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Heat shock protein 72 (Hsp72) exhibits a protective role during times of increased risk of pathogenic challenge and/or tissue damage.
The aim of the study was to ascertain Hsp72 protective effect differences between animal and human studies in sepsis using a
hypothetical “comparative study” model. Forty-one in vivo (56.1%), in vitro (17.1%), or combined (26.8%) animal and 14 in vivo (2)
or in vitro (12) human Hsp72 studies (P < 0.0001) were enrolled in the analysis. Of the 14 human studies, 50% showed a protective
Hsp72 effect compared to 95.8% protection shown in septic animal studies (P < 0.0001). Only human studies reported Hsp72-
associated mortality (21.4%) or infection (71%) or reported results (14.3%) to be nonprotective (P < 0.001). In animal models,
any Hsp72 induction method tried increased intracellular Hsp72 (100%), compared to 571% of human studies (P < 0.02), reduced
proinflammatory cytokines (28/29), and enhanced survival (18/18). Animal studies show a clear Hsp72 protective effect in sepsis.
Human studies are inconclusive, showing either protection or a possible relation to mortality and infections. This might be due
to the fact that using evermore purified target cell populations in animal models, a lot of clinical information regarding the net
response that occurs in sepsis is missing.

1. Introduction

Sepsis is an inflammation-induced syndrome resulting from
a complex interaction between host and infectious agents. It
is considered severe when associated with acute organ dys-
function, which accounts for the main cause underlying
sepsis-induced death. Despite increasing evidence in sup-
port of antioxidant [1], anti-inflammatory [2], or immune-
enhancing [3] therapies in sepsis, recent studies failed to
establish a correlation between antiseptic pathway-based

therapies and improvement of sepsis [4] or septic shock [5]
or among immune-competent patients [6].

Rapid expression of the survival gene heat shock protein
72 (Hsp72) was shown to be critical for mounting cytoprotec-
tion against severe cellular stress, like elevated temperature
[7]. Intracellular Hsps are upregulated in cells subjected to
stressful stimuli, including inflammation and oxidative stress
exerting a protective effect against hypoxia, excess oxygen
radicals, endotoxin, infections, and fever [8]. Recent stud-
ies imply that different biological disease processes and/or
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simple interventions may interfere with high temperature
stress, leading to different clinical outcome in patients with
and without sepsis [9]. In septic patients, administration of
antipyretics independently associated with 28-day mortality,
without association of fever with mortality [9]. Importantly,
fever control using external cooling was safe and decreased
vasopressor requirements and early mortality in septic shock
(10].

Inducible Hsp72 is also found extracellularly where
it exhibits a protective role by facilitating immunological
responses during times of increased risk of pathogenic chal-
lenge and/or tissue damage [11]. Experimental data provide
important insights into the anti-inflammatory mechanisms of
stress proteins protection and may lead to the development of
anovel strategy for treatment of infectious and inflammatory
disorders [12]. However, although overexpression of stress
proteins signals danger to inflammatory cells and aids in
immune surveillance by transporting intracellular peptides
to immune cells [13], it has also been linked to a deleterious
role in some diseases [14]. In addition, serum Hsp72 levels
were shown to be modulated according to the patient oxidant
status whereas increased serum Hsp72 was associated with
mortality in sepsis [15].

The purpose of this basic research-related review in
critical care is to document the available evidence on the
role of Hsp72 in sepsis, reporting both the state of the
art and the future research directions. It might be that
potential therapeutic use of stress proteins in prevention of
common stress-related diseases involves achieving optimal
balance between protective and immunogenic effects of these
molecules [16]. In this review, we will attempt to classify
experimental and clinical studies on Hsp72 in sepsis and to
compare their results on inflammation, organ function, and
outcome; we will also briefly discuss the mechanisms on how
stress proteins might exert their protective or negative role
in the disease development and highlight the potential clinic
translation in the research field.

