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Neuraminidase of influenza A and B viruses plays a critical role in the virus life cycle and is
an important target of the host immune system. Here, we highlight the current
understanding of influenza neuraminidase structure, function, antigenicity,
immunogenicity, and immune protective potential. Neuraminidase inhibiting antibodies
have been recognized as correlates of protection against disease caused by natural or
experimental influenza A virus infection in humans. In the past years, we have witnessed
an increasing interest in the use of influenza neuraminidase to improve the protective
potential of currently used influenza vaccines. A number of well-characterized influenza
neuraminidase-specific monoclonal antibodies have been described recently, most of
which can protect in experimental challenge models by inhibiting the neuraminidase
activity or by Fc receptor-dependent mechanisms. The relative instability of the
neuraminidase poses a challenge for protein-based antigen design. We critically review
the different solutions that have been proposed to solve this problem, ranging from the
inclusion of stabilizing heterologous tetramerizing zippers to the introduction of inter-
protomer stabilizing mutations. Computationally engineered neuraminidase antigens have
been generated that offer broad, within subtype protection in animal challenge models.
We also provide an overview of modern vaccine technology platforms that are compatible
with the induction of robust neuraminidase-specific immune responses. In the near future,
we will likely see the implementation of influenza vaccines that confront the influenza virus
with a double punch: targeting both the hemagglutinin and the neuraminidase.

Keywords: influenza, neuraminidase, antigenic drift, monoclonal antibodies, correlate of protection, vaccines
1 INTRODUCTION

Influenza A and B viruses (IAV and IBV) cause acute respiratory illness and are widespread in the
human population, with seasonal appearance in moderate climate zones and year-round
manifestation in the tropics (1, 2). The use of licensed influenza vaccines is considered one of the
best measures to prevent human influenza. These vaccines are vital in the efforts to alleviate the
burden of influenza illness and deaths and are especially recommended for individuals who have an
org November 2021 | Volume 12 | Article 7866171
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increased risk of developing complications due to age or
underlying disease (3, 4). The effectiveness of currently licensed
influenza vaccines however leaves considerable room for
improvement. Depending on the IAV subtype and the antigenic
match between the influenza strains that are represented in the
vaccine and the strains that circulate in the population, the
vaccines prevent 10 to 60% of laboratory-confirmed medically
attended influenza (5). The composition of seasonal influenza
vaccines is reconsidered every year for each hemisphere in an
attempt to keep pace with the antigenic drift of the viral
hemagglutinin (HA), the major envelope protein on the
influenza virions and the principal protective antigen in
currently used influenza vaccines. These annual updates come
with a risk of suboptimal predictions leading to a mismatch
between the vaccine- and circulating influenza virus strains.
There is a pressing need for more effective influenza vaccines
that can elicit stronger and potentially broader protection against
influenza. In the past decade, there has been a renewed interest in
the exploration of influenza neuraminidase (NA) as a protective
antigen component in influenza vaccines. Here, we review some of
the seminal findings on NA structure and function, its immune-
protective potential, as well as the current efforts to implement NA
in next-generation influenza vaccines that aim for eliciting an
immune response with increased magnitude and breadth.
2 NEURAMINIDASE: STRUCTURE
AND FUNCTION

2.1 NA Structure
NA is one of the three membrane proteins expressed on IAV and
IBV particles, next to HA and matrix protein 2 (M2). Label-free
protein quantification of purified influenza A and B virions
Frontiers in Immunology | www.frontiersin.org 2
revealed that the NA : HA ratio ranges from 0.1 to 0.2 (6). NA
is a homotetrameric type II membrane protein with a
mushroom- l i ke shape . Each pro tomer compr i s e s
approximately 470 amino acid residues and consists of a
cytoplasmic tail, a transmembrane domain (TMD), a stalk and
a head domain (Figure 1).

The cytoplasmic tail of NA consists of 7 highly conserved
amino acid residues. Alanine-scanning mutagenesis of the
cytoplasmic tail of NA of A/WSN/33 virus indicated a role in
virus budding. Notably bud release rather than bud formation
was affected in the tested NA cytoplasmic tail mutants (7). The
cytoplasmic tail is also important for the association of NA with
lipid rafts. Lipid rafts on the apical site of polarized cells are sites
where newly formed influenza virions initiate assembly and
budding (8). Together with the cytoplasmic tail, the TMD
plays a role in the transport of newly expressed NA to the
apical plasma membrane (9). The sequence of the TMD is
moderately conserved across IAV subtypes and predicted to
form an alpha helix. The TMD ensures the membrane
anchoring of NA and serves as a translocation signal. In
addition, this domain is reported to be an important stabilizing
factor for the tetrameric NA formation (10, 11). Substitution of
hydrophilic residues in the TMD by alanine reduced or even
abolished the interaction between the four TMDs of the NA
tetramer (10).

The stalk domain connects the TMD with the catalytic head
domain. There is no crystal structure available of the stalk
domain. The NA stalk varies in length within and across NA
subtypes, carries multiple predicted N-glycosylation sites and,
with few exceptions, contains at least one cysteine residue that
can form an intermolecular disulphide bond with a neighbouring
NA molecule (12). Glycosylation of the stalk region may
contribute to NA stability, whereas inter-stalk disulphide bond
A B

FIGURE 1 | Structure of neuraminidase and its catalytic site. (A) Side view and (B) top view of N1 NA (PDB 6Q23). NA is a homotetrameric type II membrane
protein consisting of a head domain, stalk domain, and a transmembrane domain (TMD) and cytoplasmic tail that together form the signal anchor sequence. In
general, NA stalk domains contain a cysteine residue (Cys) involved in intermolecular disulphide bond formation. The inset in panel (B) shows the catalytic site with
the residues that interact with the sialic acid-containing substrate depicted in red, and the residues that stabilize the catalytic site labelled in orange. Ca2+ ions are
shown as green spheres.
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formation is important for the tetramer formation. Whereas the
length of the NA stalk of human influenza viruses seems to be
relatively constant, the NA stalk of avian NA subtypes, in
particular N1, N2, N3, N5, N6, and N7, tolerate deletions (13).
The stalk length affects NA enzymatic activity, presumably by
modulating the accessibility to the sialic acid-containing
substrates (14).

Crystal structures of the catalytic head domain of at least one
representative NA from N1 to N9 and from influenza B NA have
been resolved (15–22). The NA head domain is characterized by
a six-bladed propeller that is folded around the catalytic site and
which is typical for all known sialidases (23). Each blade is made
up of four antiparallel b-sheets that are stabilized by disulphide
bonds and connected by loops of variable length (12). Each
monomer harbours a catalytic site, oriented towards the lateral
side of the NA head, that is highly conserved over the different
IAV subtypes (Figure 1). Remarkably, unlike the tetramer,
influenza NA monomers and dimers show very little if any
enzymatic activity (24). It is not known why tetramer formation
is essential for NA to be active. Possibly, this is linked to calcium
binding by tetrameric NA, which contributes to NA activity and
stability. NA can bind up to nine Ca2+ ions in the case of the
2009 H1N1 pandemic (H1N1pdm09) virus derived NA (16,
25–28).

