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ABSTRACT
Aims  To develop and validate a machine learning (ML) 
algorithm to identify undiagnosed hepatitis C virus (HCV) 
patients, in order to facilitate prioritisation of patients for 
targeted HCV screening.
Methods  This retrospective study used ambulatory 
electronic medical records (EMR) from January 2015 
to February 2020. A Gradient Boosting Trees algorithm 
was trained using patient records to predict initial HCV 
diagnosis and was validated on a temporally independent 
held-out cross-section of the data. The fold improvement 
in precision (proportion of patients identified by the 
algorithm who are HCV positive) over universal screening 
was examined and compared with risk-based screening.
Results  21 508 positive (HCV diagnosed) and 28.2M 
unlabelled (lacking evidence of HCV diagnosis) patients 
met the inclusion criteria for the study. After down-
sampling unlabelled patients to aid the algorithm’s learning 
process, 16.2M unlabelled patients entered the analysis. 
Performance of the algorithm was compared with universal 
screening on the held-out cross-section, which had an 
incidence of HCV diagnoses of 0.02%. The algorithm 
achieved a 101.0 ×, 18.0 × and 5.1 × fold improvement 
in precision over universal screening at 5%, 20% and 50% 
levels of recall. When compared with risk-based screening, 
the algorithm required fewer patients to be screened and 
improved precision.
Conclusions  This study presents strong evidence 
towards the use of ML on EMR data for the prioritisation of 
patients for targeted HCV testing with potential to improve 
efficiency of resource utilisation, thereby reducing the 
workload for clinicians and saving healthcare costs. A 
prospective interventional study would allow for further 
validation before use in a clinical setting.

INTRODUCTION
Hepatitis C virus (HCV) is one of the most 
common blood-borne viruses and a major 
cause of liver-related morbidity and mortality 
in the USA.1 The estimated prevalence of 
HCV in the USA is 1%2 with the estimated 
number of new (acute) infections increasing 
fourfold between 2010 and 2018.3 Treatment 
of HCV has been revolutionised in recent 

years by direct-acting antiviral drugs which are 
well tolerated and highly efficacious (>95% 
cure rate).4–6 These developments paved the 
way for the WHO to propose a global strategy 
to eliminate HCV as a public health threat 
by 2030.7 In the USA, the National Acade-
mies of Science, Engineering and Medicine 
developed an HCV elimination plan where 
improved detection of undiagnosed cases is a 

WHAT IS ALREADY KNOWN ON THIS TOPIC
	⇒ Hepatitis C virus (HCV) is one of the most common 
blood-borne virus and is the target of a WHO ini-
tiative to eradicate it as a public health threat by 
2030. Universal one-time screening for adults has 
been recommended in the USA; however, this is 
challenging to implement in practice, and screening 
rates remain low.

	⇒ Machine learning approaches for finding undiag-
nosed HCV patients have been favourably evaluated 
using retrospective health claims data in the past, 
introducing the potential for more targeted and ef-
fective screening programmes.

WHAT THIS STUDY ADDS
	⇒ This study develops machine learning methods to 
predict potentially undiagnosed HCV patients using 
a large-scale, retrospective, US, ambulatory elec-
tronic medical record (EMR) data set.

	⇒ It adds to current knowledge since analysis is based 
on choice of a more appropriate data set which, 
critically, corresponds to the setting in which an 
algorithm would be implemented. Moreover, vari-
ous methodological choices (such as a temporally 
separate held-out set for model evaluation) lead to 
greater clinical insight and more robust predictions 
than elsewhere in the literature.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

	⇒ This study suggests that machine learning algo-
rithms, if integrated into EMR systems and clinical 
workflows, would enable targeted HCV screening, 
thus accelerating progress towards HCV elimination.
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key element.8 This, together with the need for identifying 
hard-to-find patients not captured by risk-based screening, 
has led to increased emphasis on universal one-time HCV 
screening recommended as part of the American Asso-
ciation for the Study of Liver Diseases (AASLD) - Infec-
tious Diseases Society of America (IDSA) guidance as well 
as periodic screening in high-risk individuals.6 Recent 
studies show that HCV screening rates remain low and 
recommend targeted interventions aimed at patients and 
physicians to boost screening rates.9 10

