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Deciphering the properties of vaccines against an emerging pathogen is
essential for optimizing immunization strategies. Early after vaccine roll-
out, however, uncertainties about vaccine immunity raise the question of
how much time is needed to estimate these properties, particularly the
durability of vaccine protection. Here we designed a simulation study,
based on a generic transmission model of vaccination, to simulate the
impact of a breadth of vaccines with different mean (range: 10 months–2
years) and variability (coefficient of variation range: 50–100%) of the
duration of protection. Focusing on the dynamics of SARS-CoV-2 in the
year after start of mass immunization in Germany as a case study, we then
assessed how confidently the duration of protection could be estimated
under a range of epidemiological scenarios. We found that lower mean
and higher heterogeneity facilitated estimation of the duration of vaccine
protection. Across the vaccines tested, rapid waning and high heterogeneity
permitted complete identification of the duration of protection; by contrast,
slow waning and low heterogeneity allowed only estimation of the fraction
of vaccinees with rapid loss of immunity. These findings suggest that limited
epidemiological data can inform the duration of vaccine immunity. More
generally, they highlight the need to carefully consider immunological
heterogeneity when designing transmission models to evaluate vaccines.
1. Introduction
As vaccines against an emerging pathogen become available, assessing their prop-
erties is essential for epidemic forecasting and for optimizing immunization
strategies. Key among those properties is the duration of vaccine protection,
whose distribution can schematically be decomposed into the population mean
and the inter-individual variability. A large body of epidemiological theory indi-
cates that the mean duration of vaccine protection predicts essential metrics of
long-term control, like critical vaccination coverage and vaccine impact [1–3].
Although less studied [4–6], the variability in the duration of protection may be
equally important to predict the long-term dynamics of an emerging pathogen
after mass immunization, perhaps even more so because heterogeneity appears
to be a defining feature of vaccine immunity [7]. Elucidating the duration of vac-
cine protection can be achieved by identifying immune correlates of protection,
a central tenet of vaccinology [8]. However, the search for such correlates may be
complicated by the intricacies of vaccine immunity, often characterized bysubstan-
tial heterogeneity and multiple memory components with different kinetics of
decay (as in the case of COVID-19 vaccines [9]). Alternatively, the rate of waning
vaccine effectiveness can be estimated from longitudinal cohort studies conducted
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after vaccine roll-out. However, the interpretation of such
studies may be complex, as it depends on the study design [10]
and on the mode of vaccine protection [11,12].

As a complement to immunological and epidemiological
vaccine studies, mathematical models of transmission and
vaccination—which allow translating hypotheses about
individual-level mechanisms of vaccine protection into popu-
lation-level dynamics—may be helpful to unravel vaccine
immunity [13–16]. Earlier applications demonstrated the ability
of such models to accurately estimate relevant attributes of var-
ious vaccines while capturing both their direct and indirect
effects on infection dynamics [17–20]. However, as the epide-
miology of an emerging pathogen may rapidly change (e.g.
because of the emergence of new variants, as exemplified by
SARS-CoV-2 [21]), a practical question is how much longitudi-
nal data are needed to estimate the duration of vaccine
protection using such models, given the inevitable trade-off
between fast and accurate estimation. A critical element control-
ling this trade-off is the number of breakthrough cases in
vaccinated individuals developing over time, as more events
of vaccine failure will help inform the duration of vaccine pro-
tection. This number is itself determined by the specific force
of infection and vaccination coverage in the study population,
in addition to general vaccine properties like the duration of
protection. Importantly, the mean and the variability of this
duration jointly modulate the fraction of vaccinees losing
immunity and thus the number of breakthrough cases during
a given time period. From a theoretical perspective, therefore,
it can be hypothesized that both the mean and the variability
of the duration of vaccine protection can affect the time required
for reliable estimation.