Despite the significant primary sequence variation between
IAV subtype NAs, the catalytic site residues in N1–N9 NAs are
highly conserved. Among these, residues R118, D151, R152,
R224, E276, R292, R371, and Y406 (N2 numbering) directly
contact the substrate, while residues E119, R156, W178, S179,
D198, I222, E227, H274, E277, N294, and E425 play a key role in
stabilizing the catalytic site residues (19) (Figure 1). Phylogenetic
analysis indicates that IAV NAs fall into two distinct groups. In
group 1 NAs, a cavity adjacent to the catalytic site is observed
which is absent in group 2 NAs (29). This cavity is created by the
so-called 150-loop that consists of residue 147-152 and is flexible
in group 1 NAs such that it can adopt an open and a closed
conformation. Group 2 NAs on the other hand lack this second
cavity as the formation of a salt bridge between D147 and H150
stabilizes the 150-loop, which is absent in group 1 NAs due to the
presence of a G147 there (29, 30). The catalytic site and its
adjacent 150-cavity are further explored as targets for NA
inhibitors (31). Additionally, most avian influenza NAs, but
not NAs of human viruses, have a functional second sialic acid
binding site (2SBS) or hemadsorption site next to the catalytic
site (32). The 2SBS consists of three loops with residues that
facilitate binding to sialic acid in its so-called chair conformation.
The catalytic site, in contrast, binds sialic acid in its twisted boat
conformation (16). Studies comparing human and avian NA
catalytic properties show that the presence of a functional 2SBS
in avian NA increases NA activity against multivalent substrates
(33, 34).

2.2 NA Function
HA and NA exert different functions in the influenza virus life
cycle. HA is vital in the entry process, by mediating binding to
sialic acids on host cell glycoproteins or -lipids, which results in
virion uptake into endocytic vesicles, and the subsequent fusion
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of the host cell and virus membrane through a pH-induced
conformational change (35). NA, on the other hand, catalyses the
removal of the terminal sialic acids and thus functions as a
receptor-destroying enzyme. NA activity is involved in multiple
steps of the virus life cycle (Figure 2). During viral entry NA
cleaves decoy receptors present in the mucus that lines the
epithelial cells of the respiratory tract, allowing the infection of
underlying epithelial cells (36–38). In line herewith, inhibition of
NA activity was shown to result in severely decreased infection
of differentiated primary human airway epithelium cells (39).
NA activity was also reported to stimulate HA-mediated
membrane fusion (40). The best-known function of NA in the
influenza virus replication cycle is its critical role in the release
of newly formed virions from the infected cell and in prevention
of HA-mediated virion aggregation by removing sialic acid
from the viral and host cell membrane (41).

Given these partly opposing functions, a functional balance
between HA and NA is critical for viral replication. If HA
binding is much stronger than NA activity, for example,
virions may be trapped by decoy receptors present in mucus
and eventually be removed by mucociliary clearance before
reaching the underlying epithelial cells. On the contrary, if NA
activity dominates, the virion will quickly move through the
mucus, but will more likely fail to stably bind to an epithelial cell
and enter it. HA and NA can be found on the virion surface in a
patch-wise distribution, which contributes together with the HA-
NA balance to virus motility and entry. In filamentous influenza
virions, NA is mainly localized at one pole of the filamentous
virus, and the few NA molecules present along the side of the
virus tend to cluster in patches as well (42). Such polarized
viruses seem to move by Brownian ratchet-like diffusion in a
mucus-rich extracellular environment, in which filamentous
particles exhibit directed mobility away from their NA-rich
pole and toward the HA crowded part of the virus (42). HA
binding to sialic acid is reversible due to the low affinity. This
reversible binding likely allows NA patches to catalyse the
removal of the sialic acid when the HA is no longer bound
thereby initiating movement of the virion through mucus and
over the cell surface. This NA-driven virion motility presumably
allows the virus to find and to dock to specific spots on the cell
surface that trigger entry into the host cell (38, 43, 44). Although
detailed mechanistic insights into the importance of the HA-NA
balance are still lacking, it is clear that besides HA also NA
contributes to IAV pathogenicity. For example, truncation of the
NA stalk, which has been associated with adaptation of IAV from
aquatic birds to poultry, resulted in increased virulence in
poultry and mice (13, 45–49).
3 ANTIBODIES DIRECTED AGAINST NA
AS A CORRELATE OF PROTECTION

Protection against disease caused by influenza virus infection has
tradit ionally been correlated with the presence of
hemagglutination-inhibiting (HAI) antibodies in the blood.
Such antibodies can neutralize influenza viruses in vitro, by
November 2021 | Volume 12 | Article 786617
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preventing the binding of the virus to its sialic acid-containing
receptor on the target cell. Therefore, in order to induce such
antibodies, current influenza vaccines are standardized for their
HA content. Natural infection, however, elicits an immune
response against both HA and NA (50). In mice it has been
shown that NA inhibiting (NAI) antibodies are associated with a
reduction in pulmonary virus titer. More recently, by using a
guinea pig model, monoclonal NAI antibodies were
demonstrated to reduce airborne transmission of human IAVs,
both when the antibodies were administered post infection to the
infected animals or to the exposed recipients (51). This
observation is in line with the contribution of NA to the
release and spread of newly formed viruses after infection (50,
52, 53). Further, a combination of HA and NA provides even
enhanced protection against influenza compared to HA alone
(54–57). Studies comparing protection in mice induced by
conventional inactivated influenza vaccines with or without
supplementation with recombinant NA showed that for
protection against homosubtypic influenza virus infection anti-
HA antibodies sufficed. However, when challenged with an
influenza virus with a mismatched HA supplementation of the
vaccine with NA was required to reach a clear reduction in
Frontiers in Immunology | www.frontiersin.org 4
pulmonary virus titer (58, 59). In a ferret study it was found that
whereas vaccination with HA reduced viral titers, vaccination
with NA particularly decreased the clinical effects of infection,
with optimal protection being achieved by a combination of the
two antigens (54).