The advent of electronic medical records (EMR) 
used in combination with machine learning (ML) has 
presented new opportunities for screening in population 
health management.11 12 EMRs have been used previ-
ously to find undiagnosed HCV cases;13–15 however, these 
studies use simple clinical rules to prioritise patients for 
HCV screening. Previous work has demonstrated how ML 
can accurately identify undiagnosed HCV cases using US 
medical insurance claims and prescription data.16 Addi-
tionally, ML techniques applied to EMRs have been used 
for patient finding in other disease areas, such as type 
1 diabetes and sepsis.17 18 Given the promise shown in 
applying ML to EMRs, we investigated whether undiag-
nosed HCV cases could be predicted by an ML algorithm 
using a US EMR data set. The Methods section describes 
how this was developed and, in the results, a bench-
mark of performance against universal and risk-based 
screening is provided. Finally, the discussion contains an 
appraisal of how prioritisation of patients in the US for 
HCV screening could be improved with the algorithm, 
along with the potential impact on resource utilisation 
and the subsequent prospective validation requirements.

METHODS
Study design
This retrospective, observational study used anonymised 
medical records between January 2015 and February 2020 
from the IQVIA Ambulatory Electronic Medical Records 
(AEMR) database covering over 80M US patients.

Patient selection
The algorithm developed in this study predicts HCV 
patients, including undiagnosed current infections and 
new cases over the next year (which are detected in the 
clinic by HCV antibody and/or RNA tests). The algo-
rithm was trained on patients aged 12 years and over with 
evidence of healthcare utilisation during their lookback 
period, who were assigned to either a positive or unla-
belled cohort. The positive cohort was defined as patients 
who have a diagnosis code (including for acute, chronic, 
carrier and unspecified HCV types) or treatment code 
relating to their first HCV record over a 12-month selec-
tion window (online supplemental tables S1, S2). Patients 
with HCV records outside of this selection window 
were excluded. The unlabelled cohort was defined as 
patients with no evidence of HCV infection throughout 
their medical history, which likely includes HCV-positive 

patients missing a formal diagnosis label. (This makes it 
representative of the population that the model will be 
applied to in real-world use.) The unlabelled cohort was 
down sampled to reduce the effect of class imbalance on 
algorithm development.19 For validation, all results were 
projected to the expected number of unlabelled patients 
in the deployment setting, that is, the count of false posi-
tives was projected to match the expected number of non-
HCV patients in the selected population.

Predictor selection
For predictor selection, stakeholders with clinical expert 
knowledge were invited to define events relevant to HCV, 
which spanned diagnoses, prescriptions, procedures and 
lab tests, and comprised of 276 predictors, including 
demographics (online supplemental table S3). These 
predictors were mapped to clinical codes by coding 
experts and extracted over the lookback period. These 
predictors were described by their frequency and timing 
(recency, duration, initial onset); in the case of lab test 
results, the earliest and most recent values, delta, average, 
maximum and minimum values were also captured. This 
resulted in a total of 1175 predictors. Predictors that were 
present in less than 0.1% of the positive and unlabelled 
cohorts were removed.

The predictor that captured risk of substance abuse is 
referred to as Risk of being a Person Who Injects Drugs 
(R-PWID) and was subsequently used to benchmark 
performance. It was defined as an International Classifi-
cation of Diseases (ICD) claim for substance abuse and/
or withdrawal, prescription for substance abuse agents.

