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Abstract

High-content imaging using automated microscopy and computer
vision allows multivariate profiling of single-cell phenotypes. Here,
we present methods for the application of the CISPR-Cas9 system
in large-scale, image-based, gene perturbation experiments. We
show that CRISPR-Cas9-mediated gene perturbation can be
achieved in human tissue culture cells in a timeframe that is
compatible with image-based phenotyping. We developed a pipe-
line to construct a large-scale arrayed library of 2,281 sequence-
verified CRISPR-Cas9 targeting plasmids and profiled this library
for genes affecting cellular morphology and the subcellular local-
ization of components of the nuclear pore complex (NPC). We
conceived a machine-learning method that harnesses genetic
heterogeneity to score gene perturbations and identify phenotypi-
cally perturbed cells for in-depth characterization of gene pertur-
bation effects. This approach enables genome-scale image-based
multivariate gene perturbation profiling using CRISPR-Cas9.
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Introduction

Forward and reverse genetic screens in mammalian cells and

model organisms have provided a wealth of information about

gene function (Boutros & Ahringer, 2008; Liberali et al, 2015).

Nonetheless, the role of a significant proportion of genes remains

unknown and additional gene functions remain to be elucidated.

The discovery of the CRISPR-Cas system has revolutionized func-

tional genetic screening because, unlike RNAi, CRISPR-Cas9

targets genes at the DNA level and can therefore generate genetic

null alleles, resulting in complete genetic perturbation effects. For

this reason, CRISPR-Cas9 has been used in large-scale functional

genomic screens (Shalem et al, 2015). Most screens performed to

date employ a pooled screening strategy, which can identify genes

that cause differential growth in screening conditions (Koike-Yusa

et al, 2013; Shalem et al, 2014; Wang et al, 2014). However,

pooled screening precludes multivariate profiling of single-cell

phenotypes. This can be partially overcome by combining pooled

screening with single-cell RNA-seq, but this does not easily scale

to the profiling of thousands of single cells from thousands of

perturbations, and is limited to features that can be read from

RNA transcript profiles (Adamson et al, 2016; Dixit et al, 2016;

Jaitin et al, 2016; Datlinger et al, 2017). Moreover, sequencing-

based approaches do not provide information on cellular size or

morphology, cellular microenvironment, or on the subcellular

organization of intracellular structures such as the nuclear pore

complex (NPC). Image-based phenotyping using automated micro-

scopy is ideally suited to study such phenotypes. Recently, meth-

ods to perturb cells in a pooled format, followed by image-based

phenotyping and in situ genotyping were developed for prokary-

otic model systems (Emanuel et al, 2017; Lawson et al, 2017). An

alternative screening strategy involves seeding cells in multi-well

plates that contain reagents that perturb one specific gene per

well. This arrayed screening strategy allows detailed, image-based

phenotyping of populations of cells in which specific genes are

perturbed (Boutros et al, 2015; Liberali et al, 2015; Caicedo et al,

2016). Recently, a number of studies have applied the CRISPR-

Cas9 system to an arrayed format, but these were limited in scale

and only obtained well-averaged readouts with low information

content (Hultquist et al, 2016; Tan & Martin, 2016; Strezoska

et al, 2017), not realizing the full potential that image-based

multivariate single-cell phenotypic profiling could bring. Impor-

tantly, CRISPR-Cas9 is not 100% effective in all targeted cells,

which can be the result of in-frame repair of the CRISPR-Cas9-

induced DNA lesions, a failure to target all functional alleles or

limited efficacy of the CRISPR-Cas9 system (Shalem et al, 2015).

We present an approach to address this problem, allowing us for

the first time to combine the power of CRISPR-Cas9 with high-

content, image-based profiling of single-cell phenotypes across

thousands of genetic perturbations.
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Results and Discussion

We devised an experimental strategy for the application of the

CRISPR-Cas9 system in an arrayed screening format. To allow maxi-

mum flexibility with regard to the cell line and assay used for

screening, we opted for a one-component system where the coding

sequence for SpCas9, a chimeric gRNA and a fluorescent protein

(tdTomato) is combined on a single plasmid. We introduced target-

ing plasmids into human tissue culture cells by reverse transfection

and assayed expression of the targeted gene by quantitative

immunofluorescence (Fig 1A). As a proof of concept, we targeted

the transferrin receptor (TFRC) in HeLa cells and assessed TFRC

expression in approximately 4,000 single cells per experimental

condition. A subpopulation of cells (which expresses tdTomato)

loses TFRC expression starting 2 days post-transfection (Fig 1B and

C), indicating that these cells are functionally genetically perturbed.

