05; **, P < 0.01; ***, P < 0.001.
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(42 %) of microsatellite instability-high (MSI-H) and microsatellite instability-low (MSI-L) in the low-risk subgroup was higher than 
that (22 %) in the high-risk subgroup (Fig. 5f).

2.6. Gene signature and CAFs

We analyzed the single-cell RNA sequencing data of primary and metastatic gastric cancer tissues of 6 patients, and combined 10 
samples, which were performed batch effects and cell clustering (Supplementary Fig. S5). Through the singleR database and looking at 
the classic cell markers, we found that SGCE, APOD, and PPP1R14A were mainly expressed in tumor-associated fibroblasts (CAFs) 
(Fig. 6a and b). SGCE, APOD, and PPP1R14A were highly consistent with the expression of CAFs classic markers in cells (the CAFs 
markers used for identification were ACTA2, FAP, PDGFRA, PDGFRB, PDPN, THY1, and COL1A1) (Fig. 6c and d), which means that 
these three genes can also serve as markers for CAFs. Finally, we quantified and scored the transcriptome samples through CAFs 
markers to verify the relationship between SGCE, APOD, and PPP1R14A and CAFs. The results showed that the CAFs content was 

Fig. 5. Correlation of risk score with TMB, RNAss, and MSI in GC. (a&b) Frequency of somatic mutations in GC patients in two risk subgroups. 
Red represents the high-risk group, and blue represents the low-risk group. (c) Differences in TMB scores between different risk groups. (d) As
sociation of risk scores with RNAss. (e) Risk scores among different microsatellite status subgroups. Blue represents the microsatellite stable (MSS) 
group, red represents the microsatellite instability-low (MSI-L) group, and yellow represents the microsatellite instability-high (MSI-H) group, the 
numbers above the graphs represent P-values. (f) Proportions of different microsatellite stability states in different risk subgroups, the numbers in 
the figure represent the percentages of different samples.
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higher in the high-risk group samples (Fig. 7a), and similarly, the correlation heatmap also showed that SGCE, APOD, and PPP1R14A 
and risk score are significantly positively correlated with CAFs markers and AOX1 and PTGIS. (Fig. 7b). Finally, the results of the 
survival curve showed that gastric cancer patients with fewer CAFs had a better prognosis (Fig. 7c). Based on the gene signature risk 
score, it was found that patients with fewer CAFs combined with a low-risk score had the best prognosis (Fig. 7d). These results imply 
that SGCE, APOD, and PPP1R14A may function mainly by regulating CAFs.

Fig. 6. Identification of SGCE, APOD, and PPP1R14A in cells. (a) Cell type identification of tumor cells. (b) Expression distribution of SGCE, 
APOD, and PPP1R14A in cells. (c&d) Consistent identification of gene signatures (SGCE, APOD, and PPP1R14A) and CAFs markers (ACTA2, FAP, 
PDGFRA, PDGFRB, PDPN, THY1 and COL1A1) expressed by CAFs and non-CAFs cells in tumors.

Fig. 7. Relationship between risk score and CAFs. (a) Comparison of CAFs content in high-risk and low-risk samples. (b) Correlation heatmap of 
SGCE, APOD, and PPP1R14A with CAFs markers, AOX1 and PTGIS in NMRGs. (c) Survival analysis of CAFs-associated gastric cancer patients. (d) 
The effect of risk score combined with CAFs on the prognosis of gastric cancer patients.
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2.7. qRT-PCR

To further determine the expression of SGCE, APOD, and PPP1R14A in GC cell lines and normal gastric mucosa epithelial cells, we 
conducted qRT-PCR to examine the expression of SGCE, APOD, and PPP1R14A in normal human gastric mucosa epithelial cell and five 
GC cells. The results showed that the expression levels of SGCE, APOD, and PPP1R14A in GC cell lines were on average 3-fold, 7-fold, 
and 5-fold higher than that in normal human gastric mucosa epithelial cell, respectively (P < 0.05) (Fig. 8), which were consistent with 
our previous analysis.