Machine learning algorithm
An ML algorithm was developed to learn the prediag-
nosis journey of HCV patients, which can then be applied 
to novel patient data to compute a risk score for HCV 
ranging between 0 and 1 (online supplemental figure 
S1). Gradient Boosting Trees (GBTs)20 were chosen as the 
ML algorithm due to their ability to handle missing data, 
sensitivity to interactions and non-linear relationships, 
approaches for controlling overfitting, robustness to 
noisy/mislabelled data (including the presence of undi-
agnosed positives in the unlabelled class) and success in 
structured healthcare data problems.16 21–23 Additionally, 
GBTs are compatible with the model explanation tech-
nique Shapley Additive exPlanations (SHAP) (see “Inter-
pretation” section in Methods).24

Implementation and validation
The GBT algorithm was trained and tested using cross-
sections with non-overlapping selection windows (online 
supplemental figure S2), with the most recent cross-
section held out as an independent test set. The study was 
devised using a rolling cross-sectional design, whereby 
a 24-month lookback period is followed by a 12-month 
selection window (see online supplemental figure S1). 
The lookback period describes the prediagnosis medical 
history seen by the ML algorithm, and the selection 
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window is used to define the subsequent outcome being 
predicted. The trade-off between algorithm complexity 
(number of predictors) and performance was analysed. 
A full description of the pipeline is found in online 
supplemental information (S1.1). Given the imbalanced 
nature of the task (ie, many more unlabelled than posi-
tive patients are expected) precision (positive predic-
tive value; proportion of patients identified by the ML 
algorithm that are HCV positive) and recall (sensitivity; 
proportion of HCV cases identified by the ML algorithm) 
were selected to assess model performance.25

To provide context, precision is benchmarked against 
risk-based screening approaches R-PWID and the 1945–
1965 ‘Baby Boomer’ birth cohort. Here, precision is 
calculated as the number of patients in the HCV cohort 
who meet the risk-based criteria divided by the total 
number of patients who meet these criteria. Precision is 
reported at recall levels corresponding to the proportion 
of undiagnosed HCV cases identified by the risk-based 
approaches.

The fold improvement in precision over universal 
screening on the held-out cross-section is reported. Addi-
tionally, the scaled precision (ie, projected to the inci-
dence of HCV in the data) and specificity at 5%, 20% 
and 50% recall are reported, along with the area under 
the receiver operating characteristics curve (AUROC), 
where a value of 1 indicates that the model can perfectly 
separate the two classes, and 0.5 indicates that the perfor-
mance is equivalent to random chance.

Interpretation
The interpretation of the ML algorithm will focus on 
the importance and dynamics of the predictors which 
will be described at the global level (across all patients) 
and for local patient subgroups. This is facilitated by the 
SHAP methodology, which quantifies how each predictor 
contributes to the risk score for an individual patient.26 
This method accounts for key limitations in classical 
predictor importance estimation, such as correlation 
between variables, by considering all possible sets and 
orderings of features in a computationally efficient 
manner.27

Testing for algorithmic bias
The ML risk scores were tested for unintended algo-
rithmic bias across the protected characteristics: age, 
gender and race. Given the intended use, a false nega-
tive would result in a patient being deprioritised for 
screening, which would have a higher consequence than 
a false positive. Therefore, equal opportunity was tested 
by comparing false-negative rates across characteristic 
subgroups.28 A post hoc approach for univariate correc-
tion of algorithmic bias was applied by calculating thresh-
olds for corresponding recall levels within each protected 
characteristic subgroup.28 In practice, this translates to 
screening a larger number of patients belonging to the 
subgroups that bias is operating against.

RESULTS
Characteristics of study population
For the positive and unlabelled cohorts, 21 508 and 
28.2M patients met the selection criteria, respectively. 
The incidence of HCV in the held-out cross-section was 
0.02%, which corresponds to the precision for universal 
screening. The unlabelled cohort was down sampled at 
a cross-section level to reduce the imbalance between 
cohorts, resulting in 16.2M non-HCV patients entering 
the analysis. After excluding predictors with ultra-low 
prevalence, 931 out of 1175 predictors were retained. The 
patient demographics and key risk factors are summarised 
in Table 1 for the patients in the held-out cross-section. 
Highly similar patient characteristics are observed for all 
patients versus the test cross-section. As expected, there 
are higher rates of R-PWID, opioid use, HIV infection 
and cirrhosis in the positive cohort as well as higher rates 
of chronic disorders, such as psychiatric disorders and 
diabetes.

