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Blast exposures that occur during training are common in military personnel; however,
the biomarkers that relate to these subtle injuries is not well understood. Therefore,
the purpose of this study is to identify the acute biomarkers related to blast injury
in a cohort of military personnel exposure to blast-related training. Thirty-four military
personnel who participated in the training program were included in this study. Blood
samples were collected before and after repetitive blast-related training on days 2
(n = 19) and days 7 (n = 15). Serum concentration (pg/mL) of tau, glial fibrillary acidic
protein (GFAP), neurofilament light chain (NfL), and phosphorylated tau181 (p-tau181)
were measured using an ultrasensitive immunoassay platform. We observed that serum
p-tau181 concentrations were elevated after exposed to repetitive blast on days 2
(z = −2.983, p = 0.003) and days 7 (z = −2.158, p = 0.031). Serum tau (z = −2.272,
p = 0.023) and NfL (z = −2.158, p = 0.031) levels were significantly elevated after
exposure to repetitive blasts on days 7. Our findings indicate that blast exposure affects
serum biomarkers indicating axonal injury.
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INTRODUCTION

Blast exposures are a prominent feature of injury in military training and combat related due
to the use of improvised explosive devices (Ritenour and Baskin, 2008). The impact of blast
can be divided into four classification categories: primary, secondary, tertiary, and quaternary
based on the mechanism of blast injury such as impact of the overpressure wave with body
surfaces, penetrating fragmentation or blunt injury, and/or direct exposure to toxic inhalant,
burn, and asphyxia (Wolf et al., 2009). History of blast traumatic brain injuries (bTBI) of
all severities can be associated with long-term neurobehavioral sequelae (Lippa et al., 2020)
and have been linked to a risk for neurodegenerative processes (McKee et al., 2013; Barnes
et al., 2018). The primary bTBIs (mild TBI or concussion) are account for 80% of the bTBI in
military population, yet the biological mechanism of blast affects the brain physiological function
are limited. Most common concussion or mild TBI occur in athletes, military training, and
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FIGURE 1 | Summary of blast exposure schedule in both group Participants were exposed to four light charges which less than 1 pound (0.03, 0.07, 0.11, 0.15) of
net explosive weight (NEW) and a single heavy charges (10.44 pounds of NEW).

combat (Lehman et al., 2012). Concussion may have a
temporary effect on neurological and cognitive impairment
which resolve within day to weeks in most individuals
impacted (Frieden et al., 2015; Dikmen et al., 2017). When
concussions or bTBIs occur multiple times, individuals are at
greater risk for chronic neurological dysfunction and long-
term consequences for neurodegeneration (McKee et al., 2013;
McKee and Robinson, 2014; McAllister and McCrea, 2017).
To date, there is little known about the impact of repetitive
blast exposures on fluid biomarkers, and the management of
subconcussive impacts is based primarily on clinical symptom
presentation. Therefore, a better understanding of temporal
changes in proteins that are related to neuronal injuries is
important to determine impacts of these exposures, and for future
clinical management.

In contrast to low-level blast exposures, blunt TBI blood-
based biomarkers have been relatively well investigated, including
glial fibrillary acidic protein (GFAP), neurofilament light chain
(NfL), tau, and phosphorylated tau (p-tau) (Bogoslovsky et al.,
2017; Rubenstein et al., 2017; Wang et al., 2018). Elevated
blood concentrations of GFAP, and NfL level have been
observed following a TBI and sports concussion, a component
of the cytoskeleton of astrocytes, and neuro-axonal damaged
(Shahim et al., 2014; Gill et al., 2018; McCrea et al., 2020;
Meier et al., 2020; Tschiffely et al., 2020; Giza et al., 2021).
Previously, we have observed axonal marker levels of NfL
and tau proteins were elevated in military training exposure
to moderated blast exposure (≥5 psi) (Edwards et al., 2020).
Tau is a microtubule-associated protein that plays a crucial
role in regulating microtubule dynamics, axonal transport, and
neurite outgrowth, and all these functions of tau are modulated
by site-specific phosphorylation (Barbier et al., 2019). In a
previous study it was shown that serum tau and p-tau (231)
levels were elevated in severe TBI patients and associated
with poor outcomes at 6 months (Rubenstein et al., 2017).
In combat-related repetitive mild TBI were reported higher
exosomal p-tau181 and associated with neuropsychological
symptoms (Kenney et al., 2018). Accumulated activity of tau
phosphorylation is linked to synaptic impairment, neuronal
dysfunction, and the formation of neurofibrillary tangles (NFTs),
a key pathological feature of several neurodegenerative diseases
and chronic traumatic encephalopathy (CTE) (Rajmohan and
Reddy, 2017; Katsumoto et al., 2019). Recently, p-tau181 and 217
are a potential biomarkers for Alzheimer’s Disease (Thijssen et al.,
2020, 2021). To our knowledge, the effect of repetitive low-level