2. Materials and Methods

Human or animal in vivo or in vitro studies examining the
beneficial effect of intra- or extracellular Hsp72 expression in
sepsis were included in this study. The PRISMA [17] search
method for identification of studies consisted of searches of
PubMed database (1992 to September 2012) and a manual
review of reference lists using the search term: “Hsp70 or 72
The search output was limited with the search filter for any
of: sepsis; severe sepsis; bacterial lipopolysaccharide (LPS);
endotoxin. References in selected studies were examined
also. The title and abstract of all studies identified by the
above search strategy were screened, and the full text for
all potentially relevant studies published in English was
obtained. The full text of any potentially relevant studies was
assessed by five authors (DME EB, IP, AK, and TT). The same
authors extracted data from the published studies.

2.1. Statistical Analysis. Proportions of methods used and
results findings were compared by the y* test. A two-sided
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alpha of 0.05 was used for statistical significance. The results
were analyzed using SPSS software (version 20.0, SPSS,
Chicago, IL, USA).

3. Results

Our search identified 411 PubMed titles and abstracts.
After excluding duplicates, studies with no original data, or
data insufficient to evaluate or those whose outcome was
ischemia/reperfusion injury or others, 55 articles were finally
included for analysis. The aim of this minireview was not
to examine the quality of studies, but to describe induction
methods and to compare in vivo and in vitro methods and
results regarding a potential protective role for Hsp72 in
human and animal sepsis.

3.1. Animals. Forty-one in vivo (23, 56.1%), in vitro (7,
17.1%), or combined (11, 26.8%) animal studies fulfilling the
research criteria regarding the role of Hsp72 in sepsis were
enrolled in analysis (Tables 1(a), 1(b), and 1(c)). In only 6
studies transgenic animals (4Hsp_/ " (9.8%), 2 overexpressing
the human Hspal2b gene (4.9%)) were used (14.6%), all in
mice (P < 0.03). Hsp72 induction methods used in rats
differed from those used in mice (P < 0.0001). Hsp72
induction was attempted most often using heat shock (rats
9, 37.5%; mice 2, 12.5%), glutamine (Gln) (rats 7, 29.2%; mice
4, 25%; sheep 1, 100%), or combined Gln with additional
inducer (rats 1, 4.2%; mice 2, 12.6%). In 7 rats Hsp72 was
induced through adenoviral vector Hsp72 (AdHSP) (3, 12.5%
of studies in rats) or various recombinant Hsp72 (rHsp72)
preparations (4, 16.7%) compared to 3 mice studies where
AdHSP, bovine rHsp72 preconditioning, or overexpressed
Hsp72 within the intestinal epithelium was used (6.2%).
Hsp72 gene-transfected models (3, 18.8%) or cecal ligation
and puncture (CLP) with LPS or injection of microorganisms
(2,12.5%) were used only in mice studies.

In more than half of the studies induction was attempted
in a pretreatment mode (10, 62.5% for mice; 13, 54.2% for
rats induction after LPS injection or CLP), followed by a
concomitant mode in rats (6, 25%) or a posttreatment one
in mice (4, 25%). The different time intervals used before or
after experimental sepsis, most often 1-2 hours, did not differ
among groups. Preventive effect was achieved by most induc-
tion methods used in mice or rats (39/41, 95.1%), irrespective
of the challenge period or timing used (Figures 1(a) and 1(b)).
Two studies, one carried out in sheep and one in rats,
were inconclusive. In all septic animal models, any Hsp72
induction method tried increased intracellular Hsp72 (41/41,
100%), reduced proinflammatory cytokines (28/29 studies
involving cytokine measurements), organ damage (27/27),
clinical deterioration (19/20), and enhanced survival (18/18).

3.2. Patients. Only 14 human in vivo (2) and in vitro (12)
Hsp72 studies were identified (Tables 2(a) and 2(b)): human
peripheral blood mononuclear cells (hPBMC) 9 studies,
64.3%; polymorphonuclear leukocytes (hnPMNL) 2 studies,
14.3%; lymphocytes (hPBLC) 1 study, 71%; in vivo (children
or adults’ serum levels) 2 studies, 14.3%. Of those, hPBMC
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FIGURE 1: (a) Preventive effect was achieved by all induction methods used irrespective of the challenge period or (b) time lapse between
the sepsis insult and the Hsp72 induction: LPS, bacterial lipopolysaccharide; CLP, caecal ligation and puncture; iHsp72, inducible heat shock
protein 72; Pre, pre-treatment; Post, posttreatment; both, trials with pre- and postexperiments; Con, concomitant; AAHSP, adenoviral vector
Hsp72; exogHsp, exogenous Hsp72 preparations; Gln, glutamine; +, additional challenge; HS, heat stress; Hspgene, Hsp72 gene-transfected

models.