2.8. The relationship between APOD, PPP1R14A and SGCE and proliferation of gastric cancer cells

To assess the knockdown efficiency of APOD, PPP1R14A, and SGCE, RNA interference was performed using two cell lines SGC-7901 
and AGS. It was observed that APOD showed the highest knockdown efficiency (≥80 %) as determined by qRT-PCR (Fig. 9). It was 
evidenced the proliferation activity of SGC-7901 (Fig. 10a–c) and AGS cells (Fig. 10d–f) was reduced after knocking down APOD, 
PPP1R14A and SGCE through CCK8 experiment. Furthermore, in comparison to the other two genes, the knockdown of APOD resulted 
in the lowest proliferation activity among gastric cancer cells.

2.9. APOD affects the proliferation and migration of gastric cancer cells

To further validate the inhibitory effect of APOD on the proliferation of GC cells, plate cloning experiments were conducted in SGC- 
7901 and AGS cells (Fig. 11a). In comparison to the control group, the number of colonies in the APOD knockdown group was 
significantly reduced, particularly in the si-APOD-#3 group (Fig. 11b). In wound healing experiments, it was determined that the 
migration ability of SGC-7901 and AGS cells was significantly inhibited upon the knockdown of APOD (Supplementary Fig. 6).

2.10. The knockdown of APOD inhibits the proliferation of gastric cancer cells through the Wnt/β-catenin/EMT signaling pathway

APOD, N-caderin and β-catenin were highly expressed, while E-caderin was lowly expressed in AGS and SGC-7901 cells compared 
with normal human gastric mucosa epithelial cells (Fig. 12a), and the differences were statistically significant (Fig. 12c). The GC cells 
was most significantly inhibited utilizing si-APOD-#3, we thus investigate the pathways associated with APOD-mediated promotion of 
GC cells proliferation in AGS and SGC-7901 (Fig. 12b). There was a significant reduction in the expression of N-cadherin and β-catenin, 
while the expression of E-cadherin was increased following the knockdown of APOD (Fig. 12d). This indicates that APOD leads to GC 
cells proliferation through the Wnt/β-catenin/EMT signaling pathway.

3. Discussion

This study found that GC patients with a low expression level of NMRGs showed a higher survival time generally, potentially 
indicating that the expression level of NMRGs acts as a detrimental factor in GC progression. The increased NAD with the assistance of 
pyruvate kinase’s M2 subtype (PKM2), can effectively improve the redox capacity of tumor cells and thus protect against reactive 
oxygen species (ROS)-induced damage [34,35], as well as reduce the occurrence of apoptosis. Moreover, increased NAD leads to 
increased PARP1-dependent poly-ADP nucleation, thereby promoting tumorigenesis, in parallel, its increase raises the activity of 
sirtuin to promote tumor cell growth [13]. The pathway enrichment analysis of GSVA also showed that the enrichment of glycos
aminoglycan biosynthesis of chondroitin sulfate, ECM receptor interactions, and focus adhesion signaling pathways in GC samples 
with high NMRGs expression was significantly higher than in the group with low NMRGs expression (P < 0.05), which may be the 
reason why the expression of NMRGs promote the progression of GC. It has been found that glycosaminoglycan 

Fig. 8. Relative expression of SGCE, APOD, and PPP1R14A in GES-1 cell and five GC cell lines N87, SGC7901, MKN45, AGS, and MGC803. ns, no 
significance; *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001.
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biosynthesis-chondroitin sulfate metabolic reprogramming was associated with poor prognosis in GC patients [36], and ECM receptor 
interaction and focal adhesion were significantly activated in GC patients from the high-risk group [37].

In the analysis of immune cell tumor infiltration, we found resting Mast cells and CD4 memory resting T cells significantly posi
tively correlated with NMRGs, and CD4 memory activated T cells significantly negatively correlated (P < 0.001). The novel CAFs 
markers of GC, SGCE, APOD, and PPP1R14A, were identified and the GC patients with high-CAFs have a worse prognosis. Relevant 
studies have shown that the increased infiltration level of resting Mast cells that may act synergistically with CAFs in GC patients is 
associated with poor prognosis of patients [38,39]. CAFs remodel the extracellular matrix (ECM) and lead to the collective invasion of 
tumor cells, creating a supportive niche for cancer stem cells, weakening the tumor immune microenvironment (TIME), and 
reprogramming cancer cell resting metabolism, in the promotion of tumor metastasis and immune escape [40–42].