Evidence of NA-based protection in human has also been
observed during the 1968 Hong-Kong pandemic. This pandemic
was caused by a H3N2 virus with the same N2 as the previously
H2N2 circulating virus. Individuals with pre-existing antibodies
against the NA of H2N2 were less likely to be infected with the
newly emerged virus (60–63). In humans, NA-inhibiting
antibodies in serum correlate with a reduced virus load in
nasal wash (62). Couch et al. first showed that serum N2-
specific antibodies, elicited by vaccination with H1N2 (H1 HA
from A/equine/Prague, N2 NA from A/Aichi/2/68 (H3N2)) in
humans who initially lacked anti-HA antibodies, correlate with a
reduction of viral shedding after challenge of the subjects with A/
Aichi/2/68 (H3N2) virus (62). Three decades later, during the
2009 H1N1 pandemic season, it was demonstrated that HAI and
NAI antibodies in serum independently correlated with
immunity against infection and infection-associated illness.
Moreover, in H1N1pdm09-infected individuals, NAI antibodies
FIGURE 2 | Important role for NA in the virus life cycle. NA contributes to virus motility, allowing the virus to move through the mucus layer and to reach functional
receptors at the cell surface. NA also plays an essential role at the end of the virus life cycle by removing sialic acids from the cell surface thereby allowing efficient
release of virions and preventing virion aggregation.
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in serum independently predicted reduced illness (64). This
correlation of NAI antibodies with protection is also supported by
more recent studies in humans. The presence of NAI antibodies in
serumwas associated with a reduction of PCR-confirmed influenza
infection for bothH3N2andH1N1pdm09virus (65, 66).Memoli et
al. divided the participants in their controlled human challenge
studywithH1N1pdm09 virus in a group based onHAI orNAI titer
and showed that subjects with a high (> 1:40) NAI titer at baseline
not only presented with reduced symptoms and virus shedding
duration, but also with a reduction in the number of symptoms and
the symptom severity. In contrast, HAI titers correlated only with a
reduction in the number of symptoms and virus shedding duration
but not with symptom severity (66). These results highlight that
anti-NA immunity can enhance protection against influenza
virus infection.
4 EVOLUTION AND ANTIGENIC
DRIFT OF NA

HA and NA are prime targets of the host’s immune response to
influenza virus infection (67). Combined with the relatively high
mutation rate of the replicating influenza virus RNA genome,
human influenza viruses with antigenically altered HA and NA
emerge that have a selective advantage over previously
circulating strains because they are less likely to be recognized
by antibodies that prevail in the population. This phenomenon of
antigenic changes is called antigenic drift, and is at the basis for
the frequent updating of human influenza vaccines. The selection
of seasonal vaccine strains is based on three types of data:
epidemiological information, HA and NA gene sequence
phylogeny and serological analysis using an HA inhibition
assay. Today, the main focus of genetic and antigenic
surveillance is thus on HA since licensed influenza vaccine
formulations are standardized for the amount of HA (68). The
antigenic drift of HA has been extensively studied (69). In a
seminal paper, Smith et al., discerned a pattern of eleven
Frontiers in Immunology | www.frontiersin.org 5
antigenic HA clusters in human H3N2 viruses that circulated
between 1968 and 2003 (70). Later, two clusters were added to
the antigenic map when HAI data was added up to 2011 showing
that the human H3N2 virus continued to evolve antigenically
(71). Interestingly, the antigenic change between the HA clusters
is the result of a limited set of amino acid changes confined to
positions near the receptor binding site of HA (72, 73). In
contrast to HA, antigenic drift of NA is not routinely
examined. In the next paragraphs, we discuss the genetic
evolution of NA and the limited studies on NA antigenic drift.

4.1 Genetic Evolution
Several studies addressed the genetic evolution of HA and NA
using IAV and IBV strains, which revealed that their evolution
differs and is often asynchronous (74–78). Although the general
topology of the NA and HA phylogenetic trees is similar with the
typical ‘ladder-like’ gradual evolution and rapid replacement of
old strains by newer ones, NA evolved slower and more gradually
at the nucleotide level than HA. Looking at 40 years of evolution
of human H3N2 viruses, Westgeest et al. showed that NA had
fewer nucleotide substitutions over this time span compared with
the HA head HA1, the most variable part of the HA gene (78).
Nevertheless, it was concluded by Bhatt et al. (74) that with
almost all adaptive evolution in NA being concentrated in
residues on the surface of NA, the adaptation rate is higher for
surface NA residues than for HA1. The observation that adaptive
evolution in NA occurs almost exclusively in solvent-accessible
surface residues indicates an important role for antibody-
mediated immune responses in NA evolution. In Figure 3, the
IAV N1, IAV N2 and IBV NA structural conservation for the
viruses that were used in seasonal influenza vaccines from 1970
to 2021 are depicted. Overall, a relatively high conservation of the
head domain residues is observed for each NA (sub)type. As
expected, the catalytic site is for all NA subtypes highly
conserved. However, the surface residues do show variation,
especially for IAV N2, which is in agreement with a higher rate of
adaptation for NA in H3N2 than H1N1 viruses (74).
FIGURE 3 | NA structural conservation. Structural alignments of all seasonal influenza vaccine included influenza strains in the period 1970-2021.The sequence
conservation of Influenza A N1, Influenza A N2 and Influenza B NA amino acid residues was visualized using MUSCLE and shown on a crystal structure of the
respective NA subtype using the render by conservation function in CHIMERA. Residues conserved in all sequences of a specific subtype NA are shown in red.
Further distinction of conservation is indicated from dark blue (99% conservation) till yellow (1% conservation). Structure representations based on N1: PDB 4B7Q,
N2: PDB 4GZX, and IBV NA: PDB 4CPL. Arrows point towards the catalytic site.
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4.2 Antigenic Drift
The analysis of NA antigenic drift usually relies on the
determination of NAI titers of polyclonal ferret antisera
raised against a particular influenza virus strain (e.g. a
vaccine strain) in an enzyme-linked lectin assay (ELLA) (79,
80). The antigenic relatedness of the NAs from two viruses can
be assessed by comparing NAI titers, calculating percent
relatedness (81) or by performing antigenic cartography (76)
to generate an antigenic map (80). On such a map, based on
the quantification of the raw data of NAI assays, the antigenic
distances between influenza viruses or sera are visualized.
Importantly, the reactivity of antisera of ferrets that have
experienced a single experimental virus infection is quite
different from human sera which have an antibody
repertoire that has typically been shaped by multiple prior
infections and vaccinations (80, 82). The antigenic changes
identified this way based on sera from ferret that were infected
once with a particular influenza virus strain may therefore not
always accurately reflect the response of an (adult) human
individual (83) although such discrepancies have so far only
been demonstrated for HA-specific responses (84–86).