were used in only 2 studies with septic patients but in 6 with
healthy volunteers. Heat stress (HS) or acclimation was used
in 5 studies (35.7%), Gln administration in 2 in association
with LPS (14.3%), recombinant human Hsp72 in 1 (7.1%),
and either inhibitor or agonist in 1 (71%). In 4 studies no
challenge or only LPS (28.6%) was used. In only 1 out of 6
(16.7%) studies in septic patients induction Hsp72 methods
were attempted compared to 100% in the studies with healthy
(7) or ARDS (1) patients (P < 0.006). Protection markers
studied were apoptosis (3 studies, 21.3%), HS (2 studies,
14.3%), oxidative damage, hospital infections, hemodynamic
instability, and ARDS (1 study each, 7.1%).

Intracellular Hsp72 was induced in 8 in vitro studies
(571%, 6 in healthy, 2 in septic) and inhibited in 3 (21.4%, 2 in
septic, 1in ARDS patients). Of the 6 studies in septic patients,
intracellular Hsp72 was increased in 2 (33%), inhibited in 2
(33%), and not measured in 2. With the exception of sodium
arsenite, neither Gln nor HS were tested in these studies.
Extracellular Hsp72, measured in 1 in vitro and in 2 in vivo
studies, was shown to increase in sepsis, especially in septic
shock or in those who died (14.3% of human studies).

Increased intracellular Hsp72 was protective in half of
the human studies (50%); regarding the 9 positive (HS, Gln,
exogenous Hsp72) in vitro induction Hsp72 human studies
7 (77.8%) were protective (Figure 2(a)) and 2 inconclusive
(11.1%) or nonprotective (11.1%). Of the induction methods
used, protection offered HS (4/5, 80%), glutamine (1/2, 50%),

rHsp72 and sodium arsenite (1/1,100% each) (Figure 2(b)). In
contrast, of the 2 in vivo (serum Hsp72 measurements), 2 in
vitro endotoxin induced (LPS or CLP), and 1 Hsp72 inhibitor
human studies, none was shown to be associated with a better
outcome (P < 0.02); 3 studies were associated with mortality
(60%) and 1 with infection (20%) or were inconclusive (20%).
Septic patients’ studies were positive for protection in only 1
out of 6 (16.7%) compared to 5 out of 7 (71.4%) in healthy and
100% in ARDS patients (P < 0.06).

3.3. Human Compared to Animal Studies. Out of a total of 55
enrolled studies, only 2 in vivo human studies (3.6%) have
been reported on the role of Hsp72 in sepsis compared to 7
mice (12.7%) and 15 rat (27.3%) in vivo studies (P < 0.0001);
in contrast 12 human (21.8%) studies have been reported
in vitro compared to only 2 in rats (3.6%) and 5 in mice
(9.1%); 4 mice (7.3%) and 7 rat (12.7%) combined in vitro-
in vivo studies have also been reported. Of the 14 human
studies, 50% showed a protective Hsp72 effect compared
to 95.8% protection shown in animal studies (Figure 3(a)).
When restricted to the septic patients” studies, however, only
1 out of 6 (16.7%) demonstrated an Hsp72 protective effect
compared to 95.8% protection shown in animal studies (P <
0.0001). In addition, only human studies reported Hsp72-
associated mortality (21.4%) or infection (71%) or reported
results (14.3%) to be nonprotective (P < 0.001).
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FIGURE 2: (a) Increased serum Hsp72 in septic patients was associated with mortality whereas human cell studies with Hsp72 induction
were either inconclusive or protective or even partially associated with mortality and infection; (b) heat pretreatment and/or glutamine
incubation and recombinant or Hsp72 agonists (sodium arsenite) partially protected human cells compared to the nonchallenged human
cells or to those challenged with Hsp72 inhibitors (quercetin) or LPS alone (P < 0.04). Positive Hsp72 induction human in vitro studies
were tried in healthy individuals or ARDS patients compared with 1 study in septic patients’ cells (P < 0.02) whereas negative human Hsp72
studies (LPS, quercetin) or neutral studies (no induction) were only examined in septic human cells: iHsp72, inducible heat shock protein 72;
hPBMC, human peripheral blood mononuclear cells; hAPMNL, human peripheral polymorphonuclear leukocytes; hPBMC, human peripheral
blood lymphocytes; ARDS, acute respiratory distress syndrome; Gln, glutamine; HS, heat stress; LPS, bacterial lipopolysaccharide; rHsp72,