Here, we designed a simulation study to determine how
reliably the duration of vaccine immunity against an emerging
pathogen could be estimated with age-specific case report
incidence data. We developed a generic population-based
model of vaccination, applied—as a case study—to represent
the dynamics of SARS-CoV-2 in the year after the start of mass
immunization against COVID-19 in Germany. Emphatically, we
used thismodel as ageneral framework—asopposed toaspecific
investigation of COVID-19vaccines—to examine how the
amount of data and the characteristics of the distribution of vac-
cine protection durability affected estimation performance. We
find that limited epidemiological data can provide information
on the duration of vaccine protection. In addition, we show
that higher vaccine heterogeneity facilitates estimation of this
duration. Altogether, these results highlight the need to pay care-
ful attention to immunological heterogeneity when designing
transmissionmodels to estimate orpredict the impact of vaccines.
2. Methods
2.1. Study population and study period
In this simulation study, we considered Germany as our study
population andwe simulated a study period of atmost 1 yr follow-
ing the introduction of COVID-19 vaccines (i.e. time zero in the
model was set to the start time of vaccination). As vaccination
against COVID-19 started in late 2020/early 2021 in Germany,
the study period approximately covered year 2021 and initial con-
ditions were assumed to represent the epidemiological situation at
the beginning of that year. The endpoints considered were case
reports of clinical and subclinical SARS-CoV-2 infections.
2.2. Model formulation and parametrization
Weused apreviously describeddeterministicmodel of SARS-CoV-2
transmission, empirically estimated with data in six countries
(China, Italy, Japan, Singapore, Canada, and South Korea) during
the first wave (December 2019–March 2020) of COVID-19 [22].
Briefly, the model is an extension of the standard Susceptible–
Exposed–Infected–Recovered (SEIR) model, stratified according to
age (I = 8 age groups considered here: 0–9, 10–19,… , 60–69 and
≥70yr) and according to type of infection, either subclinical (defined
as asymptomatic or paucisymptomatic) or clinical. To addbiological
realism, the latent and the infectiousperiodswere assumedGamma-
distributed with a shape parameter of 2 and a mean of 1/σ= 3 days
and 1/γ = 5 days, respectively [22]. The age-specific susceptibility
to SARS-CoV-2 infection (denoted by ui=1,…,I) and clinical fraction
(yi=1,…,I) were fixed from the estimates in [22] and are displayed in
electronic supplementarymaterial, figure S2.We assumed that sub-
clinical infectionswere θ= 50%as transmissible as clinical infections,
the value fixed in [22] and also consistent with estimates during the
first wave in China [23]. The rates of contacts between age groups
were fixed using data from the POLYMODstudy in theUK [24], cor-
rected for reciprocity with 2019 age-specific demographic data in
Germany (electronic supplementary material, figure S3). Although
Germany was also part of the POLYMOD study, to keep our
model general we did not use the corresponding data because they
were found to differ markedly (with fewer contacts among children
and adolescents) from those in other European countries, according
to a previous modelling study of pertussis [25].

To model changes in SARS-CoV-2 transmission over the year
following the start of vaccination, we used a flexible time-varying
function β(t):

logb(t) ¼ logb0 þ b1tþ b2sinvtþ b3sin2vtþ b4sin3vt,

where ω= 2π/365day−1 and β(0) = β0. Although arbitrary, this func-
tion was chosen to allow multiple (at most three) peaks over the
year, as observed in time series of the effective reproduction
number during year 2020 in European countries. The exponential
trendwas used tomodel the gradual spread of SARS-CoV-2variants
of concern, in particular the Alpha andDelta variants estimated to be
29 (95% CI: 24–33)% and 97 (95% CI: 76–117)% more transmissible
than non-variants [26]. As of June 2021, the Alpha variant predomi-
nated in Germany [26], and we therefore tested scenarios ranging
from absent to complete replacement with the Delta variant by the
end of the study period (that is, 1:24 � e365b1 � 2:17). At start of vac-
cination,weassumedan initial effective reproductionnumberRe(0) =
1.1 [27]; the corresponding value of β0 was calculated by equating
Re(0) to the leading eigenvalue of the next-generation matrix [22]:

NGMij ¼ b0ui
cij
g
[yj þ u(1� yj)](1� ri(0))

Ni

Nj
,

where ri(0) is the initial fraction recovered and Ni the population
size in age group i. The other transmission parameters βi=1,…,4

were estimated from the simulated data, as explained below. In
every age group, we assumed an initial prevalence of past
infections of 10% [28], of exposed infections of 10−4 and of active
infections of 10−4. We supposed all initial conditions to be
known with reasonable accuracy, for example from epidemiologi-
cal studies (such as seroprevalence studies) or from hindcasts of
epidemiological models around the time of vaccine introduction.

Next, we extended the model described above to incorporate
vaccination against COVID-19. Specifically, we assumed that
COVID-19vaccines conferred imperfect immunity against clinical
infections (vaccine effectiveness against clinical infections: VEC =
1− ϵC, where ϵC is the leakiness to clinical infections) and against
subclinical infections (vaccine effectiveness against subclinical infec-
tions: VES = 1− ϵS). Vaccine protection was assumed leaky—as
opposed to ‘all-or-nothing’ [3]—based on the observations from
phase 1/2 clinical trials, which detected a neutralizing antibody
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response in all vaccine recipients after a booster dose [29–32]. Finally,
vaccine protection was assumed to wane over time, at rate α. Using
the method of stages [33], the distribution of the duration of protec-
tion was varied by subdividing the vaccinated class V into nV
sub-classes. The resulting distribution DV was Gamma with shape
parameter nV, mean E(DV) ¼ 1=a, and coefficient of variation
CV(DV) ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
V(DV)

p
=E(DV) ¼ 1=

ffiffiffiffiffiffi
nV

p
. Vaccination was assumed to

vary over time and to occur continuously, at rate vi(t) in age group i.
Although applied to COVID-19 vaccines in the present case
study, this vaccine model is largely generic and was used in
previous modelling studies of other vaccine-preventable infections
[12,19,20,34].

