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The human gut microbiota refers to the all the microorganisms 
that inhabit the human gastrointestinal tract. Diverse roles of 
the gut microbiota in human health and disease have been rec-

ognized1,2. Metagenomic studies have transformed our understand-
ing of the taxonomic and functional diversity of human microbiota, 
but more than half of the sequencing reads from a typical human 
fecal metagenome cannot be mapped to existing bacterial reference 
genomes3,4. The lack of high-quality reference genomes has become an 
obstacle for high-resolution analyses of the human gut microbiome.

Although the previously reported Integrated Gene Catalog (IGC) 
has enabled metagenomic, metatranscriptomic and metaproteomic 
analyses3,5,6, the gap between compositional and functional analy-
ses can only be filled by individual bacterial genomes. Genes that 
co-vary among samples can be clustered into metagenomic linkage 
groups7, metagenomic clusters8 and metagenomic species9,10, whose 
annotation depends on alignment to the limited number of exist-
ing reference genomes. Other metagenomics-based analyses of the 
gut microbiome—for example, single nucleotide polymorphisms 
(SNPs), indels and copy number variations—rely on the coverage 
and quality of reference genomes11–13.

Despite the rapid increase in the number of sequenced bacte-
rial and archaeal genomes, reference genomes for gut bacteria are 
underrepresented. It is estimated that <​4% of the bacterial genomes 
in the US National Center for Biotechnology Information (NCBI) 

database belong to the human gut microbiota. Rather, the focus 
has been on clinically relevant pathogenic bacteria, which are over-
represented in the microbial databases. The first catalog of 178 ref-
erence bacterial genomes for the human microbiota was reported 
by the Human Microbiome Project (HMP)14 in 2010. To date, the 
HMP has sequenced >​2,000 microbial genomes cultivated from 
human body sites, 437 of which are gut microbiota (data accessed 
8 September 2017). However, the number of reference gut bacterial 
genomes is still far from saturated.

We present a reference catalog of genomes of cultivated human 
gut bacteria (named the CGR), established by culture-based isola-
tion of >​6,000 bacterial isolates from fecal samples of healthy indi-
viduals. The CGR comprises 1,520 nonredundant, high-quality 
draft bacterial genomes, contributing at least 264 new reference 
genomes to the gut microbiome. After inclusion of CGR genomes, 
the mapping rate of selected metagenomic datasets improved from 
around 50% to over 70%. In addition to improving metagenomic 
analyses, the CGR will improve functional characterization and 
pan-genomic analyses of the gut microbiota at high resolution.

Results
Expanded catalog of gut bacterial genomes. We obtained 
6,487 bacterial isolates from fresh fecal samples donated by 155 
healthy volunteers by using 11 different media under anaerobic  
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Reference genomes are essential for metagenomic analyses and functional characterization of the human gut microbiota. We 
present the Culturable Genome Reference (CGR), a collection of 1,520 nonredundant, high-quality draft genomes generated 
from >6,000 bacteria cultivated from fecal samples of healthy humans. Of the 1,520 genomes, which were chosen to cover 
all major bacterial phyla and genera in the human gut, 264 are not represented in existing reference genome catalogs. We 
show that this increase in the number of reference bacterial genomes improves the rate of mapping metagenomic sequencing 
reads from 50% to >70%, enabling higher-resolution descriptions of the human gut microbiome. We use the CGR genomes 
to annotate functions of 338 bacterial species, showing the utility of this resource for functional studies. We also carry out a 
pan-genome analysis of 38 important human gut species, which reveals the diversity and specificity of functional enrichment 
between their core and dispensable genomes.
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conditions (Supplementary Fig. 1a and Supplementary Table 1). 
Notably, more than half of the isolates were cultured from MPYG 
medium (Supplementary Fig. 1b). All the isolates were subjected 
to 16 S rRNA gene amplicon sequencing analysis, and 1,759 nonre-
dundant isolates that provided broad coverage of the phylogenetic 
tree were selected for whole-genome sequencing (Supplementary 
Fig. 1c and Supplementary Table 2). After de novo assembly of the 
next-generation sequencing reads, we identified 104 isolates that 
contained more than one genome. These assembled sequences 
were then parsed into 212 genomes using our in-house pipeline 
(Supplementary Table 3). Briefly, multi-genomes were split at scaf-
fold level on the basis of G +​ C content versus sequencing depth. The 
closest reference genomes for the spilt scaffolds were determined 
on the basis of average nucleotide identity (ANI), and the mis-split 
scaffolds were mapped back to their closest reference genome to get 
the final split genome (see Methods). In total, we obtained a col-
lection of 1,867 newly assembled genomes, 1,520 (81.4%) of which 
fulfilled the HMP’s criteria for high-quality draft genomes and 
exceeded 95% genome completeness and less than 5% contamina-
tion as evaluated by CheckM. The genome sizes and G +​ C contents 
of CGR ranged from 0.2 to 7.9 Mbp and 26.56% to 64.28%, respec-
tively. A total of 5,749,641 genes were predicted from the annotation 
data (Supplementary Table 4).

Taxonomic annotation of CGR was carried out using a self-con-
structed, efficient ANI-based pipeline (Supplementary Fig. 2). The 
1,520 high-quality genomes were classified into 338 species-level 
clusters (ANI ≥​ 95%, a species delineation corresponding to 70% 
DNA–DNA hybridization), which covered all the major phyla of 
the human gut microbiota, including Firmicutes (211 clusters, 796 

genomes), Bacteroidetes (60 clusters, 447 genomes), Actinobacteria 
(54 clusters, 235 genomes), Proteobacteria (10 clusters, 36 genomes) 
and Fusobacteria (3 clusters, 6 genomes) (Fig. 1a and Supplementary 
Table 5). Among these 338 clusters, 134 clusters (corresponding to 
264 genomes) were not annotated to any present reference genomes 
in NCBI (Fig. 1a), and 50 clusters did not fall within any sequenced 
genera (Supplementary Table 5). To corroborate the presence of 
novel species in CGR, we carried out additional taxonomic iden-
tification using 16 S rRNA gene analysis. A species was recognized 
as novel if its 16 S rRNA gene sequence had <​ 98.7% similarity with 
known species in the EzBioCloud database (see Methods). Overall, 
we identified 350 distinct bacterial species (based on operational 
taxonomic units), including 149 candidate novel species, 42 of 
which represent candidate novel genera. These results underscore 
the value of the individual reference genomes provided by the CGR.

Despite the variation of individual microbiota at the genus level, 
the CGR identified bacterial populations with broad diversity, cov-
ering eight out of nine core genera in the Chinese gut microbiota15. 
More than 80 species were novel in comparison with the previ-
ously sequenced species from a reported 1,000 cultured bacterial 
species from the human gastrointestinal tract16 (Supplementary 
Fig. 3a). Moreover, the CGR successfully identified 38 genera that 
were of low relative abundance ( <​ 1%) according to the IGC6, 
which is a large catalog of reference genes derived from a collec-
tion of ~1,250 metagenomic samples from individuals on three 
continents (Supplementary Fig. 3b). Among them, 7 genera were 
identified with more than 20 genomes (Bifidobacterium, Collinsella, 
Coprobacillus, Dorea, Streptococcus, Prevotella and Parabacteroides). 
The CGR also identified another 9 genera that were not detected 
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Fig. 1 | Phylogenetic tree of 1,520 isolated gut bacteria based on whole-genome sequences. The 1,520 high-quality genomes in CGR are classified into 
338 species-level clusters (ANI ≥​ 95%) based on their whole-genome sequences. Bacterial species from Firmicutes are colored in orange; Bacteroidetes, 
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by IGC6 (Butyricicoccus, Butyricimonas, Catenibacterium, Dielma, 
Erysipelatoclostridium, Megamonas, Melissococcus, Peptoclostridium 
and Vagococcus) (Supplementary Fig. 3b). These results underscore 
the contribution of the CGR to the existing database of gut bacterial 
whole genomes.

Improvement in metagenomic and SNP analyses. The existing 
reference genomes for metagenomic sequence mapping are far from 
saturated. For example, the genomes or draft genomes of bacteria 
and archaea used in a recent study allowed mapping of less than 
half of the sequences in the fecal metagenome3,4. To illustrate the 
value of the CGR to metagenomic analyses, we performed sequence 
mapping using previous metagenomic data6 with or without CGR. 
For Chinese samples, the read mapping rate in the original study 
that used the IGCR dataset (3,449 reference genomes from IGC6) 
was 52.00%, which was significantly improved to 76.88% after the 
inclusion of the CGR dataset (Fig. 2a and Supplementary Table 6). 
Since all the samples in the CGR were from China, it is reason-
able to assume that this genome dataset contributes substantially 
to the Chinese fecal metagenome. To evaluate the contribution of 
the CGR to the mapping of non-Chinese metagenomes, we car-
ried out a similar analysis using metagenomic data from American, 
Spanish and Danish fecal samples. Notably, the metagenomic read 
mapping ratios of these samples all increased substantially (Fig. 2a), 
although to a lesser extent compared with that of Chinese samples 
(Supplementary Fig. 4a). The improvement of mapping rates in 
both Chinese and non-Chinese samples indicates that the CGR cov-
ers a considerable number of gut bacterial species shared by people 
between these countries. To reveal the improvement of gene and 
protein diversity enabled by the CGR, we compared the gene and 
protein cumulative curve based on genomes used in a previous IGC 
study and after addition of the CGR (Supplementary Fig. 4b,c). The 
number of gene and protein families increased with inclusion of 
the first 1,500 genomes, but more or less plateaued at around 3,000 
genomes. The addition of our CGR genomes led to a substantial 
increase in the number of added gene and protein families as a 
function of genome number. A total of 373,555 gene clusters and 
149,945 protein clusters were added by inclusion of the CGR, cor-
responding to a 22% and 16% increase in known gene and protein 
sequence diversity, respectively.

To further illustrate the utility of the CGR, we used it to analyze 
gut microbiome SNPs in a cohort of 250 samples from the TwinsUK 
registry17. We generated a new set of 282 nonredundant represen-
tative genomes from the CGR (see Methods, Supplementary Fig. 
5 and Supplementary Table 7), which number nearly doubled the 
152 reference genomes used in the original TwinsUK analysis17. To 
highlight the new reference genomes identified by analysis with the 
existing genomes and the CGR genomes, we performed an ANI-
based alignment of the 282 genomes with the previously reported 
152 genomes. Among the 192 newly added reference genomes, 85 
were classified species while 107 were unclassified species (Fig. 2b).  
A high SNP density was found in Ruminococcus sp. CAG:108 (Clu 21),  
unclassified Firmicutes (Clu 157), Eubacterium rectale (Clu 6), 
Escherichia coli (Clu 22), and Ruminococcus sp. CAG:57 (Clu 19), 
suggesting a high degree of variations in the genomes of these species,  
while Lactobacillus gasseri (Clu 241), Enterococcus fecalis (Clu 316), 
Enterococcus durans (Clu 274) and Streptococcus mutans (Clu 217) 
showed lower SNP density. A total of 9.14 million SNPs were iden-
tified. The number of SNPs was increased for some species due 
to the newly added high-quality reference genomes in the CGR.  
We conclude that the CGR is a valuable resource for metagenomic 
studies because of the significant improvement in metagenomic 
resolution it enables.

Functions of gut microbiome bacteria. To better elucidate func-
tions of the gut microbiota, we annotated gene functions in 1,520 

CGR genomes using KEGG (the Kyoto Encyclopedia of Genes and 
Genomes)18. Functional pathways at KEGG level 2 showed that 
pathways involved in carbohydrate and amino acid metabolism 
are abundant in all isolated strains, suggesting that these are core 
functions of the gut microbiota (Supplementary Fig. 6). We also 
analyzed KEGG level 3 pathways and focused on those enriched 
at the phylum or genus level (Fig. 3a). We found that lipopolysac-
charide biosynthesis (ko00540) genes were widely distributed in 
the phyla Fusobacteria, Bacteroidetes and Proteobacteria, the main 
phyla of gram-negative bacteria. Genes involved in glycan degra-
dation (ko00531 and ko00511) were abundant in the genomes of 
the Bacteroidetes phylum. This observation is consistent with the 
notion that members of Bacteroidetes are prominent human gut 
symbionts that help degrade glycans in the diet and the gut mucosa19. 
The members of the Bacteroidetes also possess a high proportion of 
genes involved in sphingolipid metabolism (ko00600), glycosphin-
golipid biosynthesis (ko00601, ko00603 and ko00604) and steroid 
hormone biosynthesis (ko00140). Sphingolipids and hormone bio-
synthesis are ubiquitous in eukaryotic cells but not present in most 
bacteria. These results suggest that members of the Bacteroidetes 
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not only participate in energy metabolism in the gut, but may also 
act in sphingolipid and hormone signaling in mammalian cells. The 
Proteobacteria showed relatively high abundance in genes involved 
in degradation of xenobiotics (ko01220), possibly contributing to 
the degradation of environmental chemicals and pharmaceuticals 
in the gut.

The signal transduction system (two-component system, 
ko02020) and xenobiotics degradation (KEGG level 2 pathway) 
were ubiquitous in the genera Paenibacillus, Bacillus, Klebsiella, 
Escherichia, Citrobacter and Enterobacter, which are also presented 
in environmental niches, such as soil and water. The abundant signal 
transduction and xenobiotics degradation systems allow these gen-
era to sense and respond to various stresses and toxic substance pre-
sented in natural environments. Cell motility (chemotaxis, ko02030; 
flagellar assembly, ko02040) was conserved in the genera Roseburia, 
Paenibacillus, Bacillus, Escherichia, Citrobacter and Enterobacter, 
but varied within the genera Clostridium and Eubacterium.

Next we investigated functions and pathways that are annotated in 
the KEGG database, but not categorized as KEGG pathways (Fig. 3b 
and Supplementary Table 9). Virulence factors and antibiotic resis-
tance genes were annotated using the Virulence Factors Database 
(VFDB)20 and Comprehensive Antibiotic Resistance Database 
(CARD)21, respectively. Virulence factors and antibiotic resistance 
are clinically relevant and are abundant in the Proteobacteria phy-
lum, suggesting that this phylum may be a reservoir for opportunis-
tic pathogens. We examined the distribution of genes involved in 
responses to stresses frequently encountered by gut bacteria: oxygen  
tolerance and acid resistance. Oxygen tolerance was reflected by 
the number of genes encoding catalase and superoxide dismutase, 
two detoxification enzymes that scavenge reactive oxygen species 
produced during aerobic respiration. As expected, the facultative 
anaerobic bacteria in the genera Paenibacillus, Bacillus, Klebsiella, 
Escherichia, Citrobacter and Enterobacter were more oxygen tol-
erant. In addition to the previously reported Bacteroides fragilis22, 
other members of Bacteroidetes also showed moderate oxygen 
tolerance. Notably, bacteria in the Bacteroidetes phylum and the 

Bifidobacterium genus generally lacked acid resistance genes,  
suggesting that potential probiotics based on these organisms may 
suffer impaired survival in the acidic stomach environment after 
oral administration. Finally, we examined the distribution of six 
bacterial functions in the CGR that might have beneficial effects 
on human health. Amino acid and vitamin B synthesis genes were 
widely present in various gut bacteria, suggesting that gut micro-
biota might be an alternative source for nutrients that are sparse 
in vegetarian diets. Genes encoding bacterial bile salt hydrolases, 
which transform primary bile acids into secondary bile acids in the 
human intestine, were also ubiquitous in most gut bacteria. Genes 
encoding β​-galactosidases, which might attenuate problems associ-
ated with lactose intolerance, were relatively abundant in the phy-
lum Bacteroidetes. Genes involved in bacteriocin synthesis in gut 
bacteria were relatively rare and did not show phylum- or genus-
specific distribution.

Core and pan-genomes of underrepresented gut bacteria. We car-
ried out a pan-genome analysis of 36 species or clusters that con-
tain more than ten genomes, as well as two other species enriched 
in healthy controls compared with patients with type 2 diabetes 
in previous studies7,23,24, Fecalibacterium prausnitzii (cluster 63, 
seven genomes) and butyrate-producing bacterium SS3_4 (cluster 
45, nine genomes). These clusters covered the phyla Firmicutes, 
Bacteroidetes, Actinobacteria and Proteobacteria (Supplementary 
Fig. 7a and Supplementary Table 8a). The pan-genome of a clus-
ter can be defined as the sum of the core genes and dispensable 
genes (including unique genes and accessory genes) of all the mem-
bers within that cluster25. Our pan-genome analysis showed that 
Eubacterium rectale (cluster 37) contained the lowest proportion of 
core genes (12%); the remaining genes fell into accessory and unique 
genomes (38% and 40%, respectively). In contrast, Eubacterium 3_1 
(cluster 6) contained the largest proportion of core genes (53%) 
(Supplementary Fig. 7b). The pan-genome fitting curves showed 
that most clusters in Bacteroidetes displayed an ‘open’ pan-genome 
and had a relatively large pan-genome size, with Bacteroides vulgatus 
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having the largest pan-genome size at 14,970 genes (Supplementary 
Figs. 8 and 9 and Supplementary Table 8b). In contrast, members 
in the phylum Actinobacteria tend to represent a relatively ‘closed’ 
pan-genome, which was only slightly expanded by the addition of 
CGR genomes. These results suggest that gut bacterial genomes are 
variable in the Bacteroidetes phylum, less variable in the Firmicutes 
and Proteobacteria, and fairly conserved in the Actinobacteria.

We also explored the distribution of genes involved in butyrate 
synthesis and antibiotic resistance in the pan-genomes of gut bac-
teria. Functional annotation showed that six clusters contained the 
complete acetyl-CoA to butyrate biosynthesis pathway (Fig. 4a). 
Among them, F. prausnitzii, E. rectale, butyrate-producing bacte-
rium SS3_4 and Roseburia sp. CAG:45 harbored the complete path-
way in their core genome, suggesting that the butyrate-producing 
function was highly conserved in these species. This result is con-
sistent with the reported butyrate-producing capacity of these spe-
cies26–28. To explore the distribution of antibiotic resistance within 
the established pan-genomes, we annotated 25 antibiotic resis-
tance genes (ARGs) in each pan-genome. Consistent with a previ-
ous report29, the tetracycline resistance gene was widely present in  
the dispensable genome of these clusters (Fig. 4b). Notably, 
Escherichia coli contained almost all ARGs (23 of 25) in its pan-
genome, with half of these present in the core genome (Fig. 4b).  
In contrast, Bifidobacterium species, including B. bifibium,  
B. adolescentis, B. longum and B. pseudocatenulatum, rarely con-
tained ARGs in their pan-genomes.

To obtain a better understanding of the distribution of bacte-
rial functions in the core and dispensable genomes, we annotated 
the genomes using the Clusters of Orthologous Groups (COG)  

database30. This revealed that several housekeeping functions were sig-
nificantly enriched in the core genome, including post-translational 
modification, protein turnover and chaperones (O, P =​ 7.28 ×​ 10–12); 
translation, ribosomal structure and biogenesis (J, P =​ 7.28 ×​ 10–12);  
energy production and conversion (C, P =​ 7.28 ×​ 10–12);  
amino acid transport and metabolism (E, P =​ 7.28 ×​ 10–12); nucle-
otide transport and metabolism (F, P =​ 7.28 ×​ 10–12); coenzyme 
transport and metabolism (H, P =​ 1.46 ×​ 10–11); lipid transport and 
metabolism (I, P =​ 2.40 ×​ 10–10); and inorganic ion transport and 
metabolism (P, P =​ 2.40 ×​ 10–10) (Supplementary Fig. 10). By con-
trast, COG categories enriched in the dispensable genome included 
cell wall-membrane-envelope biogenesis (M, P =​ 2.70 ×​ 10–9);  
cell motility (N, P =​ 3.11 ×​ 10–5); signal transduction mechanisms  
(T, P =​ 0.00039); intracellular trafficking secretion and vesicular 
transport (U, P =​ 1.22 ×​ 10–7); defense mechanisms (V, P =​ 7.28 ×​  
10–12); transcription (K, P =​ 3.64 ×​ 10–11); replication recombi-
nation and repair (L, P =​ 7.28 ×​ 10–12); and function unknown  
(S, P =​ 0.03111). The remaining COG categories showed no signifi-
cant differences in core and dispensable genome.

Discussion
We used 11 culturing conditions for isolation of gut bacteria and 
archived more than 6,000 isolates. From this collection of isolates, 
we generated 1,520 high-quality draft reference genomes. The 
high coverage of the resulting CGR at the genus and species levels 
(including low-abundance species) demonstrates the value of cul-
ture-based methods for strain isolation from the gut microbiota. In 
line with this, a large number of gut bacterial species that were pre-
viously considered as unculturable have been successfully cultivated 
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in two recent studies31,32. Although there was some overlap between 
the novel species archived by CGR and in these two studies, the 
CGR contains 659 additional genomes (representing 209 clusters 
or species). Our cultivation methods can be applied to expand the 
CGR until it is saturated with the genomes of culturable gut bac-
teria. After that, single-cell sequencing can be used to investigate 
genomes of unculturable bacteria, with an overall aim of defining a 
saturated set of reference genomes of gut microbiota to underpin a 
better understanding of gut microbiome biology.

We applied out CGR genome dataset to assign functions to gut 
bacteria. For example, we found that virulence factors and antibiotic 
resistance genes are enriched in Klebsiella, Escherichia, Citrobacter 
and Enterobacter, which are opportunistic pathogens frequently 
isolated in clinical samples33. The abundance of signal transduction 
and cell motility genes in these bacteria could further contribute 
to their pathogenicity34,35. Notably, the Proteobacteria also possess 
abundant genes for degradation of xenobiotics, which might affect 
drug metabolism of patients in drug therapy. In line with this, a 
recent study reported that intratumor Proteobacteria can metabo-
lize chemotherapeutic drugs into inactive forms and thus attenuate 
the efficacy of cancer therapies36. The genes involved in beneficial 
functions such as glycan degradation and vitamin B synthesis are 
enriched in the Bacteroides genus, consistent with its mutualistic role 
in the human gut. Notably, we found that Bacteroides species con-
tain a considerable number of genes involved in sphingolipid and 
steroid hormone synthesis, suggesting their potential for modulat-
ing signaling in mammalian cells. In support of this, a recent study 
reported that Bacteroides fragilis can take advantage of sphingolipid 
signaling to enable symbiosis in the intestine37. It is noteworthy that 
genes involved in glycan degradation and sphingolipid metabolism 
were also enriched in the genus Bifidobacterium, another well-
known gut commensal microbe. However, genes involved in both 
pathways were not abundant in the Prevotella genus, suggesting  
a distinct function of Prevotella compared with other members of 
the Bacteroidetes phylum. This might account for observed nega-
tive correlations between the relative abundances of Prevotella and 
Bacteroides in the gut microbiota38. The potential role of gut bacteria 
in metabolism of estrogens has long been recognized39, but detailed 
mechanistic studies are still lacking. It will be interesting to explore 
the implication of this unique function of gut bacteria in hormone-
related health or disease. The CGR also enabled the identification 
of several potential bacteriocin-producing bacteria strains, which 
merit further verification.

The CGR will improve metagenomic analyses, genome variation 
analyses, functional characterization and pan-genome analyses. 
The isolated gut bacteria strains have been deposited in the China 
National GeneBank (CNGB) and may be useful for studies that aim 
to alter microbiota functions, as novel probiotics, or for verification 
of disease-associated bacterial markers.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of data availability, and asso-
ciated accession codes are available at https://doi.org/10.1038/
s41587-018-0008-8.
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Methods
Anaerobic cultivation of fecal bacteria. Fecal samples were collected from 155 
healthy human donors not taking any drugs during the last month before sampling. 
Detailed information is given in Supplementary Table 2. The samples were 
immediately transferred to an anaerobic chamber (Bactron Anaerobic Chamber, 
Bactron IV-2, Shellab, USA), homogenized in pre-reduced phosphate buffered 
saline (PBS) supplemented with 0.1% cysteine, and then diluted and spread on agar 
plates with different growth media (Supplementary Table 1). Plates were incubated 
under anaerobic condition in an atmosphere of 90% N2, 5% CO2 and 5% H2  
at 37 °C for 2–3 d. Single colonies were picked and streaked onto new plates to 
obtain single clones. All the strains were stored in a glycerol suspension (20%, v/v) 
containing 0.1% cysteine at –80 °C. The collection of the 155 samples was approved 
by the Institutional Review Board on Bioethics and Biosafety of BGI under number 
BGI-IRB17005-T1. All protocols were in compliance with the Declaration of 
Helsinki and explicit informed consent was obtained from all participants. Bacteria 
in the CGR (Culturable Genome Reference) are deposited in and are available from 
the E-BioBank (EBB) of the China National GeneBank (http://ebiobank.cngb.org/
index.php?g=​Content&m=​Hql&a=​sample_5&id=​393).

Whole-genome sequencing and de novo assembly. DNA extraction. Isolates 
cultivated to stationary phase were centrifuged at 7,227g at 4 °C for 10 min, and 
the resulting pellets were resuspended in 1 ml of Tris-EDTA. For bacterial cell lysis, 
50 µ​l of 10% SDS and 10 µ​l of proteinase K (20 mg/ml) were added, and the solution 
was incubated at 55 °C in a water bath for 2 h. The released genomic DNA was 
extracted using the phenol-chloroform method40.

Genome sequencing and assembly. Paired-end libraries with an insert size of 500 bp 
were constructed and sequenced on Illumina Hiseq 2000 platform to obtain about 
100 ×​ clean data for each sample. The reads were assembled using SOAPdenovo 
2.0441 to form scaffolds from which the rRNA genes were extracted by RNAMMer 
1.242. An in-house pipeline was used to obtain the best assembly containing an 
orthogonal design to investigate L,M,d,D,L,u,G (arguments of SOAPdenovo) 
and a single-factor design to investigate K (argument of SOAPdenovo) by 
comprehensively considering contig average length, longest scaffold and rRNA 
score. Libraries with an insert size of 240 bp were constructed and sequenced on 
the ionProton platform, which produced about 100 ×​ clean data for each sample. 
The reads were assembled through SPAdes (version 3.1.0)43 to form scaffolds.

Assessment of genome quality. Six high-quality draft assembly criteria from the 
Human Microbiome Project (HMP)14 and rRNA (5 s, 16 s and 23 s) completeness 
were adopted to ensure the assembly quality. The criteria are (i) 90% of the genome 
assembly must be included in contigs >​ 500 bp, (ii) 90% of the assembled bases 
must be at >​ 5 ×​ read coverage, (iii) the contig N50 must be >​ 5 kb, (iv) scaffold N50 
must be >​ 20 kb, (v) average contig length must be >​ 5 kb, and (vi) >​ 90% of the core 
genes44,45 must be present in the assembly.

Splitting for multi-genome isolates. The multi-genomes in isolates were initially 
identified using CheckM46 (contamination >​ 5%) and confirmed by manual 
inspection of the plot of G +​ C percentage vs. sequencing depth. An in-house 
pipeline was developed to split the scaffolds of multi-genomes into single genomes. 
Briefly, scaffolds in multi-genomes were first split on the basis of G +​ C percentage 
vs. sequencing depth values using the dbscan function of R (package “fpc”). The 
“complete” and “contamination” of split genomes were checked using CheckM. For 
split genomes with “complete” >​ 100% or “contamination” >​ 15%, an additional 
species-designating pipeline was used to obtain their closest reference (with ANI 
value >​ 90%). Finally, the mis-split scaffolds in each split genome were mapping 
back to the closest reference genome using BLASTn (-e 1e-5 -F F -m 8, blastn hits’ 
length >​ 90 nt, query scaffold coverage ≥​ 50%) to obtain the final split genomes.

Massive species and genus assignment process. NCBI-retrieved prokaryotic 
genomes. All complete genomes (update time 19 November 2014) and draft 
genomes (update time 8 August 2014) on the NCBI ftp site were downloaded 
to a local server. Items with more than one NCBI taxonomy identifier (taxid) or 
genome sequence not available or of non-prokaryotic source were removed, and of 
redundant items, only one was kept. As a result, 24,552 genomes, 19,116 genome-
scale amino acid sequences, and their taxonomic information were obtained.

Average nucleotide identity (ANI)47 for species level taxonomic assignment.  
The taxonomic assignment of each query genome was determined by the 
taxonomic information of all the NCBI-available prokaryotic genomes. The tetra-
base signature profiles of all the genomes and each query genome were acquired. 
A Pearson correlation test was performed between each query genome and all the 
genomes, resulting in a reference list sorted by decreasing correlation coefficient 
for each query genome. Then pairwise ANI alignment was performed between 
query and reference genomes one by one according to the reference list (tetra-base 
profile’s Pearson correlation test: correlation coefficient >​ 0 and P <​ 0.001) until the 
ANI value was larger than 95% in the top 500 items (defined as assigned in this 
case) or reference item number exceeded 500 without any ANI value being larger 
than 95% (defined as not assigned in this case).

Percentage of conserved proteins (POCP)48 for genus-level taxonomic assignment. The 
taxonomic assignment of each query genome was determined by the taxonomic 
information of all the NCBI-available prokaryotic genomes. The tetra-base 
signature profiles of all the reference genomes and the query genomes with no 
species assignment based on ANI were acquired. A Pearson correlation test was 
performed between each query genome and all the reference genomes, resulting in 
a reference list sorted by decreasing correlation coefficient for each query genome. 
Then the POCP calculation was performed between query and reference genomes 
one by one according to the reference list until the POCP value was larger than 
50% in the top 500 items (defined as “assigned” in this case) or reference items 
number exceeded 500 without any POCP value being larger than 50% (defined as 
“not assigned” in this case).

16S rRNA sequence analysis and novel species determination. 16 S rRNA gene 
sequences were extracted from the isolate genomes using RNAmmer42, except for 
16 genomes where extraction failed. The sequences were quality-control processed 
in EzBioCloud (http://www.ezbiocloud.net)49. The species-level operational 
taxonomic units (OTUs) were classified using mothur50 with an identity of 98.7% 
as a species-level cut-off, and cut-offs of 94.5% and 86.5% were used for genera and 
families51, respectively.

Comparison of CGR with genome datasets from other studies. To compare the new 
genomes and novel species archived in CGR with those identified in two recent 
studies, we downloaded 215 genomes reported by Browne et al.32 and 169 genomes 
reported by Lagier et al.31. We adopted a similar ANI pipeline as described above 
for species-level comparison by replacing the NCBI references with these newly 
downloaded genomes. “Map” was defined if the pairwise ANI value between 
a query genome in our 1,520 high-quality genomes and any one of references 
genomes (tetra-base profile’s Pearson correlation test: correlation coefficient  
>​ 0 and P <​ 0.001) was larger than 95%; if not, the species was defined as “unmap.”

Construction of species clusters. Pairwise ANI alignment was performed among 
the 1,520 high-quality genomes, and then hclust from the R package was used 
for hierarchical clustering with distance of 0.05 (equivalent to 95% ANI). A set 
of 40 universally conserved single-copy genes encoding proteins in bacteria and 
archaea was used for construction of a phylogenetic tree. Marker genes were 
detected and aligned using specI52 and prank53. Alignments were trimmed by 
trimal54 and concatenated with in-house scripts. A phylogenetic tree was inferred 
using the maximum likelihood method with RAxML (version 8.2.8)55 for the 
clusters’ representative genomes (N50 longest among cluster) with Rhizobium 
selenitireducens ATCC BAA 1503 (taxoid:1336235) as an outgroup, and was 
visualized in iTOL (http://itol.embl.de/)56 online.

Genome function annotation. The 1,520 high-quality genomes were functionally 
annotated. Genes were identified using Genemark57. The translated amino acid 
sequences of coding genes were aligned with RAPSearch (-s f -e 1e-2 -v 100 -u 2)58 
against the Kyoto Encyclopedia of Genes and Genomes (KEGG version 76)18,59 
(query match length higher than 50%) or with BLASTp (-e 1e-2 -F T -b 100 -K 1  
-a 1 -m 8) against the Antibiotic Resistance Genes Database (ARDB) (both 
query and subject match length higher than 40%, with identity higher than the 
ARDB-recommended thresholds)60, the Virulence Factor Database (VFDB)20,61 
(query match length higher than 50%, with identity higher than 60%), and the 
bacteriocin database (downloaded from BAGEL362, with identity higher than 
60%). Annotation of genes against the Comprehensive Antibiotic Resistance 
Database (CARD)21 was performed using Resistance Gene Identifier available as a 
downloadable command-line tool in the download section of the CARD website 
using default parameters.

Mapping ratio of metagenomic samples. The metagenomic reads6 were first 
aligned to the reference genomes of IGCR (3,449 sequenced prokaryotic genomes 
from IGC6) using SOAP263 (default parameters, except -m 100 -x 1000 -r 1 -l 30 
-v 5 -c 0.95 -u). The unmapped reads were then aligned to the newly sequenced 
genomes of CGR. The read mapping ratio of different samples was calculated, and 
the difference between samples was determined by Wilcoxon test in R.

Analysis of gene and protein diversity. Gene clusters. 5,749,641 genes in the 1,759 
CGR genomes and 11,330,042 genes in 3,449 IGCR genomes were clustered using 
CD-HIT64 with default parameters, except -G 0 -aS 0.9 -c 0.95 -M 0 -d 0 -r 1 -g 1, 
which amounts to 95% local sequence identity over 90% alignment coverage for the 
shorter sequence. A cluster is composed of two or more genes. An accumulative 
curve of gene clusters was drawn according to the sample name alphabetically with 
IGCR at the front part and CGR at the latter part.

Protein clusters. 5,749,641 protein sequences translated from genes in the 1,759 
CGR genomes and 11,330,042 protein sequences translated from genes in 
3,449 IGCR genomes were clustered using the kClust algorithm65 with default 
parameters, which amounts to 20–30% maximum pairwise sequence identity over 
80% alignment length with the longest sequence or seed of the cluster. A cluster 
is composed of two or more protein sequences. An accumulative curve of protein 
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clusters was drawn according to the sample name alphabetically with IGCR at the 
front part and CGR at the latter part.

SNP identification and similarity score. 1,520 genomes from the CGR were 
aligned with the sequenced reads from the 250 TwinsUK samples using SOAP2 
with identity ≥​90%. Representative genomes used for SNP analysis were identified 
according to three criteria described previously17. The resulting 282 genomes 
(Supplementary Table 7) that fulfilled these criteria were used as references for SNP 
calling using SAMtools (frequency >​ 1% and supported by ≥​4 reads) as previously 
described10,17,20. The reference genomes used in a previous study18 (152 genomes) 
were compared with that from CGR of this study (282 genomes) to identify shared 
and new reference genomes using ANI ≥​ 95% as a threshold (species level).

Pan genome analysis for 38 cluster. Clusters containing more than ten genomes 
(from CGR and NCBI), as well as Fecalibacterium prausnitzii (seven genomes) and 
butyrate-producing bacterium SS3_4 (nine genomes), were used for pan-genome 
analysis using the Bacterial Pan Genome Analysis tool (BPGA) pipeline66. The 
set of genes shared by all the members of cluster was defined as core genes, while 
genes partially shared in members (accessory genes) and unique to single members 
(unique genes) in a cluster were defined as dispensable gene67. The pan-genome 
fitting curves of 38 clusters were generated by the BPGA workflow and plotted in  
R (v.3.3.3). The functions of genes in the pan-genomes of 38 clusters were 
annotated by KEGG and ARDB, using arguments identical to those used for 
functional annotation of genomes. The acetyl-CoA-to-butyrate biosynthesis 
pathway was generated according to a previous study68, and the associated 
enzymes were identified according to the functional annotation and BLAST to 
the NCBI protein database (cut-off 1e–5, identity ≥​70%, coverage ≥​70%). The 
COG database30 was also used to identify the functional distribution in the core 
and dispensable sections via the BPGA pipeline. The significance of the difference 
between COG distribution in core and dispensable genomes was examined using 
Wilcoxon test as implemented in R (v.3.3.3).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The assembly draft genomes and annotation information for the 1,520 CGR 
strains are deposited in the NCBI under accession code PRJNA482748, and these 
data are also available in the China National GeneBank (CNGB) Nucleotide 
Sequence Archive (CNSA; accession code CNP0000126). All bacterial strains 
in the CGR have been deposited in the CNGB, a nonprofit, public-service-
oriented organization in China. The accession code for each strain is given in 
Supplementary Table 5 (Genebank_id). Researchers can explore strain information 
and request strains via http://ebiobank.cngb.org/index.php?g=​Content&m=​
Hql&a=​sample_5&id=​393#.
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Authentication Describe the authentication procedures for each cell line used OR declare that none of the cell lines used were authenticated.
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Specimen provenance Provide provenance information for specimens and describe permits that were obtained for the work (including the name of the 

issuing authority, the date of issue, and any identifying information).

Specimen deposition Indicate where the specimens have been deposited to permit free access by other researchers.

Dating methods If new dates are provided, describe how they were obtained (e.g. collection, storage, sample pretreatment and measurement), 
where they were obtained (i.e. lab name), the calibration program and the protocol for quality assurance OR state that no new 
dates are provided.

Tick this box to confirm that the raw and calibrated dates are available in the paper or in Supplementary Information.

Animals and other organisms
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Laboratory animals For laboratory animals, report species, strain, sex and age OR state that the study did not involve laboratory animals.
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released, say where and when) OR state that the study did not involve wild animals.

Field-collected samples For laboratory work with field-collected samples, describe all relevant parameters such as housing, maintenance, temperature, 
photoperiod and end-of-experiment protocol OR state that the study did not involve samples collected from the field.

Human research participants
Policy information about studies involving human research participants

Population characteristics This study recruited 155 participants from China, including 79 male and 76 females; Among them 2 were age 1-10, 21 were age 
11-20, 109 were age 21-50, and 23 were age >50; Please also see population characteristics in Supplementary Figure 1a.
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ChIP-seq
Data deposition

Confirm that both raw and final processed data have been deposited in a public database such as GEO.

Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links 
May remain private before publication.

For "Initial submission" or "Revised version" documents, provide reviewer access links.  For your "Final submission" document, 
provide a link to the deposited data.

Files in database submission Provide a list of all files available in the database submission.

Genome browser session 
(e.g. UCSC)

Provide a link to an anonymized genome browser session for "Initial submission" and "Revised version" documents only, to 
enable peer review.  Write "no longer applicable" for "Final submission" documents.

Methodology

Replicates Describe the experimental replicates, specifying number, type and replicate agreement.

Sequencing depth Describe the sequencing depth for each experiment, providing the total number of reads, uniquely mapped reads, length of 
reads and whether they were paired- or single-end.

Antibodies Describe the antibodies used for the ChIP-seq experiments; as applicable, provide supplier name, catalog number, clone 
name, and lot number.

Peak calling parameters Specify the command line program and parameters used for read mapping and peak calling, including the ChIP, control and 
index files used.

Data quality Describe the methods used to ensure data quality in full detail, including how many peaks are at FDR 5% and above 5-fold 
enrichment.

Software Describe the software used to collect and analyze the ChIP-seq data. For custom code that has been deposited into a 
community repository, provide accession details.

Flow Cytometry
Plots

Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Describe the sample preparation, detailing the biological source of the cells and any tissue processing steps used.

Instrument Identify the instrument used for data collection, specifying make and model number.

Software Describe the software used to collect and analyze the flow cytometry data. For custom code that has been deposited into a 
community repository, provide accession details.

Cell population abundance Describe the abundance of the relevant cell populations within post-sort fractions, providing details on the purity of the samples 
and how it was determined.

Gating strategy Describe the gating strategy used for all relevant experiments, specifying the preliminary FSC/SSC gates of the starting cell 
population, indicating where boundaries between "positive" and "negative" staining cell populations are defined.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.

Magnetic resonance imaging
Experimental design

Design type Indicate task or resting state; event-related or block design.
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Design specifications Specify the number of blocks, trials or experimental units per session and/or subject, and specify the length of each trial 
or block (if trials are blocked) and interval between trials.

Behavioral performance measures State number and/or type of variables recorded (e.g. correct button press, response time) and what statistics were used 
to establish that the subjects were performing the task as expected (e.g. mean, range, and/or standard deviation across 
subjects).

Acquisition

Imaging type(s) Specify: functional, structural, diffusion, perfusion.

Field strength Specify in Tesla

Sequence & imaging parameters Specify the pulse sequence type (gradient echo, spin echo, etc.), imaging type (EPI, spiral, etc.), field of view, matrix size, 
slice thickness, orientation and TE/TR/flip angle.

Area of acquisition State whether a whole brain scan was used OR define the area of acquisition, describing how the region was determined.

Diffusion MRI Used Not used

Preprocessing

Preprocessing software Provide detail on software version and revision number and on specific parameters (model/functions, brain extraction, 
segmentation, smoothing kernel size, etc.).

Normalization If data were normalized/standardized, describe the approach(es): specify linear or non-linear and define image types 
used for transformation OR indicate that data were not normalized and explain rationale for lack of normalization.

Normalization template Describe the template used for normalization/transformation, specifying subject space or group standardized space (e.g. 
original Talairach, MNI305, ICBM152) OR indicate that the data were not normalized.

Noise and artifact removal Describe your procedure(s) for artifact and structured noise removal, specifying motion parameters, tissue signals and 
physiological signals (heart rate, respiration).

Volume censoring Define your software and/or method and criteria for volume censoring, and state the extent of such censoring.

Statistical modeling & inference

Model type and settings Specify type (mass univariate, multivariate, RSA, predictive, etc.) and describe essential details of the model at the first 
and second levels (e.g. fixed, random or mixed effects; drift or auto-correlation).

Effect(s) tested Define precise effect in terms of the task or stimulus conditions instead of psychological concepts and indicate whether 
ANOVA or factorial designs were used.

Specify type of analysis: Whole brain ROI-based Both

Statistic type for inference
(See Eklund et al. 2016)

Specify voxel-wise or cluster-wise and report all relevant parameters for cluster-wise methods.

Correction Describe the type of correction and how it is obtained for multiple comparisons (e.g. FWE, FDR, permutation or Monte 
Carlo).

Models & analysis

n/a Involved in the study
Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis

Functional and/or effective connectivity Report the measures of dependence used and the model details (e.g. Pearson correlation, partial 
correlation, mutual information).

Graph analysis Report the dependent variable and connectivity measure, specifying weighted graph or binarized graph, 
subject- or group-level, and the global and/or node summaries used (e.g. clustering coefficient, efficiency, 
etc.).

Multivariate modeling and predictive analysis Specify independent variables, features extraction and dimension reduction, model, training and evaluation 
metrics.
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