The proportion of genetically perturbed cells increased at longer

times after transfection. We also targeted the genes LAMP1 and

YAP1 in HeLa cells and additionally show that the approach is effec-

tive in U2OS cells (Figs 1D and EV1A, B and C).

To systematically test our approach across multiple genes, we

automated the selection of gRNA sequences with high predicted on-

target efficacy (Doench et al, 2014). We selected gRNA sequences to

target separate, expressed exons, while avoiding the first or last

exons of transcripts (Fig EV1D). We employed a single-molecule

fluorescence in situ hybridization (smFISH) technique (Battich et al,

2013) to detect the cells in which transcripts are depleted due to

nonsense-mediated decay, which results from CRISPR-Cas9-induced

frameshift mutations (Fig 1E, F and G). We targeted 26 genes with

three targeting plasmids each. 72% of the targeting plasmids

perturbed gene expression in more than 30% of transfected cells,

indicating that we can reliably select functional gRNA sequences

(Fig 1H, Table EV1).

We subsequently developed a cost-effective pipeline to produce a

large-scale, arrayed library of sequence-verified CRISPR-Cas9

targeting plasmids. As a proof of principle, we constructed a library

consisting of 2,281 transfection-grade plasmid preparations targeting

1,457 genes that are annotated with gene ontology (GO) terms of

various post-translational modifications (Fig EV2, Dataset EV1). We

transfected HeLa cells with the plasmids in 384-well plates,

stained DNA and total protein and subjected the cells to immuno-

fluorescence with mAb414, a monoclonal antibody that binds

phenylalanine–glycine (FG) repeats present in several subunits of

the nuclear pore complex (NPC; Davis & Blobel, 1986). We stained

for this marker because the regulation of NPC assembly in inter-

phase is incompletely understood (Otsuka et al, 2016; Weberruss &

Antonin, 2016) and the subcellular localization of NPC components

can only be investigated using microscopy. We imaged approxi-

mately 4,000 cells per targeted cell population and extracted a multi-

variate set of features describing the size and shape of the cells and

intensity and texture of the fluorescent markers in specified sub-

regions of every cell (Stoeger et al, 2015; Fig EV3A and B).

Our experimental approach generates transfected T(+) cells,

which may be genetically perturbed, and non-transfected T(�) cells,

which are genetically wild-type. We leveraged this aspect to address

two challenges in the analysis of large-scale image-based profiling

experiments; technical well-to-well variation and the identification

of significant perturbation effects in high-dimensional single-cell

datasets (Loo et al, 2007; Liberali et al, 2015; Caicedo et al, 2016).

First, we used the T(�) cells as in-well controls to standardize all

single-cell features and correct for technical variability between

wells. Second, we trained logistic regression classifiers (Friedman

et al, 2010) to attempt to categorize T(+) and T(�) cells from the

same well based on a set of single-cell features (Fig 2A, Tables EV2

and EV3) and calculated a classification score based on the accuracy

of the classifier. This approach takes the full heterogeneity among

both wild-type and perturbed cells into account and thus addresses

a major limitation of well-averaged approaches.

We observed that not every T(+) cell is phenotypically perturbed

(Fig 1C, D, G and H), which complicates the analysis of gene pertur-

bation effects. To address this issue, we used the classifiers that we

fitted to the targeted cell population to calculate the predicted value

(PV) for every individual cell. Cells with a positive PV are classified

in the phenotypically perturbed class and a negative value indicates

classification in the wild-type class. By limiting our analysis to T(+)

cells with a high positive PV value, we discard the T(+) cells that

are phenotypically wild-type. To illustrate this point, we targeted

NUP160, which causes a strong phenotypic effect in single cells.