The infiltration of CD4 cells plays a vital role in the immune micro-environment of tumors and can significantly affect the prognosis 
of patients [43]. In colon cancer, an increase in CD4 memory-resting T cells has been identified as a risk factor, whereas CD4 
memory-activated T cells play a protective role [44]. These results suggest that NMRGs may regulate CAFs through SGCE, APOD, and 
PPP1R14A, which in turn modulate the immune microenvironment in GC, ultimately affecting patients’ prognosis. This result indicates 
that the effect of NMRGs on GC may mainly depend on the synergistic effect of AOX1 and PTGIS with SGCE, APOD, and PPP1R14A. 
High expression of PTGIS has been reported to be associated with poor overall survival and progression-free survival in GC [45]. The 
high expression of AOX1 in liver cancer can promote tumor proliferation [46], while its high expression in prostate cancer and clear 
cell renal cell carcinoma (ccRCC) [47,48] can inhibit tumor cells.

TMB and MSI are closely related to the prognosis after immunotherapy in multiple tumors and can be used as biomarkers to predict 
the effect of immunotherapy [49]. Our analysis showed that TMB was significantly lower in the high-risk group than in the low-risk 

Fig. 9. The expression of APOD, PPP1R14A and SGCE among gastric cancer and cells knocked down the corresponding genes. **, P < 0.01; ***, P <
0.001; ****, P < 0.0001.
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group (P < 0.05), and the proportion of MSI-H and MSI-L in the low-risk group was higher than in the high-risk group. Patients with 
high TMB levels showed significantly better tumor remission and survival after nivolumab treatment than those with low TMB levels 
[50]. A multicenter meta-analysis reported that patients with MSI were more likely to benefit from treatment than patients with 
microsatellite stability (MSS) in GC [51]. Furthermore, we found that risk scores were significantly negatively correlated with RNAss in 
GC, which suggests that the stemness of tumor cells in the low-risk group is higher than in the high-risk group. In GC patients, the group 
with high RNAss has a higher incidence of MSI and a lower pathological stage than that with low RNAss. The group with high RNAss 
can achieve better chemotherapy response and, thus, a better prognosis [52].

We employed GC cell lines to validate the roles of SGCE, APOD, and PPP1R14A. Our findings revealed that the knockdown of these 
three genes in GC cell lines led to discernible differences in cellular phenotypes. Specifically, the suppression of SGCE, APOD, and 
PPP1R14A significantly impeded tumor cell proliferation (Fig. 10). Notably, APOD showed a higher inhibitory effect on tumor cell 
migration compared with SGCE and PPP1R14A. We further explored the effect of APOD knockdown on GC migration and the specific 
molecular mechanisms that affect GC proliferation and migration. Epithelial–mesenchymal transition (EMT) is recognized as a pivotal 
process in cancer metastasis, thus the relationship of APOD and EMT in GC cells was studied. EMT facilitates the dissemination of cells 
from the primary tumor, enabling epithelial-like tumor cells (cancer cells) to acquire invasive mesenchymal-like traits [53]. Various 
stromal cell-derived signals, including paracrine signals from CAFs, orchestrate and sustain EMT in the primary tumor [54]. Up to now, 
there are still lack of reports related to APOD and tumor metastasis. In our current investigation, we demonstrated that downregulation 
of the gastric CAFs marker APOD impedes the EMT process in tumor cells, resulting in reduced tumor cell migration. This novel finding 
suggests that APOD, as a marker of gastric CAFs, may plays a pivotal role in mediating the crosstalk between tumor cells and the tumor 
microenvironment (TME) by regulating EMT events in tumor cells.

However, it is essential to acknowledge the limitations of our study. The ROC value of the risk model based on the gene signature 
did not meet optimal standards (0.8). In parallel, further animal experiments and the collection of more clinical samples are needed to 
validate these preliminary results. In summary, we preliminary revealed the correlation between NMRGs and prognosis in GC patients 
for the first time and identified genes SGCE, APOD, and PPP1R14A, which cooperate with NMRGs. The oncogenic properties of APOD, 
encompassing the promotion of proliferation and migration in GC cells through the Wnt/β-catenin/EMT signaling pathway, were 
meticulously validated. These findings suggest that a gene signature consisting of these three genes, especially APOD can serve as an 
effective predictor of GC treatment outcomes.