Given these assumptions, the model was given by the follow-
ing set of differential equations (see full list of model parameters
in table 1 and model schematic in electronic supplementary
material, figure S1):

_Vi,1 ¼ vi(t)Si � nVaVi,1 � [eCyi þ eS(1� yi)]li (t)Vi,1,

_Vi,j¼2,...,nV ¼ nVa(Vi,j�1 � Vi,j)� [eCyi þ eS(1� yi)] li (t)Vi,j,

_Si ¼ �[vi (t)þ li (t)]Si,

_SV,i ¼ nVaVi,nV � li(t)SV,i,

_EC,i,1 ¼ yili (t) (Si þ SV,i þ eCVi)� 2sEC,i,1,

_EC,i,2 ¼ 2s(EC,i,1 � EC,i,2),

_IC,i,1 ¼ 2sEC,i,2 � 2gIC,i,1,

_IC,i,2 ¼ 2g (IC,i,1 � IC,i,2),

_ES,i,1 ¼ (1� yi)li (t)(Si þ SV,i þ eSVi)� 2sES,i,1,

_ES,i,2 ¼ 2s(ES,i,1 � ES,i,2),

_IS,i,1 ¼ 2sES,i,2 � 2gIS,i,1,

_IS,i,2 ¼ 2g (IS,i,1 � IS,i,2)

and _Ri ¼ 2g (IC,i,2 þ IS,i,2);

where Vi ¼
P

j Vi,j is the total number of individuals vaccinated
and

li(t) ¼ b(t)ui
X

j

cij
IC,j,1 þ IC,j,2 þ u(IS,j,1 þ IS,j,2)

Nj

is the (per capita) force of infection in age group i.
To complete the model specification and to generate the simu-

lated data, we used a negative binomial observation model, an
extension of the Poisson model with over-dispersion allowing for
extra variability in the mean reporting probability. Specifically,
we assumed that ρC = 50% of clinical infections were reported to
the surveillance system, in keeping with previous estimates
during March–June 2020 in Germany [35]. The reporting fidelity
of subclinical infections (denoted by ρS) is less well known, but
can be evaluated by comparing the burden estimated from case
reports and sero-epidemiological surveys. Such comparison indi-
cated an overall (i.e. including clinical and subclinical infections)
reporting probability of 15–20% in Germany [36], suggesting low
reporting of subclinical infections. Here we assumed that 95% of
subclinical infections were unreported (ρS = 0.05). The over-dis-
persion in case reporting was fixed to k = 0.04 (approximate
coefficient of variation of the observation model: 20%) for the
simulations and subsequently estimated from the simulated
data. Given the intensive surveillance of COVID-19, we assumed
that the data consisted of daily case reports (without reporting
delay and overall, with no extra information on clinical or subclini-
cal infection) in every age group. Although delays in case reporting
are inevitable in practice, they can be accurately modelled from
other data sources (e.g. line data with dates of symptom onset
and of notification, available from a sample of reported cases)
and easily incorporated into transmission models for added
realism. Hence, including such delays would not affect the infer-
ence problem considered here, andwe ignored them for simplicity.

2.3. Vaccine properties and epidemiological scenarios
considered

In accordance with vaccination strategies defined in Germany
and in most other European countries [37], vaccination was
assumed continuous and staggered, starting with individuals
≥70 yr, followed by 60–69 yr, 20–59 yr and 10–19 yr. Based on
vaccination coverage data observed until 1 September 2021
(plotted in electronic supplementary material, figure S5) [38],
we assumed that 85% of ≥70 yr, 85% of 60–69 yr, 65% of 20–
59 yr and 50% of 10–19 yr would get vaccinated 0–240, 60–240,
90–240 and 150–365 days after start of vaccination, respectively.
Based on available immunological evidence [9,39,40], we
assumed a mean duration of protection of 0.85 yr (rapid
waning) or 2 yr (slow waning), and we contrasted three different
levels of variability: 50% (low heterogeneity), 71% (intermediate
heterogeneity) and 100% (high heterogeneity). The lower bound
of the mean duration was also chosen because it resulted in an
identical fraction of vaccinees losing immunity within the
study period of 1 yr, irrespective of heterogeneity (electronic sup-
plementary material, figure S4C). Other vaccine attributes were
assumed known and were fixed based on the results of clinical
trials and early epidemiological studies of mRNA vaccines: vac-
cine effectiveness of 95% against clinical infections [41,42] and of
90% against subclinical infections [43].