recombinant Hsp72.

Most of the human studies were prospective observa-
tional experimental controlled studies (571%) and only 1
randomized study (71%) compared to prospective controlled
animal studies (100%, P < 0.0001). All other human studies
were experimental control (14.3%) or noncontrolled (14.3%)
studies. Induction methods used differed significantly (P <
0.02), increasing Hsp72 in 571% of the human as compared
to 100% of animal studies (P < 0.02). Only 6 (42.9%)
human studies included septic patients compared to 41
(100% experimental sepsis) in animal studies (P < 0.0001).
Although differed among Hsp72 study populations (P <
0.001) or methodology selected (P < 0.02), the various
induction methods used did not affect the Hsp72 offered
protection (Figures 3(b) and 3(c)).

4. Discussion

Hsps70 are emerging as powerful dichotomous immune-
modulatory molecules that can have stimulatory and inhib-
itory effects on immune responses [63]. In our hypotheti-
cal “comparative study” model, we found that the balance
between Hsp72 promotion and control of inflammatory
responses and sepsis outcome differed unpredictably between
human and animal studies. Clinical studies were inconclu-
sive, showing either a low probability of protection (16.7%

among septic patients) or even a possible relation to mortality
and infections. In contrast, almost all (94.7%) septic animal
in vivo and in vitro studies showed a biochemical, biological,
and clinical protective effect for Hsp72 in sepsis. This might
be due to the fact that using evermore purified target cell
populations to provide insight into the direct effects of
molecules on cells, a lot of clinical information regarding the
net response that occurs in vivo is missing [63].

4.1. Stress Proteins Induction. Sepsis, endotoxin tolerance,
and heat shock all display downregulation of innate immu-
nity, sharing a common immune suppressive effect, possibly
through HS factor 1 (HSF1) mediated competitive inhibition
of nuclear factor kappa-B (NF-xB) binding [45]. It has been
shown that multiple chaperones or cochaperones, including
Hsp72, tend to form a complex with HSF1 monomers [64].
Once a cell is exposed to stress, these chaperones and
cochaperones bind to denatured and damaged proteins,
thereby “releasing” the nonactive HSF1 monomers to sub-
sequently undergo homotrimerization [65]. However, while
homotrimerization is sufficient for DNA binding and nuclear
translocation, the magnitude and duration of transcriptional
activity are regulated by inducible phosphorylation of specific
serine residues of HSF1 by several protein kinases (Erk1/2,
glycogen synthase kinase, protein kinase C) [64].
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FIGURE 3: (a) Diagram showing summaries of conclusions regarding the Hsp72 protective effects in sepsis in human and animal studies (P <
0.008); (b) human Hsp72 induction methods showed inconsistent results compared to the unanimous Hsp72 protective results in experimental
sepsis with any attempted induction method; selection of any induction method, however, did not affect results; (¢) Hsp72 induction protective
effect using various induction methods was not influenced by the in vitro, in vivo, or combined study method selected: iHsp72, inducible heat
shock protein 72; AdHSP, adenoviral vector Hsp72; exogHsp, exogenous Hsp72 preparations; Gln, glutamine; +, additional challenge; HS,
heat stress; rHsp72, recombinant Hsp72; Hspgene, Hsp72 gene-transfected models; both, in vitro and in vivo experiments.