Here, many cells have a high PV, which are almost exclusively T(+)

cells (Fig 2C). In contrast, cells transfected with a control plasmid

have a low absolute PV because T(+) and T(�) cells are indistin-

guishable in multivariate feature space (Fig 2B). We colour-coded

cells from the NUP160 targeted population for the expression of the

tdTomato marker and PV. T(�) cells display the wild-type mAb414

▸Figure 1. CRISPR-Cas9-mediated gene perturbation by transient transfection of targeting plasmids.

A Schematic overview of CRISPR-Cas9-mediated gene perturbation by transient transfection of a targeting plasmid. tdTomato expression (magenta) marks transfected
cells. Single-cell measurements are obtained by quantitative immunofluorescence (green) combined with computer vision and automated cell segmentation, see text
for details.

B tdTomato (magenta) and TFRC (green) expression in HeLa cells transfected with a control plasmid, or a TFRC targeting plasmid. Scale bar, 50 lm.
C Quantification of normalized TFRC staining per cell, 1–4 days after transfection of a TFRC targeting plasmid. Violin plots of normalized TFRC staining intensity in all

analysed cells (grey) or tdTomato expressing (T(+), magenta) cells.
D Quantification of the efficacy of genetic perturbation by TFRC, LAMP1 and YAP1 targeting plasmids; bars indicate the percentage of genetically perturbed T(+) cells.

The mean � standard deviation of three independent experiments is displayed.
E Evaluation of genetic perturbations in single cells using bDNA FISH. Schematic representation of the expected phenotype in wild-type and functionally genetically

perturbed cells.
F bDNA FISH staining of TFRC mRNA in HeLa cells transfected with a control plasmid, or a TFRC targeting plasmid. Cell outlines are indicated and colour-coded white

for T(�) cells, magenta for T(+) cells. Scale bar, 50 lm.
G Quantification TFRC mRNA spots in cells transfected with a control plasmid, or a TFRC targeting plasmid. Violin plots of TFRC mRNA spot counts per T(+) cell.
H Heatmap representation of the efficacy of targeting plasmids designed to perturb 26 selected genes as assayed by smFISH.
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staining pattern, with the majority of signal localized to the nuclear

periphery (Davis & Blobel, 1986). Within the T(+) population, we

observe cells in which the mAb414 signal is mislocalized into a few

bright foci, but we also find T(+) cells with wild-type mAb414 stain-

ing pattern. Importantly, a high PV distinguishes between the cells

with wild-type and mislocalized mAb414 staining (Fig 2D). We

further demonstrate this by plotting the cells into a two-dimensional

projection of high-dimensional feature space using t-distributed

stochastic neighbour embedding (Van Der Maaten & Hinton, 2008)

(tSNE) (Fig 2E and F). T(�) cells localize to one region in multidi-

mensional feature space, while T(+) cells are enriched in a different

region, indicating that this region contains the phenotypically

perturbed cells. Cells with a high PV exclusively localize to this

region while a considerable fraction of T(+) cells localize to the

region dominated by T(�) cells, indicating that these cells are

phenotypically wild-type and should be ignored when characteriz-

ing the gene perturbation phenotype.