Fig. 10. The effects of APOD, PPP1R14A and SGCE on GC cell proliferation. (a–c) The proliferation of SGC-7901 cells after the knockdown of 
APOD, PPP1R14A, and SGCE by CCK8 assay. (d–f) The proliferation of AGS cells following knockdown of APOD, PPP1R14A, and SGCE in 
CCK8 experiment.
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Fig. 11. The influence of knocking down APOD on cell colony formation on SGC-7901 and AGS cells. (a) The photo showing the number of 
clones formed by SGC-7901 and AGS cells after knocking down APOD. (b) The visual analysis of the number of clones formed by SGC-7901 and AGS 
cells after knocking down APOD through plate cloning experiments. *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001.

Fig. 12. The expression of Wnt/β-catenin/EMT signaling pathway-related proteins among different cells. (a&c) The expression of Wnt/ 
β-catenin/EMT signaling pathway-related proteins among AGS, SGC-7901 and GES-1 cells. (b&d) The expression of Wnt/β-catenin/EMT signaling 
pathway-related proteins following knocking down APOD in AGS and SGC-7901 cells. *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001.
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4. Methods and materials

4.1. Data collection

Complete gene expression data, clinical information, and mutation data (including 375 GC samples and 32 normal gastric tissue 
samples) from the TCGA online database (https://portal. gdc. cancer. gov/) were downloaded. The RNA-seq data for 19,505 genes 
were measured as fragments per kilobase of transcript per million mapped reads (FPKM), which were converted to transcripts per 
million (TPM) after removing duplicated genes and zero expression genes [55]. In addition, the GSE84437 dataset [56] with a total of 
433 GC samples sequencing data from the Gene Expression Omnibus (GEO, https://www. ncbi. nlm. nih. gov/geo/database) online 
database was also downloaded. The TCGA-STAD and GSE84437 [56] data were batches corrected by using the “limma” package [57] 
and “sva” package [58] and were merged. The normal samples in TCGA-STAD were removed and the remained ones were merged with 
the GC samples in GSE84437. Thus 808 GC samples were obtained after eliminating the batch effect. The GSE163558 [59] single-cell 
data set includes, ten tissues of different organs or tissues (primary gastric cancer PT1, primary gastric cancer PT2, primary gastric 
cancer PT3, adjacent non-tumoral NT1, gastric cancer lymph node metastasis LN1, gastric cancer lymph node metastasis LN2, gastric 
cancer ovary metastasis O1, gastric cancer peritoneum metastasis P1, gastric cancer liver metastasis Li1, gastric cancer liver metastasis 
Li2) from six patients, with a total of 96810 cells [59]. NAD + metabolism-related genes (NMRGs) were obtained from the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway database (Pathway: hsa00760) and Reactome database (R-HSA-196807). The 
33 overlapping NMRGs between the above database and TCGA-STAD and GEO-STAD datasets were identified.

4.2. Consistent clustering

The “ConsensusClusterPlus” package [60] was performed based on the 33 overlapping NMRGs utilized for consistent clustering to 
determine subgroups of GC samples. The Euclidean squared distance metric and the K-means clustering algorithm were used for 
classifying samples into k clusters with k = 2 to k = 9. The results were presented using the “pheatmap” package [61], and the optimal 
number of clusters was determined by the consistent cumulative distribution function (CDF) graph and the delta region graph [62]. In 
addition, the “pheatmap” package [61] and the “survival” package [63] were used to separately draw the heatmap of the relationship 
between different clusters and patient clinical information and survival curves between samples of each cluster.

4.3. GSVA enrichment analysis

GSVA was performed to evaluate the pathways enriched in each cluster with the R package “GSVA” and “c2. cp. kegg. v7. 4. 
symbols” from the Molecular Signatures Database (MSigDB) [64]. Significance was defined according to a normalized P < 0.05.

4.4. LASSO regression analysis

The “limma” package was used to identify differential genes among different clusters (The adjusted P < 0.05 and the absolute value 
of Log2 fold change >0.585 were used as screening criteria) [65] and the “VennDiagram” package [66] was applied to draw Venn 
diagrams. To further identify gene sets more relevant to the prognosis of GC, univariate Cox regression analysis was processed to screen 
out genes that were valuable for the prognosis of GC patients (P < 0.05), and the most minor absolute shrinkage and selection operator 
(LASSO) Cox regression analysis was made to construct a prognostic gene signature with R package “glmnet” [67]. By combining the 
weighted regression coefficients on gene expression, GC samples were divided into high-risk and low-risk groups. The survival curves 
were drawn for different risk models based on the “survival” package [63]. The time-dependent receiver operating characteristic 
(ROC) curve was plotted, and the area under the ROC curve (AUC) was also calculated with the R package “timeROC” [68]. All in
dependent prognostic factors were used to build a nomogram to evaluate the 1-, 3-, and 5-year survival probability for patients with GC 
[69].

4.5. Immune cell infiltration analysis

Single-sample Gene Set Enrichment Analysis (ssGSEA) was conducted to quantify the relative abundance of each immune cell in the 
TME and the immune-related gene set was obtained with the R package “GSVA” [70], the “ggplot2” package [71] was applied to 
visualize the immune cell infiltration between different clusters. The “CIBERSORT” package [72] was utilized to analyze gene 
expression information in GC samples and to estimate the abundance of 22 different immune cell subsets. Besides, the Expression Data 
algorithm [73] was employed to estimate stromal cells and immune cells in GC. The unique properties of the transcriptomic profiles 
were fully utilized to infer the tumor cellularity and purity.

4.6. Correlation of risk scores with GC mutational status and microsatellite instability

The Masked Somatic Mutation data were obtained, analyzed, and visualized using the “maftools” package [74]. The mutation 
differences between the high-risk and low-risk groups were displayed in waterfall plots. Tumor mutation burden (TMB) variance 
analysis and correlation analysis were further performed for different risk groups. In addition, the correlation of different risk groups 
with microsatellite instability (MSI) was also explored and plotted as boxplots. In this study, tumor stemness scores were obtained 
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based on mRNA expression (RNAss) using the calculation method in the previous studies [75]. The expression data was integrated with 
the stemness score for the Spearman correlation test.

4.7. Single-cell data processing and dimensionality reduction

The gastric cancer sequencing data of GSE163558 from the GEO database were downloaded (https://www.ncbi.nlm.nih.gov/geo/ 
query/acc.cgi?acc=GSE163558), which included single-cell sequencing data from tumor samples of six gastric cancer patients. The 
sequencing data of the tumor tissue were extracted and the Seurat package in R software was used to create processable objects [76]. 
For each sample, the gene and count features were identified, and cells with less than 300 or more than 7000 features were filtered. 
Then, cells with mitochondrial RNA percentage >20 or with ribosome RNA percentage <5 were further removed. The samples were 
integrated and were performed normalized, scaled, and PCA analysis through the merge function. The harmony package was employed 
to evaluate and remove the batch effect in each subgroup [77]. The FindAllMarkers function was used to identify the marker genes of 
each cluster. The final dataset was performed dimensionality reduction clustering by using the UMAP package [78]. Based on the 
expression of CAFs markers, ACTA2, FAP, PDGFRA, PDGFRB, PDPN, THY1, and COL1A1, the ssGSEA package [79] was used to assess 
the content of CAFs in transcript samples.

4.8. qRT-PCR

The human gastric mucosa epithelial cell GES-1 and the five GC cell lines (N87, SGC7901, MKN45, AGS, and MGC803) were 
supplied from The Type Culture Collection of the Chinese Academy of Medical Science. All cultures were incubated in a humidified 
atmosphere of 5 % CO2 at 37 ◦C. TRIzol (Thermo Fisher Scientific Inc) was applied to extract total RNA from cells and a reverse 
transcription kit (Thermo Fisher Scientific Inc) was used to reverse-transcribe total RNA into cDNA. The expression of GAPDH was 
taken as a control, and the relative expression of the target genes was calculated using 2− ΔΔCT. Primer sequences can be seen in 
Supplementary Table S1.