Once inside the nucleus, HSF1 binds to a heat shock ele-
ment (HSE) in the promoter of Hsp genes, which is defined
by a tandem repeat of the pentamer nGAAn arranged in an
alternating orientation either “head to head” (e.g., 5'-nGA-
AnnTTCn-3') or “tail to tail” (e.g., 5 -nTTCnnGAAn-3')
[66], resulting in the upregulation of stress protein gene

expression [67]. Thus, the intracellular accumulation of
denatured or improperly folded proteins in response to stress
is believed to be the universal signal resulting in the stress-
induced gene expression of stress proteins [68, 69] which
is proportional to the severity of the stress [70]. Besides
the innate immune response stress proteins seem to activate
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TABLE 2: (a) Human in vivo studies relating intra- or extracellular Hsp72 (Hsp70) expression to outcome in sepsis. (b) Human in vitro studies
relating intracellular Hsp72 (Hsp70) expression to outcome in sepsis.
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also the adaptive immune response [71]. Thus, they have the
capacity to elicit a pathogen-specific immune response [72]
and to mediate the induction of peptide-specific immunity,
eliciting potent T cell responses against the chaperoned

peptide [73].

4.2. Experimental Hsp72 Studies. Hsp72 is the most highly
induced stress protein in cells and tissues undergoing the
stress response [74] and is central to the cytoprotective
properties in patients with a variety of critical illnesses [52] or

injuries [75]. Cell cycle components, regulatory proteins, and
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proteins in the mitogenic signal cascade may be protected by
the molecular chaperone Hsp72 during periods of stress, by
impairing proteasomal degradation of IkappaBalpha (IxBa)
[47]. In addition, binding of Hsp72 to the Ser/Thr protein
kinase IREla enhances the IREla/X-box binding protein
XBP1 signaling at the endoplasmic reticulum and inhibits
endoplasmic reticulum stress-induced apoptosis [76]. Thus,
increased expression of Hsp72 by gene transfer/transfection
has been demonstrated to confer protection against in vitro
toxicity secondary to lethal hyperthermia [77], endotoxin
[78], nitric oxide [79], hyperoxia [80], lung inflammation and
injury [81], and in vivo ischemia-reperfusion injury [82]. On
the contrary, microinjection of anti-Hsp72 antibody into cells
impaired their ability to achieve thermotolerance [83].

We showed that in septic animal models, all reported
Hsp72 induction methods increased intracellular Hsp72; this
was associated with reduced proinflammatory cytokines,
decreased organ damage, clinical improvement, and
enhanced survival. Analysis of reviewed studies showed
differed methodology approaching the Hsp72 biological and/
or genetic implication in the sepsis process.

4.2.1. Transgenic Animals. When challenged with systemic
endotoxin, HSF1-deficient [84] or Hsp722_/ ~ mice [49] had
increased apoptosis and mortality compared to wild-type
(WT) mice. Hsp72 expression was also required for Gln’s
protective effects on survival and tissue injury [34], an effect
not seen in Hsp72_/ ~ mice [85]. On the contrary, using
transgenic mice overexpressing the human Hspal2b gene,
Hsp72 attenuated the endotoxin-induced cardiac dysfunction
and leucocyte infiltration into the myocardium [51].

4.2.2. Hsp72 Overexpression with Adenovirus Injection
(AdHSP). Hsp72 overexpression with adenovirus injection
prevented the LPS-induced increase in tumor necrosis factor-
alpha (TNF«) and IL-6 levels associated with inhibited IxB«
degradation [36] through NF-«B pathway [47]. Increases
in levels of Hsp72 by gene transfection attenuated LPS- or
TNFa-induced high mobility group box protein-1 (HMGBI)
cytoplasmic translocation and release [12], decreased
inducible NO synthase (iNOS) messenger RNA expression
[45], and protected cells from programmed cell death [46].
Thus, AdHSP protected against sepsis-induced lung injury
[86] by reducing nuclear caspase-3 [87], prevented alveolar
type II cell proliferation [88], and improved short-term
survival following CLP [89].

4.2.3. Exogenous Hsp72. At the cellular level, Hsp72 prepara-
tions not only inhibited LPS-induced reactive oxygen species
production and decreased NO expression in macrophages,
but they also partially normalized the disturbed neutrophil
apoptosis [37]. Prophylactic administration of exogenous
human Hsp72 normalized inflammatory responses [38], lim-
ited host tissue damage [48], and reduced mortality rates [39].
Liposomal transfer of Hsp72 into the myocardium abolished
LPS-induced contractile dysfunction [44], reduced mortality
rates, and modified hemostasis and hemodynamics [40].
Intestinal Hsp72 overexpression reversed toll-like receptor

1

(TLR)-4-induced cytokines and enterocyte apoptosis and
prevented and treated experimental necrotizing enterocolitis
[50]. Thus, mammalian Hsp72 appears to be an attrac-
tive target in therapeutic strategies designed to stimulate
endogenous protective mechanisms against many deleterious
consequences of septic shock by accelerating the functional
recovery of susceptible organs in humans [40, 90].

4.2.4. Glutamine. Although Gln has little effect under basal
conditions [43], endotoxin-treated animals given Gln exhib-
ited dramatic increases in tissue Hsp72 expression [26],
marked reduction of end-organ damage [28], attenuation
of cytokine release [41] and peroxide biosynthesis, and
improved vascular reactivity [29] associated with a significant
decrease in mortality [91]. The molecular mechanism of
Gln-induced Hsp72 expression appears to be mediated via
enhancement of O-linked 8-N-acetylglucosamine modifica-
tion and subsequently to increased levels of endonuclear
HSFI expression [43] and HSF1 transcription activity [42].

In a recent study, septic mice with Gln administration
showed less severe damage to the kidneys and exhibited
decreased HMGBI and TLR4 in kidney tissues [35]. In
Gln-treated rats, lung Hsp72 and HSFI-p expressions were
enhanced [32, 92], lung HMGBI expression and NF-xB DNA-
binding activity were suppressed, and ARDS was attenu-
ated and survival improved [33]. By inducing Hsp72, Gln
attenuated LPS-induced cardiomyocyte damage [42] and
left ventricular dysfunction [27] whereas Gln-treated sheep
had a greater increase in myocardial Hsp72 immunoreactiv-
ity without aggravating the hyperdynamic circulation after
endotoxemia [31]. In a rat brain model of endotoxemia,
Gln upregulated the expression of Hsp72 and decreased the
magnitude of apoptosis by inhibiting the translocation of NF-
«B from the cytoplasm to the nucleus [30].

4.2.5. Hyperthermic Heat Shock. Subjected to a brief hyper-
thermic heat shock, Hsp72 conferred protection against
sepsis-related circulatory fatality via inhibition of iNOS gene
expression through prevention of NF-«B activation in cellular
processes that included prevention of IxB kinase activation
[25] and inhibition of IxBa degradation [20]. Also, Hsp72
induction by thermal pretreatment [21] attenuated proin-
flammatory cytokines [22] and improved survival in the LPS-
induced systemic inflammation model, potentially involving
Hsp-mediated inhibition of HMGBI secretion [23]. A HS
response induction of Hsp72 mRNA and protein expression
in the lung has been shown to be associated with reduced lung
injury [18], improved lung function [93], and survival [94].
Heat shock pretreatment could also attenuate the elec-
trocortical dysfunction in rats with LPS-induced septic
response, suggesting that HS induced Hsp72 might poten-
tially be used to prevent septic encephalopathy in sepsis
[24]. Similarly, HS treatment led to Hsp72 overexpression
and preserved the expression of the enzyme mitochondrial
cytochrome ¢ oxidase complex associated with the mini-
mization of ultrastructural deformities during sepsis [19].
Interestingly, Gln increased DNA binding of HSF1 in HS
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cells but in its absence ornithine was able to rescue the heat-
induced DNA binding of HSF1 [43].

4.3. Human Studies. Although the release of the Hsp72 in
sepsis serves as a host impending danger signal to neigh-
boring cells and might exert a cytoprotective function at low
serum levels, it might also potentiate an already active host
immune response leading to poor outcome once a certain
critical threshold is attained. Such a sensitive balance could be
an explanation of the surprising finding of this study, showing
that only 16.7% of the 6 human septic studies demonstrated an
Hsp72 protective effect compared to 95.8% protection shown
in the 41 septic animal studies. In addition, by experimentally
studying healthy individuals rather than patients in a real
clinical setting, human studies mix up mild molecular reac-
tions to stress with severe infectious systemic inflammatory
response syndrome (SIRS), being thereby unconvincing and
unable to verify results of experimentally controlled septic
animal models.