Figure 1 illustrates the recency of clinical events with 
respect to first HCV diagnosis. Opioid and non-opioid 
analgesics were observed in 30% and 43% of HCV patients, 
respectively, within the 5 months prior to diagnosis. 
Substance dependence was observed through prescrip-
tion of relevant agents (8%), diagnoses for substance 
abuse (15%) and withdrawal (4%) and occurred most 
recently an average of 4 months prior to diagnosis. The 
most common specialty visited was Family Practice.

Model performance
The universal screening approach screens the full patient 
population and so would identify all undiagnosed HCV 
cases. However, as this has a high burden on health-
care providers, risk-based screening is used to screen 
fewer, high-risk individuals. In the held-out cross-section, 
R-PWID screening finds 20.9% of HCV cases (from 
screening, 3.7% of the population) and the 1946–1964 
birth cohort finds 48.4% of HCV cases (from screening 
34.5% of the population). Conversely, the proposed ML 
algorithm provides a unique solution, whereby either the 
proportion of HCV cases identified or the proportion of 
the patient population tested can be predefined. There-
fore, to compare the algorithm’s performance against the 
risk-based approaches, we can evaluate its precision at the 
same recall levels as the ones achieved by the risk-based 
methods, that is, at the same proportion of identified 
HCV cases (see table 2). Table 2 shows how fewer patients 
need to be screened when the algorithm is used to prior-
itise patients.

At 5%, 20% and 50% recall, the algorithm’s precision 
was 2%, 0.4% and 0.12%, and specificity was 99.9%, 
99.0% and 90%, respectively. The AUCROC was 0.81. The 
algorithm’s precision can be compared with universal 
screening, if universal screening is adapted such that 
patients are randomly selected from the population for 
screening until either 5%, 20% or 50% of undiagnosed 
HCV cases are identified. We assume that the precision 
of screening these proportions is equivalent to universal 
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screening (12-month incidence in the held-out data, 
0.02%). Here, the algorithm has 101.0×, 18.0× and 5.1× 
fold improvement in precision over universal screening 
at 5%, 20% and 50% recall. The performance versus 
complexity analysis revealed the number of predictors 

can be reduced from 1175 to 100 without negatively 
impacting performance (online supplemental figure 
S3). Further reductions in the number of predictors are 
feasible with no observable impact on performance at 
high recall levels (ie, >20%).

Table 1  Patient characteristics over the cross-sectional lookback period.

All (unique patients) Held-out cross-section

HCV Non-HCV* HCV Non-HCV*

Patient counts (N) 21 508 28 215 073 4641 21 246 498

Age (years; mean (±SD)) 52±15.2 52±20.0 53±15.6 53±20.4

Gender (% male) 51.4% 42.0% 50.5% 41.9%

HCV relevant predictors

 � R-PWID (%) 20.6% 4.8% 20.9% 3.7%

 � 1946–1964 birth cohort (%) 51.0% 34.0% 48.4% 34.5%

 � Opioid usage (%) 36.1% 21.4% 33.3% 19.4%

 � Cirrhosis (%) 1.9% 0.2% 1.9% 0.3%

 � HIV/Aids (%) 1.7% 0.5% 1.6% 0.5%

 � Chronic liver disease (%) 5.7% 1.8% 4.8% 1.9%

Chronic disorders

 � Anxiety (%) 19.5% 12.1% 18.5% 11.7%

 � Chronic lung disease (%) 15.4% 10.4% 14.4% 10.0%

 � CKD or ESRD (%) 4.9% 4.0% 5.0% 4.1%

 � Depression (%) 18.3% 11.1% 17.1% 10.6%

 � Diabetes (%) 16.5% 13.7% 16.7% 13.5%

 � Hyperlipidaemia (%) 22.2% 26.2% 21.3% 25.8%

 � Hypertension (%) 32.3% 27.5% 32.9% 27.0%

*Counts projected to account for down-sampling.
CKD, chronic kidney disease; ESRD, end stage renal disease; HCV, hepatitis C virus; R-PWID, risk of being a person who Injects drugs.