To generate different hypotheses about the spread of
SARS-CoV-2 in the year following start of vaccination, we ran-
domly sampled values for the trend parameters (β1,…,4). To add
realism, we selected 10 parameter sets that resulted in 10
simulated datasets (henceforth referred to as epidemiological
scenarios) meeting the following two criteria: (1) overall cumulat-
ive incidence of total cases less than or equal to 10% and (2) no
peak in overall case reports during summer. These criteria
were chosen to be consistent with the a priori hypothesis of per-
sistent, but low circulation of SARS-CoV-2 in the year following
start of vaccination.

2.4. Parameter estimation
For every scenario, the following parameters were estimated
from the data: rate of waning vaccine protection (α), transmission
parameters (β1,…,4) and over-dispersion in case reporting (kC).
Estimation was conducted using maximum-likelihood estimation
via trajectory matching [44]. In a first analysis, we assumed that
the variability in the duration of vaccine protection was known
(i.e. nV was fixed to its true value), and we calculated the profile
log-likelihood to estimate the maximum-likelihood estimate and
the 99% confidence interval (CI) of the average duration of
vaccine protection (1/α) [45]. We evaluated the profile log-likeli-
hood on a grid of 100 values in the range 0.05–50 years,
uniformly distributed on a logarithmic scale. For every grid
point, estimation was conducted 10 times, with starting par-
ameter values sampled over broad ranges using a Latin
hypercube design. In a second analysis, we assumed that the
variability in the duration of protection was unknown, and we
estimated both the mean and the coefficient of variation of the
duration of protection. The estimation proceeded similarly,
except that the profile log-likelihood was evaluated on a grid
of 100 values of the fraction with short-term immunity (here
defined as the proportion of individuals losing immunity
within 1 year after vaccination, denoted by p1), uniformly
arranged in the interval 0.005–0.995. We focused on this fraction
in the second analysis, because, even though all the distributions
considered had the same mean, their overall shape differed
markedly (see electronic supplementary material, figure S4).



Table 1. List of model parameters. Parameters marked with a star * were estimated from the simulated data. SA: sensitivity analysis; VE: vaccine effectiveness;
CV: coefficient of variation.

parameter(s) symbol
fixed value or range of
fixed values source/comment

vaccination model

vaccination rate vi(t) electronic supplementary

material, figure S5

[37,38]

VE against clinical infections 1− ϵC 0.95 [41,42] SA (electronic supplementary

material, figure S8): 60%

VE against subclinical infections 1− ϵS 0.90 [43] SA (electronic supplementary material,

figure S8): 50%

mean duration of vaccine protection* E(DV) = 1/α 0.85, 2 years assumption. SA (electronic supplementary

material,

figures S9–S10): 5 years

variability in duration of vaccine protection* CV(DV) ¼ 1=
ffiffiffiffi
nV

p
0.50, 0.71, 1.00 assumption

transmission model

average latent period 1/σ 3 days [22]

average infectious period 1/γ 5 days [22]

susceptibility to infection ui electronic supplementary

material, figure S2

[22]

clinical fraction yi electronic supplementary

material, figure S2

[22]

relative infectiousness of subclinical infections θ 0.5 [22] SA (electronic supplementary material,

figure S11): estimated

age-specific contact rates cij electronic supplementary

material, figure S3

[24,48]

initial reproduction number Re(0) 1.1 [27]

initial transmission coefficient β0 0.045 calculated so that Re(0) = 1.1

trend in transmission rate* β1 (6–21) × 10−4 per day [26], variable across scenarios

seasonal transmission parameters* β2,3,4 (–0.3 to 0.3) variable across scenarios

initial fractions exposed Ei(0) 10−4 assumption

initial fractions infected Ii(0) 10−4 assumption

initial fractions recovered Ri(0) 0.1 seroprevalence studies [28]

observation model

probability of reporting clinical infections ρC 0.5 [35]

probability of reporting subclinical infections ρS 0.05 assumption (cf. [36] and main text). SA

(electronic supplementary material, figure

S11): estimated

over-dispersion in case reporting* kC 0.04 CV of observation model ≈20%
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All likelihood profiles were inspected visually and subsequently
smoothed using generalized additive models (GAMs), with auto-
matic estimation of the degree of smoothing. An approximate
99% confidence interval (for 1/α or p1) was calculated as the
range of GAM-predicted 99% lower bounds of smoothed par-
ameter values within χp=0.99,d.f.=1/2≈ 3.32 log-likelihood units
of the maximum log-likelihood.