4.3.1. Intracellular Hsp72: In Vitro Studies (Cell Models).
Human in vitro studies, mainly examining intracellular
Hsp72 expression in hPBMC or hPMNL in patients and
healthy individuals by using HS, Gln, exogenous Hsp72, and
Hsp72 inhibitors or agonists, are inconclusive [57]. Thus,
although GIn infusion altered neither endotoxin-induced
systemic inflammation nor early expression of Hsp72 in
isolated PBMC:s in healthy volunteers [53], inducibility of ex
vivo Hsp72 was impaired in peripheral blood lymphocytes
of patients with severe sepsis [95], possibly contributing to
immune dysfunction of T and B lymphocyte responses in
resisting infection in severe sepsis [56].

Enhanced Hsp72 response in endurance-trained indi-
viduals, however, improved heat tolerance through both
anti-inflammatory and antiapoptotic mechanisms [58]. Also,
rHsp72 preconditioning ameliorated reactive oxygen species,
TNF«, and CDI11b/CD18 adhesion receptor expression after
lipoteichoic acid addition [39]. Sepsis was shown to enhance
expression of iHsp72 in PBMCs correlated to plasma TNF«
concentrations [54] and in activated PMNLSs, in which oxida-
tive activity was increased and apoptosis was inhibited [55].
Similarly, using various Gln doses, proinflammatory cytokine
release could directly be attenuated in PBMCs through
enhancement of Hsp72 expression [61]. Overexpression of
Hsp72 attenuated NF-xB activation and proinflammatory
cytokine release [88, 96], inhibited LPS-mediated apoptosis,
and protected lung epithelial cells [80] and pulmonary
artery endothelial cells from oxidant-mediated [97] and
inflammation-induced lung injury [59].

4.3.2. Extracellular Hsp72: In Vivo Studies (Serum Hsp).
Although PBMC Hsp72 expression was shown to be
markedly decreased in critically ill septic patients [56], a
significant increase in serum Hsp72 levels was reported in
children with septic shock [52]. Extracellular Hsp72, reflected
by increased serum levels, was also evident in children with
acute lung injury [81] or following cardiopulmonary bypass
[98]. Results of a recent adult study also indicated that
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increased serum Hsp72 is associated with mortality in sepsis
[15]. Worse outcome associated with extracellular Hsp72 has
also been reported in coronary artery disease [99], liver
disease [90], sickle cell disease vasoocclusive crisis [100], and
preeclampsia [101].

Heat shock proteins are markedly induced in response
to a diverse range of cellular insults, being a reliable danger
marker of cell stress [102]. Thus, extracellular Hsps act as a
“danger signal,” activating immune-competent cells through
LPS TLR4/CDI14-dependent signaling [103]. According to
the “danger hypothesis,” the release of stress proteins from
severely stressed or damaged cells serves as a host impending
danger signal to neighboring cells [104]. They are released in
anonspecific manner from dying, necrotic cells [105] or from
viable cells release in a specific and inhibitable manner [106,
107]. Using viable cell counts and lactate dehydrogenase the
release of Hsp72 was shown to not be due to cellular damage
[60]. Recent studies suggest that Hsp72 is actively released via
an exosome-dependent nonclassical protein secretory path-
way, possibly involving lysosomal lipid rafts [108]. Immune
cell receptors capture Hsps released from necrotic cells or
Hsp-containing exosomes [109], and receptor engagement by
Hsp72 increases dendritic cell production of TNF«, IL-1b, IL-
6, and chemokine [110]. The host innate immune response
occurs through a NF-kB-dependent proinflammatory gene
expression via TLR4 and TLR2 [111], similar to a LPS-
mediated signal transduction [112].

4.4. Factors Influencing Heat Shock Proteins Protective Role
in Sepsis. Recent work demonstrated that febrile-range tem-
peratures achieved during sepsis and noninfectious SIRS
correlated with detectable changes in stress gene expression
in vivo (whole blood messenger RNA), thereby suggesting
that fever can activate Hsp72 gene expression and modify
innate immune responses [113]. Hsp72 serum levels may also
be modulated according to the patient oxidant status [15]
and prevent excessive gut apoptosis and inflammation in an
age-dependent response to sepsis [49]. Importantly, Hsp72
inhibited LPS-induced NO release but only partially reduced
the LPS increased expression of iNOS mRNA and exhibited
LPS-induced NF-«B DNA binding and LPS tolerance; in
contrast, HS inhibited LPS-induced NF-xB and HSF1 activity
whereas HSF1 inhibited NF-«B DNA binding [45]!

A significant body of preexisting literature has hypoth-
esized a relationship between Hsp72 expression and Gln’s
protection in both in vitro and in vivo settings [32, 43, 62, 114,
115]. Pioneer studies showed that Gln supplementation could
attenuate lethal heat and oxidant injury and increase Hsp72
expression in intestinal epithelial cells [116-118]. Compared,
however, with whey protein supplementation in a random-
ized, double-blinded, comparative effectiveness trial, zinc,
selenium, Gln, and intravenous metoclopramide conferred
no advantage in the immune-competent population [6]. In
addition, we recently showed that although apparently safe
in animal models (pups), premature infants, and critically
ill children, glutamine supplementation did not reduce mor-
tality or late onset sepsis [119]. Methodological problems
noted in the reviewed randomized experimental and clinical
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trials [119] should therefore be seriously considered in any
future well-designed large blinded randomized controlled
trial involving glutamine supplementation in severe sepsis.

Drug interactions were also shown either to suppress
Hsp72 protective effects exacerbating therefore drug-induced
side effects or to induce Hsp72 beneficial effects by suppress-
ing drug-induced exacerbations. Thus, it was recently shown
that bleomycin-induced pulmonary fibrosis is mediated by
suppression of pulmonary expression of Hsp72 whereas an
inducer of Hsp72 expression, such as geranylgeranylacetone,
could be therapeutically beneficial for the treatment of
gefitinib-induced pulmonary fibrosis [120].

Finally, critically ill patients display variable physio-
logic responses when stressed; gene association studies have
recently been employed to explain this variability. Genetic
variants of Hsp72 have also been associated with the develop-
ment of septic shock in patients [121, 122]. Thus, the specific
absence of Hsp72.1/3 gene expression can lead to increased
mortality after septic insult [85].

4.5. Limitations of the Study. The major problem that limits
the comparability with human sepsis is the fact that in most
cases of animal models, various forms of preconditioning
were employed. This approach is nonspecific, and only a
minor amount (about 10%) used genetically modified ani-
mals. Accordingly, important differences between cell and/or
animal models versus clinical studies have been noted several
times with various inflammatory pathways and have been
written about extensively in the literature [123, 124]. To the
best of our knowledge, however, such discrepancies have not
been summarized in detail in the context of Hsp72 and sepsis;
in our opinion, these findings might be helpful for cautiously
interpreting experimental data in the critical care field.

5. Conclusions

Heat shock proteins are molecular chaperokines that prevent
the formation of nonspecific protein aggregates and exhibit
sophisticated protection mechanisms. Experimental studies
have repeatedly shown a strong molecular, biological, and
clinical protective effect for Hsp72 in sepsis. Once again,
clinical studies are inconclusive, varying from a protective
in vitro effect to an in vivo Hsp72-mortality association.
Possible influences by severity of disease-related factors,
genetic variants, oxidant status, and unpredictable inter-
ventions such as those of temperature control, nutritional
(glutamine) immune-enhancing, or drug intervening effects
may unpredictably influence the Hsp72 protection efficacy in
sepsis. Our “comparative” study data demonstrate that cell-
protection with exogenous Hsp72, Hsp72 genes, heat stress,
or glutamine is associated with induction of Hsp72 and that
new Hsp72 targeted pharmaconutrition may be an approach
to activating the preconditioning response in sepsis in clinical
practice. However, as this hypothetical study suggests, much
more work is needed to clarify the cellular and molecular
mechanisms in which Hsp72 signals “danger” and regulates
immune function in response to sepsis.
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