Figure 1  Patient journey in the months leading up to their first observed diagnosis of HCV. The graphic displays median 
time prior to HCV diagnosis of the most recent event with the most prevalent events chosen for illustration. Note that patient 
characteristics are plotted with respect to the timing of the first exposure to HCV. In contrast, the patient characteristics in 
table 1 are with respect to the beginning of the lookback period which is provided to the ML algorithm, that is, patient history 
which occurs during the selection window is included in figure 1 but excluded in table 1. HCV, hepatitis C virus; ML, machine 
learning.

https://dx.doi.org/10.1136/bmjhci-2022-100651
https://dx.doi.org/10.1136/bmjhci-2022-100651


5Rigg J, et al. BMJ Health Care Inform 2023;30:e100651. doi:10.1136/bmjhci-2022-100651

Open access

Interpretation
The contribution of predictors to the ML risk score for 
HCV is displayed in figure 2 using two views: (1) contribu-
tions averaged across all patients and (2) the 100 highest 
scoring patients and the 100 lowest scoring patients. 
From the global view, patient demographics and age 
play an important role in the prediction of HCV as well 
as the use of analgesics (both opioid and non-opioid), 
hyperlipidaemia and lab test results for aspartate trans-
aminase (AST). The local view for the highest scoring 
patients reveals strong contributions from predictors 
capturing substance abuse, the number of HCV tests in 
recent history and AST lab results, with age playing a 
minor role. In contrast, for the lowest scoring patients, 

age plays a dominant role in determining their risk score 
with minor contributions from lab test results, use of 
non-opioid analgesics, race and hypertension. In online 
supplemental figure S4, the interaction between age and 
gender is described by plotting the contribution of age to 
a patient’s risk score and grouping by gender. For age, we 
see a bimodal dynamic, with patients between 25 and 35 
years and patients between 50 and 70 years having higher 
risk of HCV. In particular, women in the first age bracket 
are assigned a higher risk score than men, with the reverse 
observed in the second age bracket. Note that this is not 
a causal analysis and the associations may be driven by 
other factors, such as pregnancy in women enabling more 
regular touchpoints with the healthcare system or proac-
tive screening for HCV.

Algorithmic bias
The false-negative rates for each protected character-
istic across the 5% incremental recall bins are shown in 
figure 3. For age, the false-negative rates are highest for 
patients aged 75 and over; for gender, they are marginally 
higher for women than men; for race, they are highest 
for Asian, Hispanic, other and unknown, indicating algo-
rithmic bias against these subgroups. Post hoc correction 
can ensure equal opportunity for a single characteristic 
but not multiple characteristics in combination, as shown 
in online supplemental figures S5-S7.

DISCUSSION
The ML algorithm showed an increased efficiency of 
screening for HCV compared with universal screening 
and risk-based approaches, where fewer patients are 

Figure 2  Predictor importance globally (L) and for most extreme patients (R). AST, aspartate transaminase; HCV, hepatitis C 
virus; ALT, alanine aminotransferase.

Table 2  Performance of ML algorithm compared with risk-
based screening

Approach

Proportion of the 
overall patient 
population to be 
screened by each 
approach

Proportion 
of correctly 
identified 
undiagnosed HCV 
cases (precision)