This approach now enables the profiling of genes involved in

specific cellular processes by training classifiers based on specific

sets of cellular features. To illustrate this, we first trained classifiers

based on 86 features of cellular morphology and intensity and

texture of the total protein stain (Table EV2). We chose a conserva-

tive threshold to select classifiers that score better than classifiers

trained on non-targeting control populations and identified 49

perturbations including 14 perturbations that target proteasome

subunits (Figs 3A and EV4A, Table EV4). We calculated the mean

feature values of the phenotypically perturbed cells per well and

discovered that the perturbation of proteasome subunits changes a

broad set of cellular features (Fig EV4C). Next, we trained classifiers

using an entirely different set of single-cell features, namely 118

features of the mAb414 staining pattern, and identified nine pertur-

bations that target structural subunits of the NPC (Figs 3B and

EV4B, Tables EV3 and EV5). These results indicate that we can

profile different dimensions of the multivariate cellular feature space

by selecting different sets of single-cell features to identify genes that

affect distinct biological processes. In addition, we analysed our

screen by well-averaging the single-cell features to obtain mean

feature profiles of T(+) and T(�) cells from each well in the experi-

ment. We subsequently calculated the Mahalanobis distance

between each profile and the total distribution of feature profiles to

quantify phenotypic dissimilarity (Caicedo et al, 2017). Most of the

hits identified in the between-well analysis overlap with the hits

identified in the within-well analysis (Fig EV5). However, the

within-well analysis identified more subunits of the proteasome

complex when we profiled the cell morphology and total protein

staining and more subunits of the NPC when we profiled the

mAb414 staining features. This supports the notion that within-well

profiling, by training computational classifiers to distinguish trans-

fected from non-transfected cells, is more sensitive to detect pheno-

typic changes than a between-well comparison of well-averaged

feature profiles.

To validate our results and further explore the power of image-

based profiling of CRISPR-Cas9 gene perturbations in single cells, we

focused on the NPC profiling. We constructed independent targeting

plasmids for selected structural components of the NPC and HSPA5/

Bip, an ER chaperone involved in luminal ER protein folding and the

regulation of the unfolded protein response (UPR; Pfaffenbach & Lee,

2011) that we identified in the profiling of both the mAb414 staining

features as well as the cell morphology features (Table EV6). We

transfected these constructs into HeLa cells, extracted single-cell

features (Table EV7) and trained classifiers to separate T(+) from T

(�) cells. To further characterize the gene perturbation phenotypes,

we calculated mean feature profiles of the cells with high PV.

Notably, by focussing our analysis specifically on the phenotypically

perturbed cells, we obtain feature profiles in which phenotype-

relevant features are more pronounced without reducing correlations

◀ Figure 2. CRISPR-Cas9 gene perturbation profiling and identification of phenotypically perturbed cells.

A Schematic representation of the profiling of CRISPR-Cas9 gene perturbation phenotypes. Transient transfection of a targeting plasmid results in a mixed population
of wild-type and genetically perturbed cells. Technical well-to-well variability can be accounted for by standardizing single-cell features to the wild-type cell
population in every well. Logistic regression classifiers are fitted to the cell population to attempt to distinguish between T(+) and T(�) cells based on a set of
single-cell features.

B, C The predicted value (PV) is calculated for every cell in a well that was transiently transfected with a control targeting plasmid, or a NUP160 targeting plasmid. A
positive PV indicates classification into the phenotypically perturbed class. The dotted line indicates the threshold for further single-cell characterization [PV > 0.62
(mean + 3 × standard deviation of non-targeting control cells)].

D Immunofluorescence image of mAb414 staining in HeLa cells transfected with a NUP160 targeting plasmid. Cell outlines are coloured orange for T(+) cells that
show a gene perturbation phenotype (PV > 0.62), red for T(+) cells with a PV < 0.62, blue for T(�) cells. Missegmented cells are outlined grey. Scale bar, 50 lm.

E, F tSNE projection of cells transfected with a NUP160 targeting plasmid. Single cells are colour coded according to tdTomato expression (E) and PV (F).

▸Figure 3. Large-scale image-based CRISPR-Cas9 gene perturbation profiling.

A Image-based profiling of the arrayed CRISPR-Cas9 library for perturbations affecting cellular morphology and total protein staining features. The classification score is
a linear transformation of the misclassification error of logistic regression models trained to classify T(+) and T(�) cells. Perturbations targeting proteasome subunits or
structural components of the NPC are colour-coded purple and green. Non-targeting control perturbations are colour-coded brown. The dotted line indicates the
threshold used to select perturbations that have a higher classification score than non-targeting controls (third quartile + 1.5 × interquartile range of the classification
scores of non-targeting controls). The size of the perturbation nodes is scaled according to the phenotypic score, which reflects the KS statistic calculated between the
PV distributions of non-targeting control plasmid transfected cells and the transfected cells of the respective perturbation (see Materials and Methods).

