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Abstract: Background: In recent years, the availability of high throughput technologies, establish-
ment of large molecular patient data repositories, and advancement in computing power and stor-
age have allowed elucidation of complex mechanisms implicated in therapeutic response in cancer
patients. The breadth and depth of such data, alongside experimental noise and missing values, re-
quires a sophisticated human-machine interaction that would allow effective learning from com-
plex data and accurate forecasting of future outcomes, ideally embedded in the core of machine
learning design.

Objective: In this review, we will discuss machine learning techniques utilized for modeling of
treatment  response  in  cancer,  including  Random  Forests,  support  vector  machines,  neural  net-
works, and linear and logistic regression. We will overview their mathematical foundations and dis-
cuss their limitations and alternative approaches in light of their application to therapeutic response
modeling in cancer.

Conclusion: We hypothesize that the increase in the number of patient profiles and potential tem-
poral monitoring of patient data will define even more complex techniques, such as deep learning
and causal analysis, as central players in therapeutic response modeling.
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1. INTRODUCTION
In recent years, the availability of high throughput tech-

nologies, the establishment of large molecular patient data re-
positories such as TCGA [1], SU2C [2], TARGET [3], etc.,
and  advancement  in  computing  power  and  storage  [4,  5]
have allowed elucidation of complex mechanisms implicat-
ed in cancer progression and therapeutic response [2, 6-15],
building a foundation for the development of personalized
medicine and precision therapeutics.  Such molecular  data,
spanning clinical information, human genome, epigenome,
and transcriptome, is referred to as Big Data and, if utilized
effectively, holds a promise to make individualized predic-
tions of therapeutic response directly at diagnosis and in real
time [7, 13, 16, 17], enhancing clinical decision making and
improving patient outcomes.

The volume and depth of such data, alongside experimen-
tal  noise  and  missing  values,  requires  a  sophisticated  hu-
man-machine interaction that would allow effective learning
from  complex data  and  accurate  predictions  of the  future
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outcomes based on the learning experiences even in the pres-
ence of noise, ideally embedded in the core of machine learn-
ing (ML) design. In 1950, “Turing test” evaluated machine's
ability to exhibit intelligent behavior equivalent to a human
[18]. Following its success, machine learning officially origi-
nated in 1956, when John McCarthy organized the infamous
Dartmouth  Conference,  coining  the  term  artificial  intelli-
gence [19] (i.e., the ability of a computer to perform learn-
ing and reasoning similar to the human mind) and in 1959,
when Andrew Samuel introduced the term machine learning
(i.e., “field of study that gives computers the ability to learn
without being explicitly programmed”) [20]. After the suc-
cess of the Dartmouth conference, in 1958, Frank Rosenblatt
introduced the first neural network (i.e., perceptron) [21], fol-
lowed by Widrow and Hoff in 1960, who developed a single
layer neural network (known as ADALINE) and a multilay-
er neural network MADALINE - a three-layered (input, hid-
den  and  output  layers)  feed  forward  neural  network,  with
ADALINE units in their hidden and output layers [22, 23],
applied  to  detect  binary  patterns  and  eliminate  echo  from
phone lines, respectively. The machine learning experienced
further expansion throughout 60’s via works by Hunt et al.
[24] in symbolic learning, Nilsson [25] in statistical methods
and Rosenblatt [26] in neural networks, laying the solid foun-
dation for the field.
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After  the  initial  bricks  for  the  field  were  laid  out,  late
1960s welcomed significant enhancement in ML. Some of
the iconic algorithms introduced during that time included
the  nearest  neighbor  algorithm  [27],  k-means  clustering
[28],  and  cross-validation  technique  [29].  To  improve  the
neural  network  accuracy,  in  1974,  Werbos  first  described
neural  network specific  back propagation [30],  which was
then implemented in 1982, leading to a surge in the interest
for the field in the years to follow. In 1979, Fukushima intro-
duced neocognitron, a hierarchical multilayered neural net-
work,  which  was  for  the  first  time  capable  of  performing
multilayer network training/learning to recognize patterns.
In 1982, Hopfield proposed the idea of building a bidirectio-
nal network, which later became popularly known as Hop-
field network [31], one of the first types of recurrent neural
networks. Following these discoveries, in 1983, Hinton and
Sejnowski  introduced  Botlzmann  machine,  which  was
stochastic in nature and could be utilized to determine opti-
mal solution (by optimizing the weights in the network) for
the associated problem [32]. The earlier discovery of neocog-
nitron by Fukushima in  1979 inspired  the  development  of
convolutional  neural  networks  (a  type  of  deep  neural  net-
work utilized for image processing at the time) in late 80’s
to 90’s, including LeNet-1, LeNet-4, and LeNet-5 [33-36].