blast exposure on peripheral biomarkers of axonal damage is not
well understood. Specifically, the effect of acute blast exposure
on serum p-tau181 level is not known in the clinical cohort.
Therefore, the purpose of this study was to investigate the
feasibility of acute biomarkers changes after blast-related training
exposure in military personnel.

MATERIALS AND METHODS

Study Participants
This study protocol was reviewed and approved by Institutional
Review Board Committee at Washington University and U.S
Army Fort Leonard Wood. Written informed consents were
received prior to enrolling in this study. All participants were
male military personnel (n = 34) who participated in the
breaching training program at Fort Leonard Wood. The blood
samples were collected on day 1 (baseline) and after post-training
on day 2 and day 7 of the training program. Participants have
experienced the same types of explosive charges, and the light
charges were less than 1 pound (0.03, 0.07, 0.11, and 0.15) of
net explosive weight (NEW) and the heavy charges were 10.44
pounds of NEW. The heavy charges in this study were similar
to 4.35 pounds per square inch (psi) blast overpressure in the
previous study (Boutté et al., 2019). The length of the detonation
cord varied with the charges. Group 1 participants (n = 19) were
exposed to 4 light blasts during training on day 1 and exposed to
a single heavy blast on day 2. Group 2 participants (n = 15) were
exposed to 4 light blasts on day 5 and a single heavy blast on day
7 of training. Blood was collected before and after training within
30 min of blast exposure. The representative figure of this study
design is presented in Figure 1.

TABLE 1 | Sample characteristics of the study participants.

Group 1 (N = 19) Group 2 (N = 15)

Age, year, mean (SD) 31.21 (4.49) 35.40 (8.16)

Male, no. (%) 19 (100) 15 (100)

Race, no. (%)

White 17 (85.5) 13 (86.7)

Missing 2 (10.5) 2 (13.3)

Previous concussion, no (%)

0 19 (100.0) 14 (93.3)

5 0 (0.0) 1 (6.7)
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FIGURE 2 | Dot plots of serum tau (A), p-tau181 (B), GFAP (C), and NfL (D) concentration before and after blast exposure at day 2. The horizontal line in each box
represents the median, with the error bars representing the interquartile range. Wilcoxon signed-rank tests were used to analyze the differences before and after
blast exposure. p-tau181, phosphorylated tau181; GFAP, glial fibrillary acidic protein; NfL, neurofilament light chain.

Protein Quantification
Venipuncture blood was collected, centrifuged (15 min, 1,500
g, room temperature), and frozen (−80◦C) in aliquots within
60 min of sample collection. Samples were shipped on
dry ice to the National Institutes of Health for protein
quantification. Serum samples were analyzed in duplicate
using the Single Molecule Array (SIMOA) Assay (Quanterix,
Lexington, MA) for measurement of tau, GFAP, NfL, and
p-tau181 concentration on a HD-X AnalyzerTM. Samples
were diluted 4-fold for measurement. Briefly, four distinct,
dye-encoded bead populations presented with analyte-specific
capture antibodies were first incubated with samples and
biotinylated detector antibodies. The target molecule present
within each sample was captured by capture beads and
labeled with the corresponding detector antibodies. The bead-
conjugated immunocomplex was thoroughly washed and labeled
with streptavidin-conjugate β-galactosidase. Following a final
wash, resorufin β-D-galactopyranoside was added. The bead-
conjugated immunocomplexes were loaded on the SIMOA array
disc, which is designed to enable imaging of each bead via their
encoded dyes and fluorescent substrate generated signals. The
number of bead-containing wells producing positive signals was
proportional to the number of target molecules within the sample
for each plex. The average number of enzymes per bead (AEB) of
each sample fit into a four-parameter logistic curve plotted using
the known concentration of the calibrators. The correlation was