To find 20.9% of undiagnosed HCV cases

 � R-PWID cohort 3.70% 0.12%

 � ML algorithm 1.80% 0.40%

To find 48.4% of undiagnosed HCV cases

 � Birth cohort 34.50% 0.03%

 � ML algorithm 12.30% 0.12%

HCV, hepatitis C virus; ML, machine learning; R-PWID, risk of 
being a person who injects drugs.
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required to be screened with the algorithm to iden-
tify the equivalent number of HCV cases. This supports 
existing research that found ML algorithms trained on 
EMR data can be used to predict patients’ risk of disease 
with high precision.16–18 Moreover, this study demon-
strates the utility of an EMR-based ML algorithm in iden-
tifying HCV patients and evidences a potential benefit in 
deployment into clinical workflow. One way to realise this 
benefit is through integrating risk prediction algorithms 
into EMR systems, and examples of this exist; simple rule-
based algorithms have been effective in increasing HCV 
screening rates,15 while a recent study describes the inte-
gration of a complex sepsis prediction of ML algorithm 
with an Epic EMR system in the USA.17 EMR integration 
can facilitate targeted HCV screening, which would have 
multiple potential clinical and operational benefits. First, 
effective targeting can improve the allocation of limited 
healthcare resources and hence the return on investment 
for a screening programme. Second, effective targeting 
would be expected to lead to improvements in rates of 
HCV diagnosis, treatment and transmission as well as 
reductions in morbidity and mortality arising from earlier 
diagnosis. Third, a sophisticated risk-based targeting 
approach can identify hard-to-find patients who may be 
overlooked by simple screening criteria. Finally, the algo-
rithm outputs a continuous risk score enabling a nuanced 
triage process. For instance, patients with high risk scores 
could be proactively invited for screening, whereas 
patients with lower risk scores could be opportunistically 
screened during routine visits.

There is a need to understand biases in ML models. 
The ML algorithm developed here exhibits signs of 
representation bias (which arises through lack of 
generalisation to groups that are under-represented in 
the data). A post hoc univariate corrective approach 
showed promise in reducing bias across a single char-
acteristic. This approach calculates how many patients 
from each characteristic’s subgroups should be 
screened to equalise the proportion of HCV patients 
identified belonging to each. However, when a single 

characteristic is equalised with this approach, it may 
worsen bias for others. Therefore, a more expansive 
approach to address all characteristics equitably would 
form part of future work.

The scope of this study is restricted to individuals who 
have engaged with the US healthcare system. In a future 
deployment setting, this would result in low chance of 
prioritisation for people with limited or no access to 
healthcare in the USA. This is particularly relevant for 
HCV as a high proportion of individuals infected with 
HCV is either uninsured or have publicly funded health 
insurance.29 Therefore, complementary approaches are 
needed, such as routine HCV screening in addiction 
medicine settings, correctional facilities and proactive 
HCV screening in sexual health settings, alongside invest-
ment in HCV treatment networks to ensure linkage to 
care is facilitated.30 31

The results of this study represent a proof of concept 
that has been developed using a US-based EMR data 
set. A natural next step for this algorithm is to perform 
further validation in an interventional prospective study 
that emulates the real-world deployment settings. This 
will help overcome some limitations of the retrospec-
tive study design. In particular, the positive cohort in 
this study comprises of patients who are diagnosed over 
a finite outcome window in the absence of the interven-
tion of interest (ie, screening of the identified patients). 
Therefore, the number of false positives is overestimated 
for each screening intervention (universal, ML-algo-
rithm, etc).

An important additional dimension to this study is the 
cost-effectiveness of the ML algorithm for screening. 
Previous studies have reported that risk-based HCV 
screening in populations such as PWID and the Baby 
Boomer birth cohort are cost-effective.30 31 Given the 
ML algorithm has further increased efficiency, it is likely 
that this will translate into a further increase in cost-
effectiveness. A formal study of the cost-effectiveness of 
the ML algorithm will form an important part of future 
work.

Figure 3  Subgroup false-negative rate versus per HCV patient recall (across all subgroups) by the protected characteristics; 
(A) age, (B) gender and (C) race. HCV, hepatitis C virus.
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This study presents strong evidence to support the use 
of an HCV prediction ML algorithm with large-scale EMR 
data. The focus of the work will now move to a pilot phase 
involving integration and prospective interventional 
validation of the algorithm in a clinical research setting. 
Subject to a successful pilot study, focus will shift to local 
deployment of the algorithm in multiple healthcare 
settings and geographies, which will involve collaboration 
with end users and on-going monitoring, with the ulti-
mate goal of contributing to efforts towards HCV elimina-
tion by targeted increase in diagnosis rates and reducing 
time to diagnosis.
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