Only a few studies have investigated the antigenic drift of
NA using large NAI data sets and by constructing antigenic
maps. In 2011, Sandbulte et al. reported on the characterization of
the antigenic drift of NA in human H1N1 and H3N2 viruses that
were recommended for influenza vaccine implementation over a
periodof15years in theUSA(76). Similarly,Gaoet al. examined the
antigenic drift of NA sequences of H1N1pdm09 viruses (80).
Overall, the antigenic differences between NAs of human H1N1
viruses occurred in one direction, meaning that antisera raised
against older strains reacted weakly withmore recent NAs whereas
reactivity between antisera against more recent strains and older
NAswashigh (76, 80, 87).Both rawNAIdata and the antigenicmap
obtained by Sandbulte et al. show that the NA of pre-2009 seasonal
human H1N1 was in antigenic stasis for over a decade despite its
genetic evolution during that time. For human H3N2 viruses the
antigenic drift of NA was also not proportional to the number of
amino acid changes induced. Collectively, these data show that
there is discordance between the antigenic and genetic evolution of
NA. Indeed, For N2 it was found that a single point mutation
(E329K) was responsible for the abrupt NA antigenic drift between
2006 and 2007 (76). Similarly, for H1N1pdm09 few substitutions
appeared to be largely responsible for the observed antigenic
changes (80). The presumed important role in antigenic drift of
K432E (80) was later confirmed using recombinant NA proteins
that only differed at this position (87). Epistatic interactions as well
as by biophysical constraints may also play a role in NA antigenic
drift aswas shown for the evolutionof anantigenic site inH3N2NA
(88, 89). Furthermore, changes in HA receptor binding, e.g. as a
result of antigenic drift, may in turn select for substitutions in NA
that affect enzymatic activity to restore a functional balance in HA
and NA, while additionally affecting NA antigenicity (90).

Bidirectional IAV transmission between humans and swine
represents a serious public health challenge. In the last decade, an
increasing number of zoonotic infections with IAV from swine
has been reported. For example, after two distinct human-to-
Frontiers in Immunology | www.frontiersin.org 6
swine H3N2 spill overs in 1998 and 2002, N2-98 and N2-02
lineage viruses have circulated in swine in the USA and
antigenically evolved over the next 20 years. After IAV
infection, pigs typically produce broadly cross-reactive NAI
antibodies to the N2 protein, but no NAI cross-reactivity
between the N2-98 and N2-02 lineages was observed (91). The
antigenic distance between swine and human N2 antigens
increased over time to the extent that there is by now very
little antigenic similarity with the human seasonal H3N2 NA that
these viruses were derived from, nor with the NA of currently
circulating human H3N2 viruses. This suggest that there will be
little to no cross-reactive NA mediated immunity in both the
swine and human population which may impact the occurrence
of future spill overs (91).
5 NEURAMINIDASE-SPECIFIC
MONOCLONAL ANTIBODIES:
MECHANISMS OF ACTION
AND EPITOPES

Using large panels of monoclonal antibodies (mAbs) or
recombinant NA proteins, several studies have set out to
identify antigenic sites on NA (12, 52, 92–96). NA activity and
inhibition thereof can be evaluated with two types of assays. The
so-called 4-methylumbelli-feryl N-acetyl-a-D-neuraminic
acid (MUNANA, a fluorogenic NA substrate) or NA-STAR
(a chemiluminescent NA substrate) assays allow to quantify
the hydrolysis of a small soluble substrate by NA. The small
molecule NA inhibitor oseltamivir, which binds precisely inside
the catalytic site, inhibits NA activity in these types of assays (97).
Only a mAb that binds inside or in very close proximity to the
catalytic site will be able to prevent cleavage of the small substrate
whereas mAbs that bind distal to the catalytic site are less likely
to have an effect in such assays.

ELLA assays use larger substrates compared to MUNANA
and NA-STAR assays, such as the glycoprotein fetuin that
contains sialylated N- and O-linked glycans. A mAb binding to
the NA head domain, even outside of the catalytic site, may
still sterically block access of fetuin to the catalytic site and
prevent cleavage of the substrate, while cleavage of small
soluble substrates may not be affected. Comparing the
inhibition profile of NAI mAbs based on the outcome of
both types of assays will thus give an indication on their
possible binding site. Table 1 provides an overview of different
NA-specific mAbs and their impact on NA activity as
determined with a small molecule substrate or in the ELLA.
Overall, two different antigenic regions have been described
that characterize NAI antibodies: (i) the catalytic site and its
rim and (ii) outside of the catalytic site, including the interface
between two adjacent monomers. Additionally, several NA-
specific mAbs have been described that lack detectable NAI
activity in either assay, yet can protect in vivo against influenza
A virus challenge. These mAbs rely on Fc effector functions
and will be discussed separately (Figure 4).
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Creytens et al. Influenza Neuraminidase-Based Vaccines
5.1 NAI mAbs That Target the Catalytic
Site and Its Rim
Early antibody characterization and vaccination studies have
shown that immunity to NA can be very broad within, but
usually not across, subtypes (105). Nevertheless, mAbs that
directly bind into the highly conserved catalytic site of NA
(115) and inhibit enzymatic activity in small molecule assays
are expected to exert a degree of heterosubtypic NAI. Recently,
Stadlbauer et al. reported on a human mAb, 1G01, which binds
to and inhibits the activity of several group 1 and group 2 NAs as
well as NAs from both influenza B virus antigenic lineages in
vitro. MAb 1G01 was shown to inhibit NA activity in a NA-Star
assay and to occupy the catalytic site via a long CDR H3 loop by
co-crystal structure analysis (Figure 4) (105). A similar
mechanism of action was described for mAb NA-45 where the
CDR H3 loop adopts a protruding conformation with a tip that
inserts into the NA catalytic site (98). This type of substrate
mimicry is unique among all structurally characterized NA
antibodies so far but has also been reported for anti-HA
antibodies that target the receptor-binding site (116, 117).
Interestingly, the number of residues in the antibody footprint
might be important for the cross-reactivity of mAbs. For
example, the binding footprint of 1G01 (105) and Z2B3 (106,
107) significantly overlaps. However, the 1G01 footprint includes
Frontiers in Immunology | www.frontiersin.org 7
more catalytic and framework residues which explains the
broader cross-reactivity of 1G01 compared to Z2B3 (107). It is
important to note that the footprint of mAbs that bind into the
highly conserved catalytic site of NA often overlaps with the rim
of the catalytic site. The rim is less conserved and can tolerate
amino acid substitution without NA losing enzymatic activity.

Next to conventional mAbs, other antibody moieties that
target the NA catalytic site have been described. The first NA-
specific single domain antibodies or VHHs were described by
Harmsen et al. with several candidate cross-NA binders and
some VHHs that could affect NA activity (118). The isolation
and characterization of a set of alpaca-derived H5N1 NA-specific
VHHs (N1-VHH) with NA-inhibitory activity was also
described. Two monovalent candidates N1-3-VHHm and N1-
5-VHHm could inhibit NA activity with N1-3-VHHm also
inhibiting oseltamivir resistant H5N1 virus NA. Bivalency of
these constructs enhanced their NA inhibitory capacities and
resulted in VHH constructs that could protect mice against
H5N1 challenge (119).

5.2 mAbs that Bind to Epitopes Outside
the Catalytic Site
A large proportion of the reported NAI mAbs only display NAI
activity in the ELLA, but not in assays with small molecule
TABLE 1 | Overview of NAI mAbs and their epitopes.