B Image-based profiling of mAb414 staining pattern. Colour coding and threshold calculation as in (A).
C Hierarchical clustering of the standardized mean feature profiles of control cells or phenotypically perturbed cells transfected with plasmids targeting HSPA5 or

selected structural components of the NPC.
D Immunofluorescence images and schematic representation of the mAb414 staining pattern in control cells or phenotypically perturbed cells from the NUP62, HSPA5,

NUP133, NUP107, NUP160 or NUP98 targeted populations. Scale bar, 10 lm.
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between independent gRNAs targeting the same gene, indicating that

the true gene perturbation phenotype is revealed (Fig EV6A and C).

Strikingly, hierarchical clustering of these profiles, as well as the

correlation between these profiles, revealed that profiles obtained

from cells perturbed with different gRNAs targeting the same gene

are highly similar across the full set of multivariate readouts (Figs 3C

and EV6A and D), something that is generally not realized with RNAi

(Collinet et al, 2010; Singh et al, 2015). The clustergram also demon-

strates that different perturbations lead to different feature profiles.

For instance, NUP62-targeted cells show a reduction in mAb414

staining intensity features (Figs 3C and D, and EV6A). This is

expected as NUP62 is prominently bound by mAb414 (Davis &

Blobel, 1986). HSPA5-targeted cells display a different phenotype.

Here, the values of a broad set of features are altered, reflecting the

smaller cell size, altered nuclear morphology and unusual staining

pattern of mAb414 (Figs 3C and D, and EV6A). This phenotype may

reflect an early stage of the apoptotic programme, which could be

triggered in the HSPA5 knockout cells through ectopic activation of

the UPR (Kihlmark et al, 2001; Pfaffenbach & Lee, 2011). The clus-

tergram revealed that the perturbation profiles of NUP160 and

NUP98 form a distinct cluster compared to the profiles of other

components of the NPC (Weberruss & Antonin, 2016), which is

caused by smaller differences across multiple mAb414 staining

texture features (Figs 3C and D, and EV6A). Such a distinction is

impossible to detect without multivariate profiling of single cells and

is qualitatively confirmed by examining images of phenotypically

perturbed cells. We observe a few bright foci of mAb414 staining in

NUP160- and NUP98-knockout cells (Fig 3D), suggesting that central

plug FG-NUPs coalesce into large aggregates in these cells. In

contrast, in NUP133- or NUP107-knockout cells, the mAb414 signal

localizes to small cytoplasmic foci (Fig 3D). This may reflect a relo-

calization of FG-NUPs to cytoplasmic membranous compartments

termed annulate lamellae, as was previously observed in cells

depleted of NUP133 by RNAi (Walther et al, 2003).

In summary, we have combined large-scale CRISPR-Cas9 gene

perturbation in multi-well plates, using transient transfection of

targeting plasmids without any selection, with multivariate profiling

of gene perturbation phenotypes in millions of single cells across

thousands of genetic perturbations by means of automated micro-

scopy and computer vision. By training classifiers that take into

account the full cellular heterogeneity of specific subsets of cellular

features, we identify genes involved in distinct cellular processes.

We also developed a cost-effective pipeline to generate large-scale,

arrayed libraries of sequence-verified CRISPR-Cas9 targeting plas-

mids that are available to the community. Because we analyse both

perturbed and non-perturbed cells from the same well, our approach

may also be applied to identify genes that have non-cell autono-

mous gene perturbation effects. Such genes could be identified by

comparing wild-type cells from different wells, or training classifiers

to distinguish wild-type cells that have genetically perturbed neigh-

bouring cells with wild-type cells that are surrounded by wild-type

neighbours. Although false-negative results are a general concern in

high-throughput gene perturbation screens that only identify a

perturbation if a phenotypic effect is observed, we identified several

genetic perturbations that cause phenotypic changes in cellular

morphology or the staining pattern of a marker of the NPC, indicat-

ing that our approach is a useful phenotypic screening tool. In the

future, this may be addressed by combining image-based

phenotypic screening with smFISH, which provides an independent

readout of whether the gene is perturbed. Furthermore, our

approach facilitates the identification of phenotypically perturbed

single cells for further analysis, which addresses the important issue

that CRISPR-Cas9 does not functionally perturb every targeted cell.