4.9. RNA interference

Various siRNAs (si-APOD-460, si-APOD-282, si-APOD-539, si-PPP1R14A-340, si-PPP1R14A-183, si-PPP1R14A-69, si-SGCE-326, 
si-SGCE-1114, and si-SGCE-455) from Gemma Gene were employed to suppress the expression of APOD, PPP1R14A, and SGCE. A 
scrambled siRNA (si-NC) served as the negative control. The sequences of the siRNAs are provided in Supplementary Table S2. Cells 
were transiently transfected with 100 pmol of siRNA using polyethylenimine (MCE). After 24 h of transfection, cells were harvested for 
subsequent experiments.

4.10. CCK8 assay

AGS and SGC-7901 cells were seeded at a density of 2 × 103 cells per well and then incubated overnight on 96-well plates. Sub
sequent to overnight incubation, each well underwent treatment with 10 μl of CCK-8 solution (# MA0218, MeiluBio, China) for a 
duration of 1 h. The optical density (OD) values of the cells were subsequently measured using a microplate reader (#ST-360, Kehua 
Bio-engineering Co., China) at a wavelength of 450 nm. This procedure was replicated for three consecutive days to ascertain the OD 
values.

4.11. Wound-healing migration assay

In a 6-well plate, approximately 6 × 105 cells were cultured. Upon the formation of a monolayer, the cells were gently scraped using 
a sterile pipette tip. The cells were washed with PBS to eliminate the scraped cells and were further cultured in a cell culture incubator 
set at 37 ◦C and 5 % CO2 for a duration of 24 h. Microscopic images were captured during this period.

4.12. Colony formation assay

The proliferative capacity of the cells was also tested by colony formation assay. 2 × 103 cells were seeded and cultured for a period 
of 10–14 days on 6-well plates. The cells were fixed with 4 % paraformaldehyde (#30,188,928, Sinopharm, China) and stained with 
crystal violet staining buffer (#C0121 -100 ml, Beyotime, China) for counting the cell colonies.

4.13. Western blotting

Cell or animal samples were lysed using cold RIPA lysis buffer (# PC101, Epizyme, China), and the quantification of the extracted 
proteins was performed using the Pierce BCA protein assay kit (#P0009, Beyotime, China). Following electrophoresis on a sodium 
dodecyl sulfate polyacrylamide gel (SDS-PAGE), the blots were transferred to an NT nitrocellulose (NC) membrane (# 69924861, Pall 
Corporation, America). Subsequently, the membrane was incubated in 5 % skim milk for 1 h at room temperature (22–25 ◦C) and then 
utilized with primary antibodies: anti-APOD (1:2000, #DF7987, Affinity, Australia), anti-SGCE (1: 1000, #DF7279, Affinity, 
Australia), anti-PPP1R14A (1:1000, # AF6473, Affinity, Australia), anti-E-cadherin (1:1000, # BF0219, Affinity, Australia), anti-N- 
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cadherin (1:1000; # 13116T, Cell Signaling Technology, United States), anti-beta-catenin (1:1000, #ET1601-5, HuaBio, China) and 
anti-beta-actin (1:10,000, #66009-1-1g, Proteintech, China) overnight incubation at 4 ◦C. Secondary goat anti-rabbit or anti-mouse 
IgG antibodies (1:10,000, Zhongshan Jin Qiao, China) were applied for 1 h at room temperature (22–25 ◦C) and illuminated by 
enhanced chemiluminescence reagent (# MA01862, MeiluBio, China). The integrated optical density of each band was measured using 
Image-Pro Plus 6.0 software. The relative protein expression level of the target was calculated using beta-actin as a control.

4.14. Statistical analysis

All statistical analyses were completed by R software 4.1.3 [80]. The Spearman correlation analyses were applied to determine the 
correlation, and P < 0.05 was considered statistically significant [81]. Kaplan-Meier method using a two-sided log-rank test was 
applied for survival analysis of different risk subgroups [82]. The Wilcoxon signed-rank test was employed to compare the two groups’ 
differences, and P < 0.05 was the threshold of significance [83].
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