Alongside  these  developments,  several  groups  signifi-
cantly contributed to the field, laying the foundation for theo-
retical  machine  learning,  including  work  by  Vapnik  and
Chervonenkis [37] (VC) in 1971, which introduced the con-
cept of VC dimension, a measure of capacity for a classifier
to accurately classify data points in a sample, where VC di-
mension along with training error was utilized to compute
the upper bound of the test error. Following this, Valiant in
1984  introduced  a  probably  approximately  correct  (PAC)
learning model, where a model was learned by applying an
approximation function [38]. Furthermore, several mathemat-
ical  methods  have  been  effectively  adopted  into  the  ML
field to improve its accuracy and precision, including Fish-
er’s Linear Discriminant Analysis [39],  Naive Bayes [40],
Least  squares  [41],  Markov Chains  [42],  etc.  The 80s and
90s also witnessed massive development in broad areas of
ML,  including  classification  and  regression  decision  trees
[43, 44], and boosting techniques [45].

Late  90s  and  the  beginning  of  the  21st  century  further
contributed to significant advances in machine learning. In
fact,  90s  introduced  advanced  algorithms  such  as  support
vector machines (SVM) [46], Random Forests [47], bagging
technique [48], least absolute shrinkage and selection opera-
tor (LASSO) [49], etc., whereas the 21st century witnessed a
surge in popularity of algorithms for deep (representation)
learning  due  to  the  exceptionally  good  performance  of
AlexNet on the ImageNet image recognition task [50]. Some
of the algorithms introduced since AlexNet included ResNet
[51], U-net [52], Google Brain [53], DeepFace [54] etc., rev-
olutionizing the field and creating an arsenal of computation-
al  tools  to  analyze  real-life  data,  efficiently  dealing  with
noise, missing values, and data sparsity.

With high-throughput patient molecular data becoming
accessible came the true manifestation of machine learning,

with its effective applications in making decisions that can
affect patient lives, undoubtedly including its significant-im-
pact utilization in cancer therapeutic response. While rela-
tively recent in its application to treatment response in can-
cer, machine learning has already established itself as a ma-
jor player in predictive therapeutic modeling, with signifi-
cant promise for high impact on patients’ lives and clinical
decision making. In particular,  most recent applications in
this field have included utilization of Random Forests to pre-
dict response to chemotherapy in oral squamous cell carcino-
ma  patients  [55],  support  vector  machines  to  predict  re-
sponse to chemotherapy across 19 cancer types available in
TCGA  [56],  and  regression-based  modeling  to  predict  re-
sponse  to  first  generation androgen-deprivation therapy in
prostate  cancer  [6],  among  others  [8,  57-62].  This  review
will focus on the machine learning algorithms that have al-
ready  been  utilized  to  successfully  predict  therapeutic  re-
sponse in cancer and will describe mathematical and statisti-
cal foundations of their implementation, discuss their limita-
tions and advantages over other methods, and explore future
avenues to enhance personalized treatment predictions and
precision therapeutics.

2. DATA SOURCES FOR PREDICTING THERAPEU-
TIC RESPONSE

Predictive  modeling  of  therapeutic  response  aims  to
learn relationships between two essential components: pre-
dictor variables and response variables and then subsequent-
ly utilize predictor variables to predict therapeutic response.
Further, predictor variables recapitulate clinical and molecu-
lar patient characteristics, where clinical data involves age,
gender, race, demographics, initial disease aggressiveness,
accompanied treatments,  etc.,  and molecular data includes
gene expression, alternative splicing, mutations, epigenomic
changes, etc., and is obtained from biopsies, tumor-remov-
ing surgery, or blood/urine samples. At the same time, re-
sponse variables recapitulate treatment-related disease pro-
gression, which for example, includes time to treatment fail-
ure (e.g., where treatment failure can be defined as detection
of minimal residual disease, change in blood markers, tumor
re-occurrence,  local  or  distant  metastasis,  cancer-related
death, etc.) or an indication if treatment response was good
or poor (often defined for a specific time frame, for example
within 6 months, 1-year, or 5-year period).