confirmed for the accuracy of fit and for the conversion of AEB
values to concentrations. The average coefficient of variation of
biomarkers were no higher than 25%; and the lower limits of
quantifications (LLOQs) for tau, GFAP, NfL, and p-tau181 were
0.212, 1.868, 0.964, and 1.352 pg/ml, respectively.

Statistical Analysis
Statistical analyses were conducted using Statistical Package for
the Social Science (SPSS) version 28 (Armonk, NY, IBM Corp.).
GraphPad Prism version 9.3 was used to generate a graph in this
study (GraphPad Software, La Jolla, CA). Wilcoxon signed-rank
test was used to assess changes in proteins concentration
before and after blast-related training. Statistical significance was
considered with p < 0.05.

RESULTS

All participants in this study were male with a mean age of
31.21 years (SD = 4.49) and with a range of 24–38 years of age for
group 1. The mean age of group 2 was 35.40 years (SD= 8.16) with
a range of 26–52 years of age. The majority of them were White
for both groups (85.5 and 86.7%). Demographic characteristics of
the study participants are shown in Table 1.

In group 1, serum tau concentration was not significantly
different after day 2 blast exposure (z = −1.415, p = 0.157)
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FIGURE 3 | Dot plots of serum tau (A), p-tau181 (B), GFAP (C), and NfL (D) concentration before and after blast exposure at day 7. The horizontal line in each box
represents the median, with the error bars representing the interquartile range. Wilcoxon signed-rank tests were used to analyze the differences before and after
blast exposure p-tau181, phosphorylated tau-181; GFAP, glial fibrillary acidic protein; NfL, neurofilament light chain.

(Figure 2A). The median concentration of tau at day 1 was 0.19
pg/mL (25–75th percentile, 0.12–0.39) and day 2 blast exposure
was 0.33 pg/mL (0.23–0.47). Serum p-tau181 concentration was
significantly elevated after day 2 blast exposure (z = −2.983,
p = 0.003) (Figure 2B). The median concentration of p-tau181
at day 1 was 0.81 pg/mL (0.62 − 1.05) and 1.13 pg/mL (0.92-1.53)
in day 2. Concentration of GFAP level was trending significant
after day 2 blast exposure (z = −1.807, p = 0.071) (Figure 2C).
The level of NfL was not significantly different after day 2 blast
exposure (z = −0.631, p = 0.528) (Figure 2D).

In group 2, serum tau concentration was significantly different
after day 7 blast exposure (z = −2.272, p = 0.023) (Figure 3A).
The median concentration of tau at day 1 was 0.25 pg/mL (0.23–
0.35) and day 7 blast exposure was 0.32 pg/mL (0.25–0.40).
Serum p-tau181 concentration was significantly elevated after
day 7 blast exposure (z = −2.158, p = 0.031) (Figure 3B). The
median concentration of p-tau181 at baseline was 0.89 pg/mL
(0.79 − 1.26) and 1.14 pg/mL (0.99 − 1.21) in day 7 blast
exposure. Concentration of GFAP level was not significant after
day 7 blast exposure (z = −0.057, p = 0.955) (Figure 3C). The
levels of NfL was significantly different after day 7 blast exposure
(z = −2.158, p = 0.031) (Figure 3D). The median concentration of
NfL at day 1 was 5.96 pg/mL (4.43–6.89) and day 7 blast exposure
was 6.13 pg/mL (5.34–7.11).

DISCUSSION

Our study investigated the impact of blast-related training
on serum biomarkers in military personnel. These findings
show similar trends in the reduction of serum GFAP levels
after exposure to repetitive low-level blasts during the training
program on day 2 (Boutté et al., 2019; Tschiffely et al., 2020).
Here, we report that blast-related training results in acute changes
in the axonal markers of tau, p-tau181, and NfL. Specifically, the
concentration of tau and NfL levels were significantly elevated
after day 7 blast exposure compared to pre-blast. Notably, serum
p-tau181 level was significantly elevated at days 2 and 7 following
blast exposure. Therefore, these proteins may serve as a potential
candidate biomarker of blast-related injury in military training.

We observed an elevated level of tau in the acute and
subacute timepoints following sports injury (McCrea et al., 2020;
Giza et al., 2021). The concentration of tau and NfL has been
shown higher in concussion and predicted symptom resolution
following concussion (Shahim et al., 2018; Pattinson et al., 2020a).
Proteins tau and NfL levels are more than acute markers of
axonal injury but persistently elevated in chronic repetitive TBI,
which is associated with neurobehavioral outcomes (Olivera et al.,
2015; Pattinson et al., 2019). Further, we observed p-tau to be
higher after blast, which is a novel finding. Tau phosphorylation
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plays an important role in the physiological function of tau
protein regulation in the maintenance of the homeostasis
of microtubules and the pathogenesis of neurodegenerative
disorders (Rajmohan and Reddy, 2017; Katsumoto et al., 2019).
In previous studies level of tau, p-tau181, and NfL proteins
were significantly higher in chronic mTBI with persistent
symptoms of post-traumatic stress disorder and depression
(Kenney et al., 2018; Pattinson et al., 2019, 2020b). Recently,
we have shown that extracellular vesicle tau and NfL proteins
were associated with behavioral outcomes in military personnel
(Edwards et al., 2021; Guedes et al., 2021). Elevation of p-tau181
was observed in many different brain regions and abnormal
p-tau accumulation in astroglial, that may associate with
behavioral changes following chronic repetitive blast exposure in
preclinical model (Dickstein et al., 2021). Abnormal aggregation
of p-tau causes synaptic impairment, neuronal dysfunction, and
the formation of NFTs and is a key pathological feature of
CTE (Rajmohan and Reddy, 2017; Katsumoto et al., 2019).
Therefore, changes in these biomarker levels reflect axonal
damage or regeneration that induced brain function impairment
after repetitive low-level blast exposure. Additional studies of
longitudinal change of these biomarkers are needed to determine
the implication of these findings.

Our study has some limitations, including a small sample size
and lack of gender and racial diversity, as well as lack of clinical
symptoms over-time. Despite these limits, this study indicates
that blast exposure results in changes in serum biomarkers
of axonal injury. Notably, the level of p-tau181 protein was
significantly elevated after blast exposures in both cohorts,
which suggested that phosphorylated tau at threonine 181 may
serve as an early biomarker of axonal injury in low-level blast
exposures. However, the level of tau and NfL were not significant
differences after immediate blast exposure, unlike the other
cohort with 2 days intervals. We observed that 12 out of 19
participants were elevated in tau level and only 9 out of 19
participants were elevated in the NfL level in this group. Our
plausible explanation is that some of these individuals may
expose to low severity events of blast compared to the other
participants. Previous studies showed that proteins biomarkers
of GFAP and inflammatory cytokines were strongly associated
with blast exposure levels (Gill et al., 2017; Tschiffely et al.,
2020). We suggested that these serum biomarkers changes in
our study may also impact by the level of blast exposure
during training. However, we did not measure the blast exposure
levels in this cohort. Additional larger studies with equal
populations are needed to confirm these findings. In addition,
a longitudinal study of these serum biomarkers changes is

needed to evaluate the effect of blast exposure over time. These
findings suggest that blast exposure is associated with acute
changes of serum tau, p-tau181, and NfL level in military
personnel. In conclusion, blast exposures in military personnel
induced axonal damage which may serve as potential biomarkers
of blast injury.
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