Epitope Mechanism of action Neuraminidase inhibition? mAb
(reference)

* structural data available
Bold: mentioned in text

Small substrate
assay

Large substrate
assay

The catalytic site and its
rim

(partially) block access to catalytic site Yes Yes NA-73* (98, 99)
NA-108 (98, 99)
HCA-2 (100, 101)

IG05 (102)
2E01 (102)

HF5 (103, 104)
3G1 (52)

229-1 F06 (50)
229-1G03 (50)
229-11)05 (50)

CDR3 loop insertion in catalytic site Yes Yes IG01* (105)
IG04* (105)
IE01* (105)

Z2B3* (106, 107)
NA-45* (98, 99)

bind loop surrounding the cavity of the catalytic site Yes Yes Mem5* (108)
NC10* (109)
NC41* (110)
IG8* (111)

229-1D05 (50, 112)
229-1C02 (50, 112)

Outside of the catalytic
site

bind linear epitope on tip No Yes NA-63* (98, 99)
NA-80* (98, 99)

unknown No Yes IF2 (52)
N1-C4 (113)

bind interface between adjacent monomers causing
steric hindrance

No Yes CD6* (103)
N8-4 (114)
4F11 (52)

NA-22* (98, 99)
November 2021
Neuraminidase inhibition activity is determined via small substrate (MUNANA or NA-STAR) and large substrate (ELLA) assays. mAbs in bold are mentioned in the text, while other mAbs are
referenced for completeness.
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substrates, indicating they do not contact the catalytic site
directly (99). Binding of these mAbs likely results in steric
hindrance and restricts access of large glycoconjugate
substrates to the catalytic site (52). The NAI activity in ELLA
assays has been associated with the capacity to block virus egress
from infected cells (98, 99). An example of such a mAb is CD6,
which effectively inhibited H1N1pdm09 viruses both in vivo and
in vitro (103). Interestingly, CD6 more efficiently inhibited NA
as an intact IgG compared to Fab and Fab2 molecules of CD6,
demonstrating that CD6 inhibits NA activity through steric
hindrance and not structural distortion. Crystallization studies
revealed a quaternary epitope that spans the lateral faces of two
neighbouring N1 monomers (Figure 4). Such a quaternary
epitope present in intact NA dimers had been proposed earlier
by Saito et al. for the N8-4 mAb but until then had never been
structurally defined (114). For HA, quaternary epitope-specific
mAbs that span two HA monomers that are efficient in
neutralizing virus in vitro have also been described (120, 121).
Frontiers in Immunology | www.frontiersin.org 8
Some studies showed a correlation between the relative distance
of epitopes to the NA catalytic site and the in vitro properties of
mAbs. For example, mAb HF5 which has contact residues that
surround the catalytic site pocket, showed more efficient NAI
activity compared to other mAbs with an epitope that is located
more laterally on the NA head (92, 107). Additionally, murine
anti-N9 mAbs that inhibit NA enzymatic activity with a small
molecule substrate in vitro, provided superior in vivo protection
compared with mAbs that inhibited NA activity only in the
ELLA assay (93).

5.3 mAbs That Depend on Fc Effector
Functions for Protection
It is becoming increasingly clear that Fc-mediated effector
functions have an important role in providing in vivo
protection against influenza virus challenge (122). The
fragment crystallisable (Fc) region of an antibody can interact
with Fc receptors and thereby mediate indirect effector functions
FIGURE 4 | Antigenic regions of N1 NA-specific mAbs. The A/California/04/2009 (H1N1) tetramer is depicted with one protomer in ribbon representation. The
catalytic residues are depicted in red. For each region, a representative antibody footprint is shown: 1G01 (105) in pink (PDB 6Q23) with antibody contact residues in
NA that overlap with the catalytic site in dark red; CD6 (103) in gold (PDB 4QNP) and N1-7D3 (113) in light blue.
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such as antibody-dependent cellular cytotoxicity (ADCC),
antibody-dependent cellular phagocytosis (ADCP) and
complement-dependent cytotoxicity (CDC) (123). Using Fc
receptor knockout mice and DA265 mutant mAbs that are
unable to bind Fc receptors, it was demonstrated that broadly
reactive HA-stalk antibodies depend on Fc-Fcg receptor
interactions in vivo (122, 124, 125). The contribution of Fcg
receptor engagement for in vivo protection by some NA-specific
mAbs was demonstrated by Job et al. (126). The mouse
monoclonal antibody N1-7D3 binds to a conserved linear
epitope near the carboxy-terminus of N1 NA and shows no
NAI activity (Figure 4) (113). However, a recombinant mouse-
human chimeric version comprised of the variable domains of
mouse N1-7D3 and the constant regions of human IgG1 could
engage activating Fcg receptors and protected FcgR-humanized
mice against challenge with H1N1pdm09 virus (126). In
addition, mAbs with no detectable NAI activity reported by
Yasuhara et al., could protect mice against a lethal influenza virus
infection. Interestingly, a N297Q mutant version of these mAbs
that lacks Fcg receptor-binding activity failed to protect, thereby
supporting the crucial role for Fcg effector functions in
protection by non-NAI mAbs (127). In line with this, grafting
of the non-NAI N1-7-VHH on a mouse IgG2a Fc could protect
mice against an otherwise lethal H5N1 challenge (119).

Several studies have demonstrated that the Fc-mediated
effector functions might also be crucial for in vivo protection
by some anti-NA mAbs that possess weak NAI activity (99, 127).
Thus, while for potent N9 NAI mAbs Fc effector functions were
not needed, the ability to interact with Fc receptors was required
for weakly NAI mAbs to protect against challenge (99). Likewise,
a broadly cross-reactive mAb with low NAI activity required
FcgR interactions to mediate protection, while a strain-specific
mAbs with high NAI did not (124). Likely, the sum of the NAI
activity and the FcgR-mediated effector functions determines the
potency of an anti-NA antibody in vivo. An anti-NA mAb with
high NAI activity can reduce virus spread in vivomainly through
its NAI activity, whereas an anti-NA mAb without NAI activity
can suppress virus replication mainly through FcgR-mediated
effector cell activation (127).
6 NA-BASED INFLUENZA VACCINES