We show that image-based multivariate profiles of cells perturbed

with independent gRNAs targeting the same gene are highly similar

and we discovered distinct phenotypic effects when we profiled the

staining pattern of a marker of the NPC. This work provides a

framework for genome-scale multivariate profiling of microscopi-

cally resolved CRISPR-Cas9 induced gene perturbation phenotypes

in mammalian cells.

Materials and Methods

Cell culture

HeLa cells were propagated from a single clone from the Kyoto

strain, which was provided by J. Ellenberg (EMBL, Heidelberg).

U2OS cells were obtained from the ATCC. Cells were cultivated in

DMEM supplemented with 10% foetal bovine serum (FBS) (Gibco)

at 37°C, 5% CO2. Cells were tested for mycoplasma contamination.

For the large-scale screen, cells in 384-well plates were cultivated in

a Liconics rotating incubator to minimize plate positional effects.

Plasmids

pSpCas9(BB)-2A-GFP (PX458) was a gift from Feng Zhang (Addgene

plasmid #48138). To construct pSpCas9-2A-tdTomato-PAC (pRG84),

2A-tdTomato was PCR amplified from Addgene #54642 using

primers ggatccggagagggcagaggaagtctgctaacatgcggtgacgtcgaggagaatc

ctggcccaatggtgagcaagggcgag and ggatcccttgtacagctcgtccatgc, sub-

cloned into pJet and sequence verified. 2A-tdTomato was cloned

into BamHI-digested lentiCRISPRv2 (Addgene plasmid #52961).

Individual CRISPR-Cas9 targeting plasmids were constructed as

described (Ran et al, 2013). Briefly, a pair of oligonucleotides was

designed by prepending caccg to the 20-base pair gRNA sequence

and prepending aaac and appending g to the reverse complement of

the 20-base pair gRNA sequence. The oligos were annealed (50 at
95°C, ramp down to 25°C at 2°C/min) and ligated into the BsmBI-

digested pRG84 vector. All constructs were sequence verified by

Sanger sequencing.

Antibodies

Antibodies used in this study are as follows: mouse anti-CD71/

TFRC (BD Biosciences 555534), mouse anti-CD107a/LAMP1 (BD

Biosciences 555798), mouse anti-YAP1 (Santa-Cruz 63.7), mouse

anti-NPC (mAb414, Abcam), goat anti-mouse Alexa 488 highly

cross-absorbed secondary antibody (Life Technologies A11029).

CRISPR guide RNA sequence selection

We selected CRISPR guides using the Ensembl version GRCh38.78

gene annotation and the corresponding genome build. We avoided

regions corresponding to either the first or the last exon in more

than 25% of the annotated transcripts and selected guides with
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Doench score at least 0.7 from different exonic regions of each gene.

When sufficient candidate guides meeting these criteria were avail-

able, we chose guides shared by the maximal number of transcripts.

Otherwise, we chose the guides with the best Doench score. The

Doench score was calculated using the python script provided by

Doench et al (2014). The script for selecting gRNA sequences is

available as a Code EV1.

Large-scale CRISPR-Cas9 screening library construction

Human genes associated with ubiquitination (gene ontology terms

GO:0016567, GO:1990381, GO:0004843, GO:0031396, GO:1900044,

GO:0016925) or phosphorylation (gene ontology terms GO:0016301,

GO:0016791) were retrieved from Biomart. gRNA sequences were

selected as described in the “CRISPR guide RNA sequence selection”

paragraph. Oligos were designed by prepending the sequence

GGAAAGGACGAAACACCG to the 20-base pair guide sequence and

appending the sequence GTTTTAGAGCTAGAAATAGCAAGTTAA

AATAAGGC. Array synthesized oligos were ordered from Custo-

mArray (Bothell, WA, USA). The oligos were PCR amplified using

Phusion polymerase (Thermo Scientific) with the primers TAACTTG

AAAGTATTTCGATTTCTTGGCTTTATATATCTTGTGGAAAGGACG

AAACACCG and ACTTTTTCAAGTTGATAACGGACTAGCCTTATTT

TAACTTGCTATTTCTAGCTCTAAAAC. The PCR product was gel

isolated and a Gibson assembly reaction with BsmBI-digested

pRG84 was performed following the manufacturer’s protocol (NEB).