In recent years, advancements in high throughput tech-
nologies have significantly increased the availability of clini-
cal and molecular data in cancer therapeutic response experi-
mental systems. Yet, interpretability and compatibility of dif-
ferent in vitro and in vivo models with human samples have
been a long-standing problem, especially for advancing pre-
dictive modeling of therapeutic response. In fact, it has been
reported that these systems differ in their ability to capture
genomic and transcriptomic features of the primary tumors
of  patients  [63],  including  their  microenvironment  [64].
Thus, in this review, we specifically focus on data sources
derived from therapeutic administration to patients (Fig. 1,
Table 1). Examples of such resources include (i) The Tumor
Genome Atlas (TCGA) database [1]; (ii) Stand Up To Can-
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cer (SU2C) East Coast project [2, 9, 65, 66]; (iii) Stand Up
To Cancer (SU2C) West Coast project [67-69]; (iv) PROs-
tate Cancer Medically Optimized Genome Enhanced ThEra-
py (PROMOTE) [70]; (v) Cancer Genome Characterization
Initiative (CGCI) [71]; (vi) Therapeutically Applicable Re-
search  To  Generate  Effective  Treatments  (TARGET)
[3,72-74]; (vii) Molecular Taxonomy of Breast Cancer Inter-
national Consortium (METABRIC) database [75]; alongside
cohorts from GEO repository, such as (viii) GSE6532 [76];
(ix) GSE1379 [77]; (x) GSE1456 [78]; (xi) GSE78870 [79];
(xii) GSE41994 [80] etc. Some of these resources have al-
ready been utilized to study therapeutic response using non-
machine learning approaches, including work of (i) Abida et
al. [9], which utilized Whole Exome Sequencing data from
SU2C East Coast prostate cancer cohort to identify altera-
tions in TP53, RB1 and AR as associated with resistance to
androgen receptor signaling inhibitors (ARSI) in metastatic
castration-resistant prostate cancer patients; (ii)  Epsi et al.
[8], which integrated RNA Sequencing and DNA Methyla-
tion data from TCGA to identify pathways that govern che-
motherapy response in lung adenocarcinoma; and (iii) Oshi

et  al.  [81],  which  utilized  RNA  Sequencing  data  from
METABRIC to identify E2F pathway as a predictive marker
governing  response  to  neoadjuvant  chemotherapy  in
ER+/HER2-  breast  cancer.

3.  MACHINE  LEARNING  FOR  TREATMENT  RE-
SPONSE: RATIONALE AND STUDY DESIGN

Since the ultimate goal of machine learning in therapeu-
tic predictive modeling is to learn features (i.e., inputs/pre-
dictor  variables)  associated  with  treatment  response  (i.e.,
called outcomes, outputs/response variables, or labels in clas-
sical  machine learning) and then utilize this  knowledge to
predict  future  therapeutic  response  for  new  incoming  pa-
tients, supervised learning (i.e., where outputs are known as
ground  truth  and  are  actively  utilized  in  the  learning  pro-
cess) has earned its solid place in the state-of-the-art thera-
peutic response modeling. In fact, while unsupervised learn-
ing (e.g., k-means [28], Principal Component Analysis [83],
etc.) has been widely applied in cancer-related research, it
only discovers associations among input  variables and does

Fig. (1). Schematic representation of the workflow for predictive modeling of therapeutic response: Patient clinical information along-
side molecular profiles (e.g., Epigenomic alterations, DNA alterations, RNA alterations) are utilized as input to machine learning for predic-
tive modeling of patient therapeutic response. (A higher resolution / colour version of this figure is available in the electronic copy of the arti-
cle).
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Table 1. Description of data sources for therapeutic response. Detailed description of data sources for predictor variables (e.g., RNA
sequencing, DNA methylation, etc.) and response variables (e.g., treatment response etc.).

Data Sources Data Types Cancer Types Response Variables Sources

TCGA [1]

DNA Methylation

33 cancer types (includ-
ing Lung, Breast, Colon,

Prostate, etc.)

Overall survival, Dis-
ease progression,

Treatment response

Genomics Data Commons
(GDC) (https://portal.gdc.-

cancer.gov/)

RNA Sequencing

miRNA Sequencing

Whole Exome Sequencing

ATAC Sequencing

Genotyping Array

SU2C East Coast [9,
65, 66, 82]

RNA Sequencing
Prostate cancer, Pancreat-

ic cancer, Lung cancer
Overall survival,

Treatment response
dbGaP phs000915.v2.p2Whole Exome Sequencing

Single Nucleotide Variation

SU2C West Coast
[67-69]

Bisulfite Sequencing

Prostate cancer, Pancreat-
ic cancer

Treatment response

Genomics Data Commons
(GDC) (https://portal.gdc.-

cancer.gov/projects/WCDT-M-
CRPC)RNA Sequencing

Whole Genome Sequencing dbGap phs001648.v2.p1

PROMOTE [70]

RNA Sequencing

Prostate cancer Treatment response dbGaP phs001141.v1.p1Whole Exome Sequencing

Single Nucleotide Polymorphism

Cancer Genome Char-
acterization Initiative

(CGCI) [71]

RNA Sequencing

Cervical cancer
Overall survival, Dis-

ease progression,
Treatment response

Genomics Data Commons
(GDC)

(https://portal.gdc.cancer.gov-
/projects/CGCI-HTMCP-CC)

miRNA Sequencing

Whole Genome Sequencing

Targeted Sequencing

TARGET [3, 72-74]

RNA Sequencing Acute myeloid leukemia,
Acute lymphoblastic

leukemia, Neuroblasto-
ma, kidney, Osteosarco-

ma, Rhabdoid tumor,
Wