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Abstract: Fast and accurate obstacle detection is essential for accurate perception of mobile vehicles’
environment. Because point clouds sensed by light detection and ranging (LiDAR) sensors are
sparse and unstructured, traditional obstacle clustering on raw point clouds are inaccurate and time
consuming. Thus, to achieve fast obstacle clustering in an unknown terrain, this paper proposes an
elevation-reference connected component labeling (ER-CCL) algorithm using graphic processing
unit (GPU) programing. LiDAR points are first projected onto a rasterized x—z plane so that sparse
points are mapped into a series of regularly arranged small cells. Based on the height distribution of
the LiDAR point, the ground cells are filtered out and a flag map is generated. Next, the ER-CCL
algorithm is implemented on the label map generated from the flag map to mark individual clusters
with unique labels. Finally, obstacle labeling results are inverse transformed from the x-z plane to 3D
points to provide clustering results. For real-time 3D point cloud clustering, ER-CCL is accelerated by
running it in parallel with the aid of GPU programming technology.

Keywords: 3D spatial clustering; connected component labeling; LIDAR; GPU programming

1. Introduction

3D obstacle perception provides a driving awareness interface for environment perception [1,2].
3D obstacle perception is also applied in mobile obstacle recognition, obstacle tracking, remote sensing,
semantic mapping, and 3D terrain reconstruction for unmanned vehicles [3-5]. Efficient obstacle
clustering can improve the speed of traversable road recognition, surrounding obstacle avoidance, and
local path planning, all of which support real-time decision making for unmanned ground vehicles
(UGV) [6,7]. Traditionally, real-time obstacle clustering algorithm research involves 3D point clouds
sensed by a stereo camera and video sequences mounted on UGVs [8,9]. Compared to other range
sensors, light detection and ranging (LiDAR) sensors apply narrow laser beams to detect the distance
to a 3D obstacle with high accuracy and speed [10]. Thus, LiDAR is widely utilized to collect 3D
point clouds for fast and accurate environment perception of UGVs, particularly in obstacle clustering
research for unmanned vehicles [11].

Spatial clustering, which involves partitioning 3D points into several distinguishable clusters,
is the most significant process for obstacle detection during autonomous driving. However, cluster
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analysis of large-scale point clouds sensed by LiDAR is time-consuming. Distance and other auxiliary
information are commonly utilized to evaluate the relationship between neighboring point clustering
and clustering processes [12]. When computing spatial relationships between a center point and
its neighboring points, the traversing neighboring points in memory incurs significant computation
costs [13]. Thus, connected component detection in LiDAR point clouds is difficult to execute in real
time [14,15].

Due to the unstructured and asymmetric characteristics of LIDAR point clouds, searching neighboring
points is computationally expensive in the obstacle clustering process [16]. Central processing unit
(CPU)-based computation methods always implement the neighboring points search process point by
point, which is difficult to achieve as a real-time approach [17]. To solve these problems, a graphic
processing unit (GPU)-based 3D obstacle labeling method is proposed to realize real-time obstacle
clustering in LiDAR point clouds. First, all non-ground 3D points are projected onto an x—z plane and
registered into a binary flag map, after ground points are filtered out by height threshold. Then, from
the non-ground obstacle cells, a GPU-based elevation-reference connected component labeling (ER-CCL)
algorithm is employed on the flag map to cluster connected cells into individual groups. A label map is
initialized by specifying the corresponding indices of the validated cells of the flag map. In the label map
generation process, the connected components are labeled by searching for the minimum index of each
cell and its neighboring cells. After several iterations to update the label map, all cells in a distinguished
blob are labeled with a unique value. Finally, through inverse mapping from the label map to the 3D
points, the non-ground points are clustered into several individual obstacles.

Traditional obstacle clustering algorithms for LiDAR point clouds rely on a CPU to execute a
computation program in a certain order [18]. The algorithm’s performance is limited by the computation
speed of the CPU, i.e., CPU computation speed can be a bottleneck in achieving real time obstacle
clustering of large-scale point clouds. To overcome this problem, in this study, a GPU programming
method is applied to implement the iterative labeling process in parallel to speed up clustering.

The primary contributions of the proposed system are as follows:

1.  The ER-CCL algorithm with a flexible search range is suitable for processing sparse and unevenly
dense LiDAR point clouds. To improve the processing speed, GPU programming technology is
utilized to process the ER-CCL algorithm in parallel for each cell.

2. To solve the problem of classifying connective obstacles, the proposed clustering method adopts
height information as a reference feature in the ER-CCL algorithm to determine whether adjacent
cells belong to the same obstacle.

The remaining of this paper is organized as follows. In Section 2, we discuss the studies related to
obstacle clustering algorithms in 3D point clouds. In Section 3, the proposed GPU-based 3D obstacle
labeling system is described. We analyze the performance of the proposed system, including clustering
accuracy and processing speed in Section 4. Conclusions and suggestions for future work are presented
in Section 5.

2. Related Works

Obstacle clustering is considered an essential preprocess for environment perception and
driving awareness for UGVs [19,20]. This section surveys several 3D points clustering and obstacle
labeling methods.

Traditional obstacle clustering methods in video sequences have relied on detecting foreground
pixels based on the difference between two successive frames [21,22]. Arvanitidou et al. [23] realized an
unsupervised moving obstacle clustering system using environmental images captured by a moving
camera. Currently, deep learning and convolutional network have been applied in 2D image analysis.
To provide depth information, Boulch et al. [24] exploited an RGB-Depth camera to sense 3D obstacle
positions in a structural and orderly format. A 2D deep clustering network was proposed to cluster
objects in a 2D view projected from the 3D points. Wei et al. [10] presented an environment perception
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and obstacle clustering method that used a mean-shift algorithm and a histogram map obtained from
depth datasets collected by a 3D range camera. In these obstacle clustering methods, the illumination
condition in an outdoor environment was not always stable, which influences the reconstruction
precision of a 3D scene model. Thus, camera-based obstacle detection methods did not satisfy the
precision required for autonomous driving.

Considering the limited resolution of depth and 3D range cameras, LiDAR sensing technology
is suitable to capture large-scale 3D point clouds with detailed and accurate location information to
realize autonomous driving for unmanned vehicles [25]. Based on the unstructured and asymmetric
distribution characteristics of LIDAR point clouds, in some traditional obstacle clustering methods,
a radius was defined as the spatial criterion to find neighbor points. Due to the spatial distribution
characteristics, the neighbor point count of a LIDAR point in a given area was uncertain. More neighbor
points existed in a dense area than in a sparse area. The uncertain number of neighboring points caused
difficulty in both storage and traversing processes. To realize obstacle clustering for unmanned driving,
Hackel [26] utilized a k-nearest neighbor (KNN) algorithm to avoid complicated iterative computation,
particularly in intensive point areas, by removing duplicative points. Thus, it was possible to extract
point cloud features, such as eigenvectors and eigenvalues, after reducing the redundant samples.
However, unordered neighbor point searching is computationally complex; thus, the KNN algorithm
was not suitable to traverse large-scale points in real-time.

To match environment perception speed with the driving speed, fast and accurate obstacle
recognition and traversable road analysis was required for behavioral planning of unmanned
vehicle [27]. To increase the detection speed of surrounding obstacles, Douillard et al. [16] proposed a
ground and non-ground clustering method from rasterization grids on the horizontal plane. After the
ground surface grids were clustered, the objects were clustered into several groups based on the
adjacent relations of non-ground grids. If the height value gradients between a cell and its neighbor
cells were remarkable, the occurrence rate of data edges existing at a junction point was in high
probability. Then an iterative close point algorithm was utilized to extract the features of the clustered
obstacles for 3D classification. Wang et al. [28] generated a hash table from an x—z plane projected from
the 3D points. Given the hash table, the connected cells were clustered into several groups based on
the distance between two cells. However, clustering methods that involve spatial adjacent relation
analysis were not sufficient fast for 3D scanning frame computation; thus, they are difficult to apply to
environment analysis of unmanned vehicle driving systems.

Clustering connected cells using CPU programming requires significant serial iterative
computation, which is very time consuming, particularly for large-scale LiDAR point clouds. To
increase the computational speed of the clustering process, Kalentev [29] proposed a CCL algorithm to
cluster connected 2D grid cells using GPU-based parallel programming technology. In this method, the
iterative and loop computations were executed in multiple GPU blocks simultaneously. With parallel
computation, the time required decreased by more than 15 times, thereby achieving a fast clustering
approach. To accelerate the labeling process, we employed a GPU-based CCL algorithm to cluster
foreground areas in real-time surveillance videos [30]. Differing from image clustering processes,
3D LiDAR point clouds are dispersed and without structural and connected relationships among
neighboring points. By projecting 3D points onto an x—z horizontal plane to establish a histogram map
that shows obvious relationships among neighboring cells, we realized a GPU-based obstacle labeling
method to increase the computational efficiency of connected cell clustering for obstacle clustering in
the driving awareness systems for unmanned vehicles, which overcame dispersed and non-sequence
issue of LiDAR point cloud.

3. Fast Spatial Clustering Method

A GPU-based fast spatial clustering system that separates individual clusters in LiDAR point
clouds is described in this section.
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3.1. Overview of Fast Spatial Clustering System

Figure 1 shows the flowchart of the proposed system with obstacle flag map generation and
obstacle labeling functions. The input to the proposed system is a frame of the original 3D LiDAR
point clouds, and the output is the spatial labeling results (as individual obstacle clusters).
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Figure 1. Flowchart of proposed fast spatial clustering system.

In each frame, ground points generally occupy more than one-half of the original point clouds [31],
and such point are not used in non-ground obstacle clustering function. Ground clustering, the first
step of the proposed ER-CCL algorithm, is performed prior to executing obstacle clustering process.
We propose an obstacle flag map generation method to filter out ground cells and identify non-ground
cells on a 2D horizontal plane (i.e., the x—z plane).

Using the valid cells in the obstacle flag map, a label map is initialized by specifying a unique
value in each label. Subsequently, we adopted ER-CCL algorithm to update every data cell’s value as a
searched minimum in a defined radius. Connected valid cells belonging to the same component are
labeled with the same value. After several updating iterations, each cell updates with a unique label
by assigning the minimum value among its neighbors. By inversely projecting the generated label map
to the corresponding 3D obstacles, each data point is assigned a unique label value, thereby achieving
obstacle clustering of LIDAR point clouds.

3.2. Obstacle Flag Map

As the general characteristics of terrain environments, the obstacles surrounding a UGV are
always perpendicular to the surface of the ground. Thus, it is feasible to implement obstacle clustering
as connected component labeling on the x—z plane projected from 3D points. Ground cells on the
x—z plane connect with nearly all non-ground obstacles on the ground; thus, it is difficult to separate
distinguished obstacles without ground clustering.

To avoid disturbance caused by ground points, an obstacle flag map generation method is
proposed to filter out the ground in a preprocess of the obstacle labeling process. The first step of the
preprocess is to obtain a rough height range of ground surface by analyzing the height distribution
of all points. As shown in Figure 2, the point distribution in y-axis exists a significant peak, which is
considered as the approximate height value of ground surface. Thus, the ground height is estimated as
—h, where I is always considered as the LIDAR sensor height. If the height value of a point locates in a
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range of ~h + g, this point is determined as a ground point, where the predefined variable o means our
allowed fluctuation range in the ground space division.

Height value

Point counts

Figure 2. Height distribution of a frame of point cloud.

Then, all 3D points in each frame are projected onto a horizontal x—z plane that consists of a series
of rasterized grid cells. After the 3D points are registered into their corresponding cells, a binary
flag map F of width 1 and height v is updated to record the valid cells in the x—z plane, above which
non-ground data points exist. The resolution of the flag map is denoted s. A point p (x, y, z) is projected
onto cell ¢ = (i, j), which is derived as

i=[x/s],j=1[z/s], 1)

We assume that a non-ground cell contains at least one point whose height value yj locates outside
the ground surface range. After all points registered on the x—z plane, the points projected onto a cell ¢
are collected into cluster K.. Thus, a flag f. € F is defined as

1 rkré%f('yk +1)) 20,
fo= 0 max(’yk +fl|) <o, @
keK.

When only one ground pixel is located above a cell, y; + h should be less than the resolution value

of the threshold value ¢. Thus, non-ground and empty cells are filtered out. Note that binary flag map
F is generated to record non-ground cells.

3.3. ER-CCL Algorithm

Based on the adjacency relation between a non-ground cell and its neighbors, the available
connective cells are determined as the same data. An ER-CCL algorithm is applied to distinguish the
connected components in obstacle flag map F.

Label map I.€L is created from flag map F. As defined by Equation (3), label /. in L is initialized as
its index if the corresponding f. equals to 1; otherwise, I is set as null.

Jixu+j o fe=1,
ZC_{ null fe=0, @)

Next, the ER-CCL algorithm is applied to label the connected component from label map L by
searching for the minimum index values of the neighbor clique of each valid cell. The neighbor clique
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N, of cell ¢ is defined as the neighbor cell set relative to the distance from  to c. The neighbor clique is
expressed as follows.
Ne={d=({,7})

i =il )

The search range 7 is the defined size of neighbor clique. When the search range r is higher, the
neighbor clique is larger so that the further neighbor cells are traversed. This way, excessively high or
low search ranges cause over or under clustering. The distance between cells ¢ = (7, j) and ¢’ = (i', j') is
defined as

i —il<r,

Moer = sli= )2+ (j- )2, )

The height difference sum between the highest points and the lowest points on cells c and ¢” is
defined as

Ahe = |max(yk) - max(yk/)| + |min(yk) - min(yk/)| ke K. ,kK €K, (6)

Variable E, - is defined as the similarity value between the two cells, which is used as the evaluation
criterion to constrain the minimum index searched in the label update process.

Eoo = ae ™M 4 (1—a)e e, ?)

In Equation (7), loss factor «a is defined to balance the two influencing factors of variable E. .,
including mapping count differences and the distance between the center cell and its singular neighbor
cell. Loss factor a locates in (0, 1). If the count difference between a center cell and its neighbor cell is
large, the similarity level between the two cells is small. In addition, the distance between the two
cells is negatively correlated with their similarity level. Thus, variable E. . is defined to estimate the
similarity level between the center cell ¢ and its neighbor cell ¢’. When variable E, .- takes a large value,
the similarity level between the two cells is large. In contrast, if variable E. .- is small, the similarity
level between c and c is small. Therefore, variable E. .- is utilized as the second constraint in the label
update process.

Label map L is updated by specifying any valid /- with the minimum label value among the labels
of the clique N, which is expressed as

lo =min(¥ly|c" € N.,Ecer 21) ¢ €N, (8)

Here, 7 = Be™". When search range r is increased, variable E, . is smaller for the cell in long
distance. Thus, parameter § is evaluated as smaller to propagate similar cells over a long distance that
are considered part of the same data.

This minimum label specifying process runs iteratively until all labels are fixed with the minimum
value of their neighbor cliques. Neighbor cell ¢’ is required to satisfy the condition that E. - is greater
than or equal to similarity threshold 7. Finally, all labels in a connected component are labeled with
the same value that is considered the unique label of the separate component. By inverse projection
from the labels on the x—z plane to their corresponding 3D points, cells of the label map L are labeled
with a unique value such that non-ground points are distinguished as several individual clusters with
different labels.

3.4. GPU-Based Fast Spatial Clustering System

To increase the speed of the neighbor points traversing process in large-scale point clouds, GPU
programming technology is applied to optimize the proposed ER-CCL algorithm to run in parallel.
A GPU-based 3D obstacle labeling framework is designed by allocating point clouds, the flag map,
and the label map to GPU memory with the corresponding GPU threads. Figure 3 shows the GPU
functions and memory usage for obstacle labeling.
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Figure 3. GPU accelerated framework for obstacle labeling in 3D point clouds.

After copying raw 3D point cloud data from CPU to GPU memory, the entire process is implemented
in parallel using GPU programming technology. The 3D coordinates of the sensed 3D points and
their corresponding labels are created in GPU memory as the ER-CCL input and output interfaces,
respectively. All 3D coordinates are projected onto the x—z plane to generate an obstacle flag map
through a ground-filtering process.

The flag and label maps are also created in GPU memory to record the point existence and
corresponding index in each cell. In label map, the proposed ER-CCL algorithm is executed
synchronously in a series of GPU threads to search for the minimum index among each cell’s
neighbors. The obstacle label map update process requires multiple iterations until the label value no
longer changes. In each label update iteration, each cell in label map is allocated with a GPU thread
to update its label value. When a GPU thread executes the label search process, the thread is held
on to access GPU memory that stores the neighbor cells in the label maps. Based on the label map
result, non-ground 3D points are inverse mapped to the corresponding label to obtain the labels of
non-ground connected components to realize fast obstacle labeling.

Figure 4 shows the memory and thread allocation design in the GPU device for the proposed
obstacle labeling method. The obstacle flag and label maps of same size are created and initialized in
global GPU memory. In addition, point labels are also allocated in global GPU memory to store the
inverse mapping result from ER-CCL clustering to identify the individual non-ground data index.

Note that the sizes of the flag and label maps are the same, and they defined by width u and
height v, respectively. Each block is specified to contain N threads. To implement all functions
synchronously, a single thread is allocated to each cell. Thus, M= u X v/N blocks are required for
parallel implementation of the functions of these maps.
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Figure 4. Memory and thread allocation in GPU device.

The GPU-based obstacle labeling method is programmed according to the pseudocode shown
as follow. The input of the ER-CCL algorithm is the LiDAR point coordinates and searching range .
Variables B and G are defined as the block and grid counts, respectively. The ground point filtering and
obstacle flag map generation processes are implemented by the Cuda_Kernel _GroundHeightCompute()
and Cuda_Kernel_FlagMapGenerate() GPU kernel programming functions. The initialization process
of the proposed ER-CCL method is implemented using the Cuda_Kernel_Label_Initialization() function
to initialize the label maps. The iterative label map update process is executed via a while loop with a
statement to judge whether there is any label change in label_map. When the loop finished, a final
label map with minimum label value is converged upon as a clustering result of rasterized cell in x—z
plane. Based on the ER-CCL clustering result, an inverse mapping procedure is executed using the
Cuda_Kernel_Inverse_Mapping() function.

Algorithm 1: GPU-based ER-CCL Algorithm

Input: point, search range r

B:block  G: grid count

Memcpy (cuda point, cpu point, hosttodevice)
Cuda_Kernel_GroundHeightCompute<<<B, G>>>(int height, cuda point);
Cuda_Kernel_FlagMapGenerate<<<B, G>>>(cuda flag_map, cuda point, int height);
Cuda_Kernel_Label_Initialization<<<B, G>>>(cuda label_map, cuda flag_map);
while (cuda label_map is changed)

Cuda_Kernel_Label_Updating<<<B, G>>>(cuda label_maps);
Cuda_Kernel_Inverse_Mapping<<<B, G>>>(cuda point_label, cuda label_map, cuda point);
Memcpy(cpu point_label, cuda point_label, devicetohost);

Return: point_label

4. Experiments and Analysis

The obstacle clustering results obtained by our proposed system were estimated and analyzed
under different parameters at different scenes in this section.
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4.1. Dataset and Experiment Platform Introduction

In this section, the speed and accuracy of the proposed GPU-based 3D obstacle labeling method
are analyzed. Experiments were performed using an EU260 unmanned vehicle produced by the BAIC
Motor Corporation as shown in Figure 5. The vehicle with an HDL-32E Velodyne LiDAR sensor was
driven in an outdoor environment with irregular obstacles, buildings, trees, and pedestrians. The
average driving speed was approximately 30 km per hour. The proposed method was implemented
on a computer with a 3.20 GHz Intel®Xeon E5-2670 CPU, a Quadro K5200 GPU, and 64 GB of RAM.
The obstacle clustering results were displayed in a virtual environment programmed using DirectX
software development kits.

Figure 5. Unmanned vehicle carried with LiDAR sensor.

The utilized HDL-32E LiDAR sensor generated 96,000 points in each frame. Our method was
tested on more than 300 frames in different scenes, such as common roads, crossroads, squares, etc. In
this project, we selected points within 20 m to test the proposed method for maintaining an accurate
clustering rate in a local space. The resolution of the projected x—z plane was 5 X 5 cm, and the valid
detection range of LiDAR point clouds was 40 m; thus, the flag map contained 800 x 800 cells.

4.2. Intermediate Experiment Result

Figure 6a shows the raw points in the defined valid range observed by the LiDAR sensor. After
mapping all 3D points to the x—z plane, the flag map was generated by rasterizing continuous scanning
points into x—z cells, as shown in Figure 6b. Figure 6c shows the connected components obtained using
the proposed GPU-based ER-CCL algorithm with a specified search range of five steps. All cells in
one cluster had only a single unique label value for identification, and this was utilized to generate a
unique color for the cluster. Based on the clustering result in the label map, inversing mapping was
executed to update the 3D point labels. Here, 3D points with same labels were considered to belong
to a single data, and these 3D points were rendered in the same color (Figure 6d). To distinguish
ground and non-ground obstacles, all ground points were set to light green. In addition, the data
boundaries of were searched among their points, and each data was rendered with a colored bounding
box (Figure 6e).



Sensors 2020, 20, 2309 10 of 20

(d) (e)

Figure 6. Experimental results obtained by the proposed 3D obstacle labeling method in LiDAR point
clouds: (a) raw 3D points in the valid range; (b) generated obstacle flag map; (c¢) ER-CCL algorithm
result on the label map; (d) inverse mapping result of 3D obstacle labeling; (e) obstacle labeling result
with bounding boxes.

4.3. Time Comparison under Different Parameters

The Figure 7 illustrated the time comparison of CPU/GPU based obstacle clustering methods
with different numbers of search ranges. All the time data in the figure were their average value that
tested on 10 consecutive frames of a series of outdoor scenes, which were collected by our experiment
platform. The blue curve in the figure means the time consumption of CPU-based obstacle clustering
method. When the search range increased from 1 to 8, the tendency of average time consumption
is apparently raising from 43.48 ms to 146.10 ms. Instead, the changes of our proposed GPU-based
obstacle clustering methods (CCL and ER-CCL) were not conspicuous, where time consumption
fluctuated around 20-40 ms with a slight increasing trend of the search ranges raising. This way, our
proposed GPU-based obstacle clustering methods giving a steadier time efficiency than CPU-based
clustering methods.

The clustering accuracies obtained with different numbers of search ranges were also examined,
and the results are shown as clustering results in Figure 8. In Figure 8a,b, the search ranges were
specified as two and four, respectively. Note that the spatial distribution of vegetation was sparse; thus,
such obstacles were always clustered into several fractional parts when the search range was small.
If the search range was large, individual obstacles were grouped into a single component. In our test
environment, a search range of five was suitable for accurate obstacle clustering, as shown in Figure 8c.
We also estimated and tested the proposed algorithm on an open dataset collected by the University
of Michigan North Campus, i.e., the Long-Term Vision and Lidar Dataset (NCLT) [32]. As shown in
Figure 8d—f, we used search ranges of two, four, and five to execute obstacle clustering on the NCLT
dataset. The NCLT dataset contains several types of similar obstacles as our dataset, such as trees,
shrubs, pedestrians, walls, and poles. In addition, the LiDAR point distributions and measurement
ranges in the NCLT dataset are also similar. Considering the balance of processing speed and clustering
accuracy, a search range of five was selected as the optimum value to maintain real-time and efficient
obstacle clustering on both the NCLT and our dataset.
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The relationships among speed, number of iterations, and cluster counts obtained for a search
range of three. As can be seen, the iteration and speed curves demonstrate strong negative correlation.
The labeling process of each cell was implemented in parallel; thus, the cluster counts did not obvious
influence on processing speed. With the advantages of GPU parallel computing, the proposed real-time
obstacle clustering method provided obstacle avoidance and traversable path detection interfaces for

unmanned vehicle driving.
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datasets: (a—c) clustering results of our collected dataset; (d—f) clustering results of NCLT dataset.
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4.4. Obstacle Clustering Results under Different Scenes

This section we tested our proposed GPU-based obstacle clustering method on several different
classic outdoor scenes for unmanned vehicles, including T junction (scene 1), normal road (scene 2),
little square (scene 3), road with multiple trees (scene 4), road with multiple pedestrians (scene 5),
and crossroad. As shown in Figure 9, the labeling results in flag maps were demonstrated in the left
column, and the obstacle clustering results in real 3D scenes with corresponding bounding boxes were
displayed in right column.

(a) Label map of scene 1

(c) Label map of scene 2

(e) Label map of scene 3 (f) Obstacle clustering result of scene 3

Figure 9. Cont.



Sensors 2020, 20, 2309 13 of 20

(g) Label map of scene 4

(i) Label map of scene 5

(k) Label map of scene 6 () Obstacle clustering result of scene 6

Figure 9. Obstacle clustering results in different scenes: (a) clustering result in label map in scene 1
(T junction); (b) obstacle clustering result in scene 1 (T junction); (c) clustering result in label map in
scene 2 (road); (d) obstacle clustering result in scene 2 (road); (e) clustering result in label map in scene
3 (square); (f) obstacle clustering result in scene 3 (square); (g) clustering result in label map in scene 4
(multi-trees); (h) obstacle clustering result in scene 4 (multi-trees); (i) clustering result in label map in
scene 5 (multi-person); (j) obstacle clustering result in scene 5 (multi-person); (k) clustering result in
label map in scene 6 (crossroad); (1) obstacle clustering result in scene 6 (crossroad).

We analyzed the clustering details of the 6 classic outdoor scenes in Table 1, including cluster
counts, iteration counts, and time consumption. All the clustering results were obtained by our
proposed obstacle clustering method with search range equal to 5. Scene 1 is a T junction, where
contains 4 big walls, 7 trees, 3 pedestrians, and many small trunks and pole-like objects. The total
cluster counts are 301 through 50 iterations using 39.85 ms. Scene 2 display a normal narrow road with
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multiple walls, trees, bushes, and small pole-like obstacles. Because the scene 2 is more complex than
scene 1, the iteration counts and time consumption of scene 2 are slightly higher than that of scene 1.
Similar, the clustering results with corresponding bounding boxes in the other four scenes also contain
multiple clear obstacles, especially these near with UGV center. Even though some obstacles were
located a little further from the vehicle existed over segmentation situation, most clusters in our testing
scenes were clustered correctly.

Table 1. Detail information of clustering results in different scenes

Scene No. Cluster Count Iteration Count Time (ms)
Scene 1 (T junction) 301 50 39.85
Scene 2 (road) 528 79 52.16
Scene 3 (square) 493 39 40.14
Scene 4 (multi-trees) 682 46 46.58
Scene 5 (multi-persons) 474 46 40.02
Scene 6 (crossroad) 497 30 28.89

4.5. Obstacle Clustering Result under Different Methods

We compared the clustering accuracy of the proposed ER-CCL algorithm to those of three
clustering methods, i.e., the connected component analysis algorithm [33], and the clustering in hash
table method [28]. The obstacle clustering results on x-z horizontal planes are shown in Figure 10a,c,e.
The cells belonging to one data are rendered in a distinguishing color. Based on a ground truth
obstacle clustering result, the obstacles of error labeling are marked in red bounding boxes as shown in
Figure 10b,d,f to analyze accuracy. Figure 10b,d,f show that several outliers and overlapping points of
plants were prone to incorrect labeling and sorting. Besides, the points locating far from the LiDAR
were scattered, so that it was hard to determine the clustering criteria. Thus, these sparse points were
primarily divided into several small components concentrated in areas where plants were distributed
densely, as shown in Figure 10d,f.

Compared to the proposed ER-CCL algorithm, the results of the connected component analysis
and clustering in hash table method showed higher error clustering frequency, especially in densely
vegetated areas (top and bottom right in Figure 10d,f. Therefore, the proposed elevation-reference
CCL clustering algorithm shows higher accuracy with less susceptibility to overlapping and problems
related to the existence of connective obstacles.

Table 2 compares the obstacle labeling accuracy and speed performance of the three methods.
Here, accuracy was estimated based on the number of clustered data and error data. Such as in
Figure 10d, several individual obstacles were clustered into one data as error labeling results marked
in red bounding box. The accuracy rate of the proposed method reached 98.2% with 3 false clustering
obstacles among 170 valid obstacles. The data counts of error clustering were less than that using
the connected component analysis, and clustering in hash table methods. In addition, the speed
performance of the proposed GPU-based obstacle labeling system achieved 0.02 s each frame, was
much higher than that of the other two methods.
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(e) ()

Figure 10. Obstacle clustering results in x—z horizontal plane obtained using three algorithms: (a)

ER-CCL; (c) connected component analysis; (e) clustering in hash table; (b,d,f) Manually marked error
clustering parts.



Sensors 2020, 20, 2309 16 of 20

Table 2. Obstacle clustering results obtained using different algorithms

Obstacle Count Error Data Count Clustering Accuracy Time (s)
Elevation-reference CCL (our) 170 3 98.2% 0.02
Connected component analysis [33] 185 8 95.7% 0.04
Clustering in hash table [28] 130 6 95.4% 0.10

4.6. Data Independency Solution of Labeling Process

Because the proposed ER-CCL algorithm is executed by GPU threads in graphic memory, the
propagated label value is uncertain due to the race condition if multiple threads operate on a shared
cell synchronously. To eliminate data dependencies for GPU-based labeling process, we proposed a
data independency solution, which enlarge the label map to r X r intermediate label maps as shown in
Figure 11a. During updating process, there was no more than two GPU threads operating one shared
cell memory synchronously.

In the intermediate label maps, each cell was operated by a unique thread that independent from
other threads. The (u/r + 1) X (v/r + 1) X r X r GPU threads were allocated, where u was the width of
label map, v was the height of the label map, and r was searching range. During the minimum value
searching process, each cell in the intermediate maps stored the minimum label value of its locating
clique of the label map as illustrated in Figure 11b. Then, the label map updated with the minimum
label values, which were searched from their corresponding positions in the r X r intermediate label
maps. After several updating iterations, each cell in a connected component updated with a unique
label by assigning the minimum value from the corresponding cells of the intermediate maps.

The data independency solution required allocating multiple intermediate label maps to eliminate
data dependency phenomenon that existing in GPU-based programing. We compared the iteration
numbers among the CPU-based CCL algorithm (CPUCCL) and our proposed data independence
solution in GPU-based labeling process (GPUDICCL) as shown in Figure 12. Obviously, the iteration
times of CPU-based algorithm were nearly less than half that of GPU-based algorithm. The main
influencing factor regarding iteration differences between CPUCCL and GPUDICCL was their different
mechanism on memory accessing. In CPUCCL, the left and bottom data was updated with the current
data which had been updated with the minimum value of the previous updating process. However,
using GPUDICCL, the minimum value searched by each thread only propagated its neighboring cells.
Thus, the iteration times of GPUDICCL were more than CPUCCL algorithm. Using our proposed
GPU-based ERCCL (GPUERCCL), although the minimum value also propagated to its neighboring
cells, the compared cell had a certain probability to have been changed as smaller value by the other
thread, due to the race condition. Therefore, GPUERCCL performed faster than GPUDICCL.

Based on our compare experiment results, the iteration times of our proposed GPU-based ER-CCL
were more but the time consumption was lower than CPU-based algorithm. Even the GPUDICCL
was developed as a data independence solution to eliminate the influence caused by race condition
of GPU threads, more iterations were required for the convergence than GPUERCCL. Accordingly,
the processing speed became low using GPUDICCL. Considering that speed performance was an
important assessment to evaluate spatial clustering algorithm in point cloud domain, the proposed
GPUERCCL was implemented in our obstacle detection application.
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Figure 11. Proposed data independency solution of labeling process: (a) intermediate label map
updating and thread allocating; (b) intermediate label maps merging process with independent data.
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5. Conclusions

We have proposed a GPU-based fast spatial clustering method to label dispersed LiDAR point
clouds into individual groups. In the proposed method, once ground cells are filtered by analyzing the
height distribution of a height statistic map, an obstacle flag map is generated as the obstacle clustering
interface. In addition, we have developed the ER-CCL algorithm to mark individual clusters with their
unique labels. The search range of the ER-CCL algorithm is flexible and suitable for processing sparse
and uneven density LiDAR point clouds. To achieve a real-time approach, ER-CCL was implemented
using GPU programming technology to process flag and label map in parallel. The proposed method
was tested on both our collected dataset and the open NCLT dataset. The experimental results
demonstrate that the proposed method achieved accurate and real-time obstacle clustering in an
outdoor environment. In addition, compared to other instance labeling algorithms in the sparse LIDAR
point cloud processing domain, the clustering results obtained by the proposed method were obtained
faster. Besides, considering the data dependence phenomenon exist in GPU-based ER-CCL algorithm,
this paper gave another solution to maintain the label independency in label map updating process
through allocating enough GPU memory as intermediate updating storage so that a data was only
operated by one thread. In the future, we plan to extract the features of detected objects to realize an
object recognition method based on our fast and accurate clustering results. The clustering results will
combine with environment semantic and recognizing information to UGVs’ realize the automatic road
perception, driving awareness with collision avoidance, traversal road analysis, and intelligent driving.

Author Contributions: Methodology, Y.T.; Project Administration, W.S.; Supervision, L.C.; Funding Acquisition,
Y.S.; Investigation, ].K. and S.S.; All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the MSIT(Ministry of Science, ICT), Korea, under the High-Potential
Individuals Global Training Program (2019-0-01585) supervised by the IITP(Institute for Information &
Communications Technology Planning & Evaluation), National Nature Science Foundation of China (no. 61503005,
University of Macau RC MYRG2018-00132-FST, Science and Technology Development Fund, Macao S.A.R
(196/2017/A3), the Great Wall Scholar Program (CIT&TCD20190304, CIT&TCD20190305), “Yuyou” Project
of North China University of Technology, and Beijing Young Topnotch Talents Cultivation Program (No.
CIT&TCD201904009).

Conflicts of Interest: The authors declare no conflict of interest.



Sensors 2020, 20, 2309 19 of 20

References

1. Xia, Z.,;Hu, Z,; Luo,]. UPTP vehicle trajectory prediction based on user preference under complexity environment.
Wirel. Pers. Commun. 2017, 97, 4651-4665. [CrossRef]

2. Asvadi, A.; Garrote, L.; Premebida, C.; Peixoto, P.; Nunes, U.]. Multimodal vehicle detection: Fusing
3D-LIDAR and color camera data. Pattern Recogn. Lett. 2018, 115, 20-29. [CrossRef]

3. Zhang, ].M,; Jin, X.K; Sun, J.; Wang, J.; Kumar, A. Spatial and semantic convolutional features for robust
visual object tracking. Multimed. Tools Appl. 2018. [CrossRef]

4. Zhang, JM.; Wu, Y.; Feng, W.J.; Wang, J. Spatially attentive visual tracking using multi-model adaptive
response fusion. IEEE Access 2019, 7, 83873-83887. [CrossRef]

5. Zhang, JM.; Lu, C.Q,; Li, X.D.; Kim, H.J.; Wang, J. A full convolutional network based on DenseNet for
remote sensing scene classification. Math. Biosci. Eng. 2019, 16, 3345-3367. [CrossRef] [PubMed]

6. Rostami, S.M.H.; Sangaiah, A.K.; Wang, J.; Liu, X.Z. Obstacle avoidance of mobile robots using modified
artificial potential field algorithm. Eurasip. J. Wirel. Commun. 2019. accepted. [CrossRef]

7. Hua, X,; Chen, L.; Tang, B. Dynamic path planning for autonomous driving on various roads with avoidance
of static and moving obstacles. Mech. Syst. Signal. Process. 2018, 100, 482-500. [CrossRef]

8.  Mahalingam, T.; Subramoniam, M. A robust single and multiple moving object detection, tracking
and classification. Appl. Comput. Inform. 2018. [CrossRef]

9.  Zhao, G,; Xiao, X.; Yuan, J. Fusion of 3D-LIDAR and camera data for scene parsing. J. Vis. Commun. Image R.
2014, 25, 165-183. [CrossRef]

10.  Wei, X.; Phung, S.; Bouzerdoum, A. Object segmentation and classification using 3-D range camera. J. Vis.
Commun. Image R 2014, 25, 74-85. [CrossRef]

11. Asvadi, A.; Premebida, C.; Peixoto, P. 3D Lidar-based static and moving obstacle detection in driving
environments: An approach based on voxels and multi-region ground planes. Robot. Auton. Syst. 2016, 83,
299-311. [CrossRef]

12.  Zeng, H.; Wang, H.; Dong, J. Robust 3D keypoint detection method based on double Gaussian weighted
dissimilarity measure. Multimed. Tools Appl. 2017, 76, 26377-26389. [CrossRef]

13.  Chu, PM.; Cho, S.; Sim, S.; Kwak, K.; Cho, K. Convergent application for trace elimination of dynamic objects
from accumulated lidar point clouds. Multimed. Tools Appl. 2017, 77, 1-19. [CrossRef]

14. Zhi, S.; Liu, Y,; Li, X. Toward real-time 3D object recognition: A lightweight volumetric CNN framework
using multitask learning. Comput. Graph. 2018, 71, 199-207. [CrossRef]

15. Bartels, M.; Wei, H. Threshold-free object and ground point separation in LIDAR data. Pattern Recogn. Lett.
2010, 31, 1089-1099. [CrossRef]

16. Douillard, B.; Underwood, J.; Vlaskine, V. A Pipeline for the segmentation and classification of 3D point clouds.
In Springer Tracts in Advanced Robotics; Springer: Berlin/Heidelberg, Germany, 2014; Volume 79, pp. 585-600.

17. Li, G,; Zhu, Z.; Cong, Z.; Yang, F. Efficient decomposition of strongly connected components on GPUs.
J. Syst. Archit. 2014, 60, 1-10. [CrossRef]

18. Cho, S.; Kim, J.; Ikram, W.; Cho, K ; Jeong, Y.S.; Um, K.; Sim, S. Sloped terrain segmentation for autonomous
drive using sparse 3D point cloud. Sci. World |. 2014, 2014, 582753. [CrossRef]

19. Karma, S.; Zorba, E.; Pallis, G.C. Use of unmanned vehicles in search and rescue operations in forest fires:
Advantages and limitations observed in a field trial. Int. J. Disast. Risk Reduct. 2015, 13, 307-312. [CrossRef]

20. Menendez, E.; Victores, ].G.; Montero, R. Tunnel structural inspection and assessment using an autonomous
robotic system. Autom. Constr. 2018, 87, 117-126. [CrossRef]

21.  Veronese, L.D.P.; Cheein, F.A,; Bastos, T.; Souza, A.F.D.; Aguiar, E.D. A computational geometry approach
for localization and tracking in GPS-denied environments. J. Field Robot. 2016, 33, 946-966. [CrossRef]

22.  Quack, T.M; Reiter, M.; Abel, D. Digital map generation and localization for vehicles in urban intersections
using LiDAR and GNSS data. IFAC 2017, 50, 251-257. [CrossRef]

23. Arvanitidou, M.G.; Tok, M.; Glantz, A. Motion-based object segmentation using hysteresis and bidirectional
linter-frame change detection in sequences with moving camera. Signal. Process. Image Commun. 2013, 28,
1420-1434. [CrossRef]

24. Boulch, A.; Guerry, J.; Saux, B.L. SnapNet: 3D point cloud semantic labelling with 2D deep segmentation

networks. Comput. Graph. 2018, 71, 189-198. [CrossRef]


http://dx.doi.org/10.1007/s11277-017-4743-9
http://dx.doi.org/10.1016/j.patrec.2017.09.038
http://dx.doi.org/10.1007/s11042-018-6562-8
http://dx.doi.org/10.1109/ACCESS.2019.2924944
http://dx.doi.org/10.3934/mbe.2019167
http://www.ncbi.nlm.nih.gov/pubmed/31499617
http://dx.doi.org/10.1186/s13638-019-1396-2
http://dx.doi.org/10.1016/j.ymssp.2017.07.019
http://dx.doi.org/10.1016/j.aci.2018.01.001
http://dx.doi.org/10.1016/j.jvcir.2013.06.008
http://dx.doi.org/10.1016/j.jvcir.2013.04.002
http://dx.doi.org/10.1016/j.robot.2016.06.007
http://dx.doi.org/10.1007/s11042-016-4139-y
http://dx.doi.org/10.1007/s11042-017-5089-8
http://dx.doi.org/10.1016/j.cag.2017.10.007
http://dx.doi.org/10.1016/j.patrec.2010.03.007
http://dx.doi.org/10.1016/j.sysarc.2013.10.014
http://dx.doi.org/10.1155/2014/582753
http://dx.doi.org/10.1016/j.ijdrr.2015.07.009
http://dx.doi.org/10.1016/j.autcon.2017.12.001
http://dx.doi.org/10.1002/rob.21594
http://dx.doi.org/10.1016/j.ifacol.2017.08.042
http://dx.doi.org/10.1016/j.image.2013.09.008
http://dx.doi.org/10.1016/j.cag.2017.11.010

Sensors 2020, 20, 2309 20 of 20

25.

26.

27.

28.

29.

30.

31.

32.

33.

Darms, M.S.; Rybski, P.E.; Baker, C.; Urmson, C. Obstacle detection and tracking for the urban challenge.
IEEE Trans. Intell. Transp. 2009, 10, 475-485. [CrossRef]

Hackel, T.; Wegner, ].D.; Schindler, K. Joint classification and contour extraction of large 3D point clouds.
ISPRS |. Photogramm. 2017, 130, 231-245. [CrossRef]

Ye, L.; Yamamoto, T. Modeling connected and autonomous vehicles in heterogeneous traffic flow. Phys. A
Stat. Mech. Its Appl. 2018, 490, 269-277. [CrossRef]

Wang, H.; Wang, B.; Liu, B. Pedestrian recognition and tracking using 3D LiDAR for autonomous vehicle.
Robot. Auton. Syst. 2017, 88, 71-78. [CrossRef]

Kalentev, O.; Rai, A.; Kemnitz, S.; Schneider, R. Connected component labelling on a 2D grid using CUDA.
J. Parallel Distrib. Comput. 2011, 71, 615-620. [CrossRef]

Song, W.; Tian, Y.; Fong, S.; Cho, K.; Wang, W.; Zhang, W. GPU-accelerated foreground segmentation and
labelling for real-time video surveillance. Sustainability 2016, 8, 916. [CrossRef]

Tian, Y.; Song, W.; Sun, S.; Fong, S.; Zou, S. 3D object recognition method with multiple feature extraction
from LiDAR point clouds. . Supercomput. 2019, 75, 4430—4442. [CrossRef]

Bianco, N.C.; Ushani, A.K.; Eustice, RM. University of Michigan north campus long-term vision and
lidar dataset. Int. J. Robot. Res. 2016, 35, 1023-1034. [CrossRef]

Awrangjeb, M.; Fraser, C.S.; Lu, G. Building change detection from LIDAR point cloud data based on
connected component analysis. In Proceedings of the ISPRS Annals of the Photogrammetry, Remote Sensing
and Spatial Information Sciences, La Grande Motte, France, 28 September-3 October 2015.

@ © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).


http://dx.doi.org/10.1109/TITS.2009.2018319
http://dx.doi.org/10.1016/j.isprsjprs.2017.05.012
http://dx.doi.org/10.1016/j.physa.2017.08.015
http://dx.doi.org/10.1016/j.robot.2016.11.014
http://dx.doi.org/10.1016/j.jpdc.2010.10.012
http://dx.doi.org/10.3390/su8100916
http://dx.doi.org/10.1007/s11227-019-02830-9
http://dx.doi.org/10.1177/0278364915614638
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Related Works 
	Fast Spatial Clustering Method 
	Overview of Fast Spatial Clustering System 
	Obstacle Flag Map 
	ER-CCL Algorithm 
	GPU-Based Fast Spatial Clustering System 

	Experiments and Analysis 
	Dataset and Experiment Platform Introduction 
	Intermediate Experiment Result 
	Time Comparison under Different Parameters 
	Obstacle Clustering Results under Different Scenes 
	Obstacle Clustering Result under Different Methods 
	Data Independency Solution of Labeling Process 

	Conclusions 
	References