6.1 NA Immunogenicity in Seasonal
Influenza Vaccines
Despite the recognized importance of NA-reactive antibodies in
protection against influenza, the current commercially available
influenza vaccines do not consistently elicit these antibodies (50,
128). NA immunogenicity of these vaccines varies widely
between manufacturers (65, 128–130) and is poor compared to
natural infection. Whereas following natural infection the
number of NA-reactive B cells were equal to or exceeded HA-
reactive B cells, current vaccines rarely induced NA-reactive B
cells (50). Furthermore, broadly cross-reactive NAI antibodies
elicited by natural infection were unable to bind multiple
commercially available inactivated vaccines, indicating that the
vaccines lack the NA epitopes targeted by these antibodies (50).
Frontiers in Immunology | www.frontiersin.org 9
The poor NA immunogenicity of the licensed influenza
vaccines can be attributed to a few factors. As mentioned,
current vaccines are optimized and standardized specifically for
inducing high HAI antibody titers. As a result , the
immunogenicity of the NA is not guaranteed. Quantity and
quality of the NA antigen varies between manufacturers and
vaccine batches (131, 132). Virus inactivation procedures may
also affect NA immunogenicity. While treatment with EDTA or
formalin did not compromise the immunogenicity of
recombinant NA proteins (133), native NA in a viral particle
may respond differently to these conditions. The stability and
immunogenicity of NA also varies between strains (132).
Nevertheless, in case vaccination does elicit NA antibodies,
these can be long lived in healthy human subjects (134, 135).
Better consideration of the NA component of current vaccines
could therefore mean an important step forward in effectivity of
the current vaccines. This could be achieved by also considering
NA in selection of the vaccine strains, optimizing the
manufacturing process to keep NA antigenically intact, and
also standardizing the amounts of immunogenic NA in
vaccine preparations.

6.2 Next-Generation NA-Based Vaccines
Next-generation seasonal and universal influenza vaccines call
for an improved NA-directed immune response. Various options
for rational design of the NA antigen and mode of presentation
to the immune system are in development aiming to boost the
breadth and magnitude of the NA-specific response (Figure 5).
The following section summarizes promising ideas and the
rationale behind them.

6.2.1 Enhancing NA Immunogenicity Within Existing
Influenza Virus Vaccines
In addition to optimizing the manufacturing conditions of
the current seasonal vaccines, extra steps can be taken to
improve the immunogenicity of NA while using the same
influenza virion-based vaccine technology as a basis. For
example, by re-structuring parts of the viral genome, a higher
amount of NA can be incorporated into the viral particles (136,
137). Swapping the packaging signals of HA and NA that contain
the viral RNA promoters resulted in virions with more NA,
although at the expense of HA. Immunization with this virus
resulted in increased levels of NAI and Fc-dependent antibodies
directed against NA and induced protection against lethal
challenge with an NA-matched IAV strain. HA-directed IgG
titers were however significantly lower for the recombinant
virus compared to the wild-type (136). Since glycosylation
of the NA head domain was also found to affect NA
incorporation in the virion (138), altering glycosylation sites
could be explored as an alternative strategy to incorporate higher
levels of NA in an IAV vaccine strain. Such modifications may,
however, also affect NA antigenicity and immunogenicity.
Extending the NA stalk so that NA surpassed HA in length
was also shown to enhance NA immunogenicity of an
inactivated virion-based vaccine in mice. Specifically, increased
levels of antibodies with ADCC activity were induced. The
authors hypothesized that their extended NA stalk domain
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method exposes NA epitopes to the immune system that were
otherwise hidden (139).

6.2.2 Recombinant Protein Design
An alternative solution to increase the immune response to NA is
to add extra NA to vaccine formulations. Johansson et al.
supplemented inactivated vaccines with soluble NA purified
from viral particles. This approach induced higher titers of
NAI antibodies without compromising on HAI antibodies (58,
59). Recombinant soluble NA proteins (Figure 5A) are also
Frontiers in Immunology | www.frontiersin.org 10
attractive vaccine antigens to supplement inactivated virus
vaccines or as a component of a multi-antigen subunit vaccine.
Important in the design of such antigens is that a correctly folded
tetrameric structure is essential for optimal immunogenicity
(133, 140). Often enzymatic activity is measured as a proxy for
a correct conformation of the NA antigen. While this is a reliable
proxy for the presence of intact antigenic structure, NA activity
in itself is not required to induce protective NA-specific
antibodies in mice (133, 141, 142). Early on, recombinant NA
was produced by replacing the membrane anchor sequence with
a signal sequence derived from a type I membrane protein. This
method typically results in a mix of tetrameric, dimeric, and
some monomeric protein (24). To produce pure and stable
tetrameric NA, ectodomains are better fused to heterologous
tetramerization domains. Multiple tetramerization domains
have successfully been used to produce immune-protective
recombinant NA: VASP, GCN4, and Tetrabrachion (54, 143,
144). Tetrabrachion-stabilized NA proteins appear most stable
and enzymatically active, presumably due to the parallel
orientation of these domains (145, 146). In addition, a crystal
structure of a tetrabrachion-stabilized N9 showed that the head
domain maintained its native structure as found on virions (147).
Whether immunization with these constructs also results in
better quality antibody responses is yet to be determined.
Interestingly, a recent study showed that the combined choice
of tetramerization domain and inclusion of the stalk domain into
recombinant NA profoundly impacts activity and immunogenicity.
Thorough evaluation of individual recombinant NAs may
therefore be required to determine the optimal antigen design
strategy (142).

Mutations in the NA stalk (148) or the interface between
protomers (149) can also enhance the stability and
immunogenicity of recombinant NA. Cysteine mutations in
the stalk led to more efficient dimer formation of recombinant
N1, resulting in enhanced enzymatic activity and immune
protection. The cysteine-stabilized dimers were however still
outperformed by a VASP-stabilized tetrameric NA (148). It
was only recently recognized that recombinant NA proteins
can adopt an open conformation in addition to the closed
conformation that is found on the surface of influenza virions.
Structure-guided stabilization of the closed conformation was
performed that improved thermal stability. More importantly,
it also enhanced the affinity to protective antibodies elicited
by viral infection, indicating that these antigens may elicit
antibody responses to vulnerable quaternary epitopes more
efficiently (149).

To broaden the protection elicited by a recombinant
protein antigen, computational methods can be used to design
constructs based on a consensus sequence of varying strains
(Figure 5C). After similar techniques have shown promise for
the induction of more broadly reactive HA responses (150),
recent studies engineered NA constructs that combined
sequences of various human, swine, and avian H1N1 and
H5N1 strains (151, 152). The resulting antigens were
immunogenic and induced antibodies against a broader range
of viruses than wild-type NA antigens, including NAI antibodies
against strains not included in the antigen design (151).
A

B

C

FIGURE 5 | Design of next-generation NA-based vaccines. (A) The NA
antigen can be presented in the native membrane-bound form, as a soluble
protein that lacks the transmembrane domain with or without modifications to
retain or stabilize the tetrameric structure, or as peptides containing an
epitope of interest. (B) Depending on the antigen design, various methods for
vaccine delivery are possible. Soluble NA can be administered as a subunit
vaccine or coupled to a nanoparticle carrier. Membrane-bound NA can be
presented on a virus-like particle or on the cell surface when encoded as
RNA or DNA delivered directly or by a viral vector. (C) Strategies to increase
the breadth of the immune response include mixing of NAs from different
strains, computational design of consensus NAs, or hetero-multivalent mosaic
presentation of NAs from different strains on a single particle.
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Immunization or passive transfer of the sera of immunized mice
offered protection against homologous and heterologous viral
challenge (151, 152). While the broadened immune response
may come at the cost of a lower magnitude compared to
immunizations with a matched NA antigen (152), consensus
NA antigens are promising candidates for inclusion in multi-
antigen universal vaccine formulations.

6.2.3 Multivalent Presentation
The immunogenicity of soluble protein antigens can be
substantially improved with multivalent presentation.
Multivalent nanoparticles better mimic viruses in terms of size,
shape, antigen valency, and repetitive organization, resulting in
enhanced uptake by antigen presenting cells and stronger
activation of B cell receptors (153). Such nanoparticle designs
may constitute virus-like particles (VLPs) containing
membrane-anchored NAs or protein nanoparticles to which
soluble NAs are coupled (Figure 5B).

NA can self-assemble into VLPs, either when expressed alone
or in combination with other IAV structural proteins (154–157).
VLPs that display N1 alone or in combination with H5 and M2e
induced high titers of NAI antibodies (154, 157–159).
Vaccination with N1 VLPs derived from H1N1pdm09
provided cross-protection against lethal challenge with
heterologous (H5N1) and even heterosubtypic (H3N2) IAV
(159). However, in a more recent study N1 VLPs were not able
to cross-protect against a historical H3N2 strain (160). N2 VLPs
derived from a more recent H3N2 virus did protect against
challenge with the distant H3N2. In addition, bivalent
vaccination combining the N1 and N2 VLPs induced strong
anti-N1 and -N2 antibody responses that exceeded the antibody
levels induced by either one of the VLPs individually (160).
Protective efficacy of NA-based VLP vaccination has also been
demonstrated in ferrets. In these animals, VLPs containing
H5N1-derived NA and matrix protein M1 induced high serum
NAI antibody titers and protection against lethal homologous
challenge. Incorporation of additional H5 or H3 into the VLPs
further reduced clinical symptoms of the ferrets after H5N1
challenge. VLPs composed of H3/N2/M1 were however unable
to cross-protect against the heterosubtypic H5N1 challenge
(154). Efforts to further boost both humoral and cellular
immunity of VLP vaccines currently focuses on attachment of
adjuvants directly onto the VLPs (161–163).

In a different strategy based on multivalent presentation,
nanoparticles consisting of little more than IAV structural
proteins were generated (164). A dense core was constructed
out of M2e protein and decorated with M2e-NA fusion proteins
by chemical cross-linking. These double-layered nanoparticles
greatly improved immunogenicity and (cross-)protection over
soluble M2e-NA fusion proteins. M2e-NA nanoparticles were
generated using NA from H5N1 and H3N2. Mice immunized
with the M2e-N1 nanoparticles were fully protected against
mortality following challenge with the homologous strain, as
well as H1N1 and H3N2. Immunization with the M2e-N2
nanoparticles fully protected against mortality following
challenge with the homologous strain and an H9N2 virus and
conferred 60% protection against H1N1 (164).
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Self-assembling protein nanoparticles are highly ordered,
monodisperse carrier platforms that are increasingly used in
experimental vaccines. The geometry of these nanoparticles is
versatile and can be readily adapted for optimization to a specific
antigen (165). While these carriers have not yet been used to
generate NA-based nanoparticle vaccines, examples of their
application for other viral glycoproteins illustrate their
promise. HA nanoparticles, for example, elicited more than 10-
fold higher antibody titers compared to the commercial
inactivated vaccine, including antibodies directed against
conserved vulnerable epitopes (166). The respiratory syncytial
virus fusion protein similarly induced 10-fold higher neutralizing
antibody titers when presented on a two-component protein
scaffold (167). Self-assembling protein scaffolds are also well
suited for presenting viral glycoproteins from multiple strains
together on mosaic nanoparticles (Figure 5C). It was
hypothesized that presentation of these diverse antigens
alongside each other gives an avidity benefit for cross-reactive
B cell receptors, resulting in a broader antibody response. This
strategy was applied using the HA receptor binding domains
(RBDs) of two H1N1 strains. Mosaic nanoparticles displaying
two distinct H1 RBDs were found to induce broader antibody
responses than a mixture of homotypic nanoparticles displaying
the same set of RBDs (168). These results indicate that mosaic
nanoparticles may enhance activation of B cells specific for the
otherwise subdominant cross-reactive epitopes, which could be
an interesting strategy to evaluate for NA.

6.2.4 Epitope-Based Vaccines
Epitope-based vaccine design aims to precisely direct the
immune response towards conserved vulnerable B or T cell
epitopes by presenting peptide epitopes (Figure 5A) on an
immunogenic carrier or in a multi-epitope construct. In doing
so, these techniques have potential for eliciting broadly
protective immunity. The potential of an universally conserved
linear B cell epitope near the NA catalytic site consisting of
residues 222 through 228 or 230 (NA222) as an vaccine antigen
was recently studied (169, 170). Kim et al. incorporated the
epitope into the HA head domain of a H1N1 virus, creating a
chimeric virus that was inactivated prior to immunizations. The
NA222 chimeric virus, but not the inactivated wild-type virus,
induced a strong Th1-type antibody response directed to this
epitope. The chimeric virus protected against heterosubtypic
challenge with H3N2 and H9N2 viruses and at 6 days post-
challenge the mice expressed high levels of mucosal IgG and
IgA specific for the epitope (169). Zeigler et al. developed a
self-assembling protein nanoparticle containing the NA222

epitope in addition to two universal CD4 T cell epitopes that
mediate high-affinity, long-lived antibody responses. The
NA222 nanoparticle induced high IgG titers and conferred
approximately 50% survival in otherwise lethal H1N1 and IBV
challenge, whereas nanoparticles with HA or M2e epitopes
were 70-75% protective with similar IgG titers. It was
suggested that the NA222 epitope was less protective due to
limited antibody accessibility (170). Alternative novel B and T
cell epitopes may be identified using in silico predictions and
be combined into a multi-epitope construct. Further in vivo
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studies are needed, however, to evaluate the protective potential
of such vaccine candidates (171).

6.2.5 Viral Vector-Based Vaccines
Antigens delivered in the form of genetic information will be
expressed in the natural environment of the cell, which helps to
ensure the correct antigen generation and processing that is vital
for a potent immune response. Vectored vaccines deliver the
genetic material encoding the antigen of interest by
incorporation into unrelated live attenuated or replication
incompetent viruses (Figure 5B). A large number of viral
vectors are available that each differ in their ability to stimulate
different arms of the immune system, but also in more practical
characteristics including genomic stability, accepted insertion
size, and safety profile (172).