The reaction product was transformed into chemically competent

Stbl3 cells (NEB) by heat shock. After 45 min recovery at 37°C in

LB, the cells were plated on ampicillin-containing agar plates. The

following day, individual colonies were transferred to 50 ll LB-amp

in 96-well plates using sterilized toothpicks. Cultures were incu-

bated overnight at 37°C on a shaking platform. We performed PCR-

barcoding reactions for 71 plates of bacterial colonies. For every

plate, each row of the plate contains one of eight forward primers

(RG109, 110, 115–120) and one of 12 reverse primers (RG 111, 112,

121–130) (Table EV8). The PCR mix contained 0.25 lM forward

and reverse primer, 0.25 lM dNTP (Sigma), 0.375 units of Taq

polymerase (Sigma) in 15 ll 1× buffer (Sigma). Master mixes were

prepared and dispensed into 96-well PCR plates using a Beckman

Biomek FX liquid handling robot. PCR samples were transferred into

the PCR mix using a 96-pin replicator. The replicator was sterilized

by flaming with 96% ethanol between inoculations. 50 ll of 50%
glycerol was added to the remainder of the culture before storing

the cultures at �20°C. The PCR products were pooled per plate and

gel isolated. A second barcode was introduced by PCR using one of

the primers TSD501-TSD508 and one of the primers TSD701-

TSD712 (Table EV8). The secondary PCR products were gel isolated,

and 50 ng of each of the 71 secondary PCR products was pooled

and processed for Illumina sequencing. Reads that could be mapped

to the designed gRNAs were assigned to wells based on the

barcodes. Only wells for which at least 50 reads were identified and

the most abundant read was identified more than five times more

often than the second most abundant read were selected and re-

arrayed into 96 deep-well blocks (0.8 ml LB ampicillin per well)

using a Beckman Biomek FX liquid handling robot. The cultures

were covered with a gas-permeable seal and incubated overnight in

a shaking incubator (330 rpm). The following day, glycerol stocks

were prepared from the 50 ll of the cultures and the rest of culture

was collected by centrifugation. Transfection-grade plasmid DNA

was isolated using Magnesil plasmid isolation kits (Promega).

Plasmid concentrations were measured using a Tecan Infinity plate

reader. 5.5 ll miniprep sample was diluted in 50 ll H2O containing

2 lg/ll DAPI. Plasmids were diluted to 10 ng/ll in Optimem

(Gibco) in 384 deep-well blocks using a Beckman Biomek FX liquid

handling robot, excluding the outer two wells of the plates. 10 ll
plasmid solution was transferred to 384 well clear bottom plates

and stored at �20°C before use.

Reverse transfection

GeneJuice (EMD Millipore) was dissolved in Optimem (Gibco) in a

ratio 2 ll GeneJuice: 1 lg plasmid DNA. The transfection mix was

vortexed and incubated for 5 min at RT. The transfection mix was

added to the plasmid DNA solution and mixed by pipetting or shak-

ing of the plate for 1 s at 800 rpm on a thermomixer. The DNA-

transfection mix was incubated for 10 min before the addition of the

cell suspension (825 cells in 50 ll per well of a 384-well plate, 2,400

cells in 100 ll per well of a 96-well plate).

Immunofluorescence

Cells were fixed in 4% paraformaldehyde (PFA, Electron Micro-

scopy Sciences) for 20 min at room temperature (RT). Cells were

permeabilized for 15 min in 0.2% Triton X-100 and blocked in 5%

goat serum (Cell Signaling Technology). If S-phase labelling was

performed, cells were incubated for 15 min with 200 lM Edu in

culture medium prior to fixation and a Click-iT Edu Alexa-647

(Thermo Scientific) labelling reaction was performed according to

manufacturer’s instructions before incubation with a primary anti-

body in 5% goat serum for 1 h at RT. Cells were washed 3× with

phosphate-buffered saline (PBS) and incubated with secondary anti-

body for 1 h followed by 3 PBS washes. DNA was stained using

DAPI (0.1 lg/ml in PBS) for 10 min. Total protein was stained with

succinimidyl-ester-Alexa-647 for 5 min [1:200,000 in carbonate

buffer (0.1 M NaHCO3, 25 mM Na2CO3)].