2.5. Assessment of estimation performance
To assess estimation performance, we quantified both the
accuracy and the precision of the estimates of the average
duration of vaccine protection. Specifically, we measured esti-
mation accuracy by either the bias or the mean absolute bias
(defined as the mean absolute difference between the estimated
values and the true value). To evaluate estimation precision,
we calculated the mean 99% CI width, averaged across epide-
miological scenarios. Furthermore, we examined the range
of lower and upper 99% CI bounds. If the lower (upper) confi-
dence bound equalled the lower (upper) limit of the estimation
interval (0.05–50 years) for a given epidemiological scenario,
the corresponding parameter estimates were considered practi-
cally non-identifiable for decreasing (increasing) parameter
values [45].
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2.6. Numerical implementation
All models were implemented, simulated and estimated using
the pomp package [44,46], operating in R v. 3.6.3 [47]. The social-
mixr package was used to calculate the contact matrix [48], based
on the data from the POLYMOD survey included therein [24].
The renv package was used to keep track of all packages’ ver-
sions and to increase reproducibility [49]. All R programming
codes are freely available from Edmond, the Open Data Reposi-
tory of the Max Planck Society: https://doi.org/10.17617/3.
AWRHE8.
 ournal/rsif
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3. Results
3.1. Estimation results for slow-waning vaccines
We first present the results for slow-waning vaccines,
assumed to confer a mean duration of protection of 2 yr.
The resulting simulations are displayed in electronic sup-
plementary material, figure S6, and the estimates of the
average duration of protection—under the assumption that
the degree of variability was known a priori—in figure 1
(left panels). For low (CV = 0.5, bottom panel) and intermedi-
ate (CV = 0.71, middle panel) variability in the duration of
protection, we found that estimation based on six months
of daily data was typically inaccurate and imprecise. In
most scenarios (7/10 and 10/10 for intermediate and low
variabilities), the limited amount of data resulted in practical
non-identifiabilities, such that an upper confidence bound
could not be derived. However, a lower confidence bound
could be derived in all scenarios tested (range of lower 99%
CI bounds: 0.6–1.4 yr). By contrast, estimates were markedly
more accurate (mean absolute bias: 0.4 yr) and precise (mean
99% CI width: 4.4 yr) for high variability in the duration of
vaccine protection (CV = 1.00, lower panel). As expected,
increasing the length of the study period to 1 yr improved
estimation in all scenarios tested. For high variability, precise
and accurate estimates of the mean duration of protection
could consistently be derived (mean absolute bias: 0.1 yr,
mean 99% CI width: 0.7 yr). Although non-identifiability per-
sisted for lower levels of variability in some scenarios (2/10
for intermediate variability and 8/10 for low variability), a
precise lower confidence bound could be consistently calcu-
lated (range of lower bounds: 1.1–1.9 yr). Hence, we found
evidence that, all else being equal, higher variability facili-
tated estimation of the mean duration of vaccine protection.

These results suggest that, when vaccine heterogeneity is
low, information present in one year of epidemiological data
permits reliable estimation of only the lower, but not the
upper confidence limit for the mean duration of protection.
However, such information is highly relevant from a public
health perspective, because the lower confidence limit relates
to the degree of early loss of vaccine protection. It can there-
fore caution public health actors in decision-making when it
comes to infection prevention and surveillance. To illustrate,
we present in figure 1 (right panels) the estimates of the
fraction with short-term immunity. Despite the practical
non-identifiabilities reported above, we found that relatively
accurate and precise estimation of this key metric was poss-
ible with only 1 yr of data (mean absolute bias ranging
from 1.4% for high variability to 5.1% for low variability).
Importantly, despite identical mean fixed in all simulations,
the fraction with short-term immunity increased with the
variability in the duration of vaccine protection. These
findings emphasize the need to pay careful attention to the
full distribution of the duration of vaccine protection to
understand the post-vaccination dynamics of SARS-CoV-2,
and more generally of an emerging pathogen.