Experimental NA-based vector vaccines have been described
among others for pox virus (173, 174) or parainfluenza virus
(175) vectors. Modified Vaccinia Ankara (MVA), a safe and
commonly used live poxviral vector, that expressed NA (MVA-
NA) of H1N1pdm09 was analyzed for its protective efficacy. The
MVA-NA vaccine induced high NAI titers and a potent cellular
response characterized by particularly strong activation of CD8 T
cells. Immunization conferred partial protection against
replication of a homologous virus (173). A raccoonpox vector
expressing the NA of avian H5N1 conferred full protection to
mice against an otherwise lethal challenge when administered via
the intranasal (IN) route. Interestingly, depletion of CD4 and
CD8 T cells strongly reduced protection, suggesting an
important role for cellular immunity in the protection
provided by this vector (174). In contrast, parainfluenza 5
(PIV5) expressing the NA of H1N1pdm09 or avian H5N1
induced weak T cell responses and was dependent on
antibodies for protection. PIV5 expressing the H1N1pdm09
NA conferred partial cross-protection against H5N1 and H3N2
challenge, whereas PIV5 expressing the H5N1 NA protected
against H1N1, but not H3N2 (175). Other NA-expressing viral
vectors that have been applied with varied success in a veterinary
setting are Newcastle disease virus, infectious laryngotracheitis
virus and alphavirus replicons (176–179).

6.2.6 Nucleic Acid-Based Vaccines
Nucleic acid-based vaccines directly deliver the genetic
information encoding the antigen without the need for a viral
vector (Figure 5B). In doing so, these methods exploit the
benefits of in vivo antigen expression while eliminating the
risks for reduced efficacy due to anti-vector immunity and
safety concerns associated with viral vector-based vaccines.
Production of this type of vaccines is rapid and scalable, which
could be a critical advantage over other vaccine platforms in the
event of a new emerging strain. Recent advances in stability and
delivery of RNA and DNA vaccine formulations have led to
improved immunogenicity, resulting in a renewed interest in
using these technologies for emerging infectious diseases (172,
180, 181). mRNA vaccine technology was particularly
accelerated by the current SARS-CoV-2 pandemic with the
development of two highly effective vaccines based on this
technology (182, 183).
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Several studies reported the protective potential of NA
antigens delivered by vaccination with plasmid DNA. An early
study comparing the ability of various IAV antigens delivered by
plasmid DNA to induce a protective immune response showed
that only immunization with HA or NA, but not other internal
IAV antigens, protected mice against homologous H1N1
challenge (184). In a follow-up study DNA vaccination with
N2 induced full protection against challenge with homologous
and drifted H3N2 strains, but was not effective in protecting
against H1N1 challenge (185). Plasmid DNA encoding N1 from
H1N1 conferred full protection against homologous challenge
and 40-50% protection against H5N1 (186). Efficacy of a H5
DNA vaccine against challenge with a distant H5N1 strain was
boosted from 75% to 100% with the addition of a N1-encoding
plasmid (187).

NA-based mRNA vaccines have demonstrated high potency
in some studies, but lower in another (188–190). Lipid
encapsulated mRNA vaccines encoding various antigens of
H1N1pdm09, separate or in a combination vaccine, elicited a
strong humoral and cellular response in mice. The NA
component of the vaccine was found to be the only one
eliciting high NAI titers and protecting against a highly lethal
dose of a matched challenge virus. A vaccine dose as low as 0.05
mg was sufficient to elicit a protective immune response. The NA
mRNA vaccine however provided only limited or no protection
against heterosubtypic challenge while the other more conserved
vaccine components were fully protective (190) Similarly, in a
recent study vaccination with mRNA encoding NA of
H1N1pdm09 induced high NAI titers and protected against
mortality from challenge with pre-pandemic H1N1 and H5N1.
Serum antibodies from vaccinated mice however did not cross-
react with H3N2 or influenza B virus (189) In an earlier study the
immunogenicity of a N1-mRNA vaccine was considerably lower.
High dose vaccination induced only 40% protection against a
matched challenge in mice. Supplementing a H1-mRNA vaccine
with the N1-mRNA however resulted in significantly reduced
morbidity over the H1-only vaccine (188). The potential of
mRNA vaccines might be boosted further by the use of self-
replicating RNAs, which may induce high expression levels after
low dose vaccination (191, 192).
7 OUTLOOK

Various studies mentioned in this review describe NA-based
vaccine candidates with impressive protective efficacy against
homologous and heterologous challenge strains, although most
candidates have yet to be tested in models other than mice. In
view of the potential of NA to induce protective immunity,
efforts to improve vaccine efficacy against influenza should not
only focus on HA, but also on NA. Improving the NA
component of current vaccines with respect to antigenic match
and immunogenicity, would likely improve the efficacy of these
vaccines in the short term. NA additionally should be considered
in the development of next-generation vaccines, besides the
largely HA-focused approaches.
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While studying the protective efficacy of isolated NA-based
vaccine candidates is informative, NA particularly has potential
as a component in a multi-antigen vaccine. Vaccines targeting
both HA and NA provide better and broader protection, as
evidenced by reduced disease and transmission when compared
to HA- or NA-only vaccines. Given that the antigenic drift of HA
and NA is discordant (76) a seasonal vaccine combining both
antigens would be less likely to be mismatched with circulating
strains for both antigens, compared to a HA-focussed vaccine.

Most vaccine candidates described here induce a protective
immune response against homologous and in some cases intra-
subtypic heterologous NA, but not heterosubtypic NA. The
application of strategies aimed at increasing the breadth of the
immune response is vital to improve protection against drifted or
new emerging strains. The induction of broadly protective
heterologous immune responses may be enhanced by
computational design of consensus antigens. Protective
responses against different NA subtypes may be achieved by
simple mixing of NA antigens, though the breadth may in such
vaccines still be limited to the strains used for immunization like
in the current seasonal vaccines. Additional measures may be
required to ensure that the elicited immune response surpasses
the immunization strains. To direct the immune responses more
towards conserved epitopes the option of combining NAs from
multiple strains onto heteromultivalent mosaic nanoparticles
could be explored.

The recent market application of mRNA vaccines targeting
SARS-CoV-2 is likely to pave the road for the clinical use of this
vaccine platform for novel influenza vaccines. Prior to the
emergence of SARS-CoV-2 it was already recognized that
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mRNA vaccines would be suitable specifically in an outbreak
setting mostly due to the capacity for rapid development, in
addition to the low dose requirement and high potency (180).
mRNA vaccines encoding HA of potential pandemic strains have
already demonstrated safety and immunogenicity in ferrets, non-
human primates and humans (193) and clinical trials for
seasonal HA-based mRNA vaccines are underway (Clinical
Trials Identifiers NCT04956575 and NCT04969276). Addition
of NA-encoding mRNA to such formulations is likely to improve
the magnitude and breadth of protection and should
be advocated.
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