Single-molecule mRNA FISH

Branched DNA FISH was performed as described in Battich et al

(2013). Gene-specific probe pairs were obtained from Affymetrix.

Image acquisition and single-cell feature quantification

Images were acquired on a Yokogawa CellVoyager 7000 automated

microscope equipped with a CSU-X1 spinning disc, Neo sCMOS

cameras (Andor) and UPLSAPO 20× (NA 0.75, Olympus) lens.

CellProfiler software was used for image analysis, cell segmentation

and single-cell feature quantification as described in Stoeger et al

(2015). We segmented the nuclear periphery by expanding and

shrinking the nucleus segmentation by 5 pixels. We segmented the

cytoplasm by masking the cell segmentation by the expanded

nucleus. The CellProfiler pipeline is available as Dataset EV2. We

employed CellClassifier (https://www.pelkmanslab.org/?page_id=

63) for data clean up and classification of transfected cells and cells

in S-phase of the cell cycle. We excluded missegmented cells,

mitotic cells and cells displaying staining artefacts from further
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analysis (Stoeger et al, 2015). Computations were performed on the

Brutus computing cluster (ETH Zürich) using the task manager

iBRAIN.

Phenotypic profiling by between-well comparison of
feature profiles

Mean feature profiles were obtained for the T(+) and T(�) cell

populations per well (the features used are listed in Tables EV2 and

EV3). Feature profiles were standardized by median B-score to

correct for plate positional effects (Caicedo et al, 2017). The Maha-

labobis distance between each feature profile and the distribution of

all profiles was calculated and used as a measure for phenotypic

dissimilarity.

Phenotypic profiling by within-well classification of transfected
and non-transfected cells

Single-cell features of the mAb414 staining pattern (intensity and

texture features in cells, nuclei, cytoplasm and nuclear periphery) or

features of the area and shape of the cells and nuclei and intensity

and texture features of the total protein stain were standardized by

the mean and standard deviation of the T(�) cell population per

well. We excluded wells with fewer than 300 transfected cells from

further analysis. As a first step in the screen analysis, the dimen-

sionality of the data set was reduced by principal component analy-

sis. The features used for the PCA are listed in Tables EV2 and EV3.

We selected the first 50 (for the cell morphology profiling) or 30 (for

the mAb414 staining features profiling) principal components of the

data sets. We randomly selected 500 T(+) and T(�) cells (with

replacement) form every targeted cell population and trained a 10-

fold cross-validated logistic regression model on the single-cell data

using the R software package glmnet (Friedman et al, 2010). We

employed the least absolute shrinkage and selection operator

(LASSO) method for feature selection and bootstrapped this proce-

dure 100 times. We averaged the misclassification error per pertur-

bation. The classification score is a linear transformation of the

average misclassification error of the models obtained in the boot-

straps (we multiply the mean misclassification error with �1 and

add 0.5). We chose the third quantile + 1.5 × the interquartile range

of the classification score of models trained on non-targeting control

transfected populations as a conservative threshold to select classi-

fiers that perform better than classifiers trained on non-targeting

control perturbations. For every logistic regression model trained,

the PV was calculated for every cell in the well. We averaged the

PV per cell over all bootstraps. To calculate the phenotypic score

for each perturbation, we calculated the Kolmogorov–Smirnov

statistic between the distribution of PV of transfected cells

from non-targeting control plasmid transfected wells and the distri-

bution of PV of transfected cells from the respective targeted

population.

We calculated the enrichment of GO terms associated with the

top-scoring perturbations relative to the GO terms associated with

the genes that were represented in the arrayed CRISPR-Cas9 library

and calculated P-values using a hypergeometric test.

In the validation experiments of selected hits from the mAb414

profiling screen, we analysed the features listed in Table EV7. We

reduced the dimensionality of the mAb414 staining texture features

by principal component analysis prior to calculating the mean

feature values of all phenotypically perturbed cells per perturbation.

We standardized the mean feature profiles to the mean feature

values of control cells.

Data and software availability

The CellProfiler pipeline is available as Dataset EV2. The script used

for selecting gRNA sequences is provided as Code EV1.

Expanded View for this article is available online.
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