In practice, because of early uncertainties about vaccine
immunity, quantitative estimates of the heterogeneity of pro-
tection may not be available. Next, we therefore proceeded to
estimate both the mean of, and the variability in, the duration
of vaccine protection from our set of epidemiological scenarios.
In simulations of vaccines with low heterogeneity (CV= 0.50,
true fraction with short-term immunity of 14%, figure 2, top
panel), we found that almost all models resulted in an equally
good fit to the data, such that the degree of variability could not
be identified. For mis-specified levels of variability, the fraction
with short-term immunity was systematically underestimated
(mean bias of –7.7% for intermediate variability and of –10.6%
for high variability). In simulations of vaccines with high het-
erogeneity (CV = 1.00, true fraction with short-term
immunity of 39%, figure 2, bottom panel), we found that
more information on the degree of variability was present in
the simulated data. Specifically, the hypothesis of low variabil-
ity could be rejected in all scenarios and the true variability
recovered in 8. In the other 2 scenarios, mis-specifying the
level of variability led to over-estimating the true fraction
with short-term immunity (bias values: 10 and 18%). These
results confirm that higher variability helps estimate the full
duration of vaccine protection.
3.2. Estimation results for rapid-waning vaccines
To interpret the results above, one may hypothesize that
higher vaccine heterogeneity facilitates estimation only to
the extent that it increases the fraction of individuals losing
immunity during the study period of 1 yr (figure 1b and elec-
tronic supplementary material, figure S4C). To test the
validity of this hypothesis, we next considered rapid-
waning vaccines, with mean duration of protection fixed to
0.85 yr, or approximately 10 months. This particular value
was chosen so that the fraction with short-term immunity
was almost identical across the levels of vaccine heterogeneity
( p1 = 0.68 for intermediate variability, p1 = 0.69 for low and
high variability; figure 3b and electronic supplementary
material, figure S4C). Assuming the degree of variability
to be known a priori, estimates of the average duration of
protection were consistently accurate with six months of
daily data (mean absolute bias of 0.1 yr for all levels of
variability; figure 3a). The estimates were also generally pre-
cise for vaccines with high (mean 99% CI width: 0.7 yr) and
intermediate (mean 99% CI width: 5.5 yr, 1/10 scenario
with non-identifiable upper bound) heterogeneity. By con-
trast, low-heterogeneity vaccines typically resulted in
imprecise estimation (7/10 scenarios with non-identifiable
upper bound). With 1 yr of daily data, estimation perform-
ance became excellent, irrespective of vaccine heterogeneity
(mean absolute bias: less than 0.05 yr, mean 99% CI
width: 0.2 yr for every level of variability). This amount of
data also allowed estimating not only the mean of, but
also the variability in, the duration of protection in all scen-
arios of high-heterogeneity vaccines (figure 4, bottom
panel). For low-heterogeneity vaccines (figure 4, top panel),
the hypothesis of high heterogeneity could be rejected in all
scenarios, but the true variability recovered in only 5.
In the other 5 scenarios, in keeping with the results for
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CV = 1.00

CV = 0.71

CV = 0.50

0.5 1.0 2.0 5.0 10.0 50.0
average duration of vaccine–derived protection (years)

CV = 1.00

CV = 0.71

CV = 0.50

0 0.25 0.50 0.75 1.00
fraction of vaccinees losing immunity within 1 year

length of study period (days) 180 365

Figure 1. Estimates of the average duration of protection (left panels) and of the fraction with short-term immunity (right panels), assuming known variability in the
duration of protection conferred by low-waning COVID-19 vaccines. The black dashed lines indicate the true values used in numerical simulations, corresponding to a
mean duration of protection of 2 yr ( full distribution displayed in electronic supplementary material, figure S4A). For each of 10 simulations (ordered by increasing
simulation number from bottom to top and displayed in electronic supplementary material, figure S6), light points (intervals) represent the maximum-likelihood esti-
mate (99% confidence interval), calculated using the profile log-likelihood. Solid points (intervals) represent the corresponding quantities, averaged across simulations.
In the left panels, the x-axis values are log10-transformed for visual clarity; the dotted line indicates the maximal value tested for profile likelihood evaluation and the
assumed limit for practical idenfiability. CV: coefficient of variation, quantifying the variability in the duration of vaccine protection.
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low-waning vaccines, the fraction with short-term immunity
was underestimated when vaccine heterogeneity was over-
estimated (bias range: –29% to –10%). Hence, despite equal
loss of immunity (as measured by the mean duration of
protection or the fraction with short-term immunity) across
these scenarios, higher variability again helped estimate
the duration of vaccine protection. These results show
that vaccine heterogeneity is an independent predictor of esti-
mation performance.
3.3. Sensitivity analyses
To test the robustness of our results, we conducted three sensi-
tivity analyses. First, to take into account the range of efficacy
estimates from clinical trials of COVID-19vaccines [41,42,50,51],
we tested slow-waning vaccines with mean duration of
protection of 2 yr but a lower effectiveness of 60%against clinical
infections and of 50% against subclinical infections. We found
our main results to hold in this case, with broadly similar pat-
terns in parameter identifiability as vaccine heterogeneity was
varied (electronic supplementary material, figure S8). However,
estimation precision substantially improved, particularly for
vaccines with intermediate (mean 99% CI width decreasing
from 10.4 yr to 0.6 yr) and low (mean 99% CI width decreasing
from 39.0 yr to 15.8 yr) heterogeneity. Second, we tested
hypothetical vaccines that conferred a mean duration of protec-
tion of 5 yr. As expected, estimation performance substantially
degraded in this case, but on the whole, the results were
consistent with those for slow-waning vaccines that confer a
mean duration of protection of 2 yr. Specifically, assuming
the degree of variability to be known a priori, accurate and rela-
tively precise estimation with 1 yr of data was possible for



true variability: 1.00 (high-heterogeneity vaccine)

true variability: 0.50 (low-heterogeneity vaccine)

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

0.50

0.71

1.00

0.50

0.71

1.00

simulation number

as
su

m
ed

 v
ar

ia
bi

lit
y 

in
 d

ur
at

io
n 

of
 v

ac
ci

ne
 p

ro
te

ct
io

n

–0.1 0 0.1
bias (p1)

Figure 2. Estimates of the fraction with short-term immunity, assuming unknown variability in the duration of protection conferred by low-waning COVID-19 vaccines.
The colours of the filled circles or squares indicate the bias in the estimated fraction with short-term immunity ( p1), for different epidemiological scenarios (x-axis) and
different levels of variability in the duration of vaccine protection (CV, y-axis). As in figure 1, the mean duration of vaccine protection was fixed to 2 yr in all scenarios
tested; circles (squares) indicate simulations for which the variability was correctly (incorrectly) specified. Grey crosses indicate simulations more than
1=2x2p¼0:99,d:f:¼1 � 3:32 log-likelihood units away from the maximum log-likelihood and therefore not in the 99% confidence interval for the corresponding scenario.
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high-heterogeneity vaccines (electronic supplementarymaterial,
figure S9). By contrast, vaccines with lower heterogeneity led to
practical non-identifiabilities and imprecise estimates, though a
lower bound could again be derived in every scenario (range
of 99% CI lower bounds: 1.1 to 3.8 yr). For low-heterogeneity
vaccines, itwas notpossible to estimate thevariability in thedur-
ation of protection in any scenario (electronic supplementary
material, figure S10, top panel). This lack of identifiability was
also typical for high-heterogeneity vaccines, although the full
duration of protection could be estimated in some scenarios
(2/10 scenarios; electronic supplementary material, figure S10,
bottom panel). Third, we assessed the robustness of our results
to the inclusion of one additional estimated parameter, either
the relative infectiousness (θ) or the reporting probability (ρS)
of subclinical infections. For slow-waning vaccines and a study
period of 1 yr, in either case the extra parameter was estimated
close to its truevalueanddidnot correlate stronglywith the aver-
age duration of protection, which thus exhibited similar ranges
of uncertainty (electronic supplementary material, figure S11).
4. Discussion
In this simulation study of the post-vaccination dynamics of
an emerging pathogen, we aimed to determine the amount
of daily, age-specific case report incidence data required for
transmission models to appropriately estimate the duration
of vaccine protection. Focusing on SARS-CoV-2 in Germany
as a case study, we tested a range of vaccines with different
distributions of the duration of protection, specified by their
mean (tested values: 0.85 yr (rapid-waning vaccines) and
2 yr (slow-waning vaccines)) and their coefficient of variation
(tested values: 50% (low-heterogeneity vaccines), 71%, and
100% (high-heterogeneity vaccines)). Across the vaccines
tested, rapid waning and high heterogeneity permitted com-
plete identification of the duration of protection. By contrast,
slow waning and low heterogeneity allowed only estimation
of the fraction of vaccinees with rapid loss of immunity.
These results suggest that even a limited amount of epide-
miological data can provide some information on the
duration of vaccine protection. In addition, they show that
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Figure 3. Estimates of the average duration of protection (left panels) and of the fraction with short-term immunity (right panels), assuming known variability in the
duration of protection conferred by high-waning COVID-19 vaccines. The black dashed lines indicate the true values used in numerical simulations, corresponding to a
mean duration of protection of 0.85 yr, or approximately 10 months (full distribution displayed in electronic supplementary material, figure S4B). For each of 10 simu-
lations (ordered by increasing simulation number from bottom to top and displayed in electronic supplementary material, figure S7), light points (intervals) represent
the maximum-likelihood estimate (99% confidence interval), calculated using the profile log-likelihood. Solid points (intervals) represent the corresponding quantities,
averaged across simulations. In the left panels, the x-axis values are log10-transformed for visual clarity; the dotted line indicates the maximal value tested for profile
likelihood evaluation and the assumed limit for practical idenfiability. CV: coefficient of variation, quantifying the variability in the duration of vaccine protection.
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higher vaccine heterogeneity can facilitate estimation of this
duration and thus highlight the importance of considering
this heterogeneity in epidemiological models of vaccines.

The main, robust finding of our study was that heterogen-
eity can facilitate estimation of the duration of vaccine
protection. This result may be explained by the impact of
heterogeneity on the shape of the distribution of vaccine pro-
tection durability. Specifically, even when the mean duration
of protection or the proportion of vaccinees losing immunity
during the study period are kept constant, more heterogeneous
vaccines cause faster accumulation of susceptible individuals
who lose vaccine immunity (electronic supplementary
material, figure S4). Hence, more heterogeneous vaccines
may lead to higher infection incidence and therefore leave
stronger dynamical footprints in epidemiological time series
(electronic supplementary material, figures S6, S7). Because
this effect of heterogeneity is generic, our results may apply
to vaccines against pathogens beyond SARS-CoV-2.
Importantly, these observations are specific to the type of het-
erogeneity considered here (that is, heterogeneity of vaccine
duration of protection), as other studies demonstrated that het-
erogeneity of other vaccine properties—like susceptibility to
infection—acts to reduce the burden of infection [4,6]. Finally,
even thoughwe identified vaccine heterogeneity as a predictor
of identifiability, substantial variability in estimation perform-
ance frequently remained across the epidemiological scenarios.
This demonstrates the existence of other predictors related to
temporal variations in transmission, which were not examined
here but could be the object of further research.

More generally, in keeping with previous modelling
studies [4–6], our results highlight the need to pay careful
attention to heterogeneity of vaccine protection when model-
ling the population-level impact of vaccines. In practice, we
recommend testing multiple models with different levels of
heterogeneity and, when this heterogeneity cannot be ident-
ified from data, using ensemble predictions to convey the
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corresponding uncertainty. As the exponential distribution
(with high heterogeneity) is a standard assumption in the
modelling literature, failure to consider alternative assump-
tions may lead to false confidence in model accuracy and
precision. In that case, even though some aspects of the
duration of protection (like the fraction with short-term
immunity) could still be well estimated, the model’s long--
term predictions may suffer from severe bias.

Our study has important limitations, which result from
our deliberate choice to use a simple, yet sufficiently general
model of vaccination. First, we did not consider the possi-
bility of a concomitant roll-out of multiple vaccines, yet a
common situation in the field. Our simple model could
still be applied to multiple vaccines deemed to confer com-
parable immunity (such as mRNA vaccines for COVID-19),
but will require extension otherwise, for example by consid-
ering multiple vaccinated compartments with distinct
vaccine parameters. However, this would require additional
data on vaccine-specific coverage data and external evidence
from vaccine studies to inform the fixed value of vaccine
properties other than the duration of protection. Second,
the high mutation rate of some emerging pathogens (like
SARS-CoV-2 and other RNA viruses) may cause the emer-
gence of vaccine-escape variants that progressively modify
the characteristics of vaccine protection. In this case, our
assumption of fixed vaccine properties would need to be
revised; we believe, however, it is reasonable because of
the short time period (1 yr) considered in our study. Third,
we assumed that post-vaccine infections (i.e. infections
after immunity had waned) in vaccinees had the same
characteristics as primary infections in immunologically
naive individuals. In reality, more complex immunological
mechanisms may be at play, such that partial protection
against infection or transmission is maintained via recall B
or T cell memory response, even after disappearance of
residual sterilizing immunity (effected, for example, by neu-
tralizing antibodies [52]). Differences between post-vaccine
and primary infections—e.g. in terms of infectiousness, dur-
ation, and severity—may sensitively shape the long-term
dynamics of an emerging pathogen like SARS-CoV-2 [53]
and could be examined with specific vaccine studies, for
example studies designed to estimate vaccine effectiveness
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on infectiousness or on disease progression in vaccinated
breakthrough cases [2,54]. Such estimates, already available
for COVID-19 vaccines [55], could be readily integrated into
more detailed epidemiological models. Fourth, we con-
sidered only parametric uncertainty, assuming a true
underlying model of vaccine protection and thus ignoring
the inductive uncertainty associated with the formulation
of this model itself [56]. As noted above, however, our
model’s underlying assumptions—that is, imperfect and
waning vaccine immunity—are largely generic and may be
valid for multiple classes of vaccines. Fifth, we used only
deterministic process models for statistical inference, because
fully stochastic age-structured models are much more com-
putationally intensive to estimate, typically requiring
particle filtering and extensive simulations [44]. In practical
applications limited to a few datasets, however, fully sto-
chastic models are preferable, as they offer more flexibility
and biological realism and also permit better quantification
of forecasting uncertainty [57]. Sixth, we did not attempt to
assess the consistency of our estimation procedure, even
though an earlier simulation study that used a comparable
model and identical inference techniques found sizable
differences between the nominal coverage and the achieved
coverage [57]. Finally, for simplicity and interpretability, we
assumed that the duration of vaccine protection could be
modelled by a simple statistical distribution, fully specified
by its first two moments (mean and variance). Nevertheless,
more complex distributions may be required to capture the
heterogeneity of vaccine protection.

In conclusion, our study provides evidence that only a
short period of time may be required to estimate some
characteristics of vaccine immunity, even in the face of uncer-
tainties about temporal variations in transmission of an
emerging pathogen. Echoing earlier findings [4], our results
also highlight the need to accurately quantify heterogeneity
of vaccine protection to predict the impact of mass immuniz-
ation. More generally, a more systematic examination of the
consequences of heterogeneity—the norm in biology [58]—
may be warranted, not only for the study of COVID-19
vaccines but also of other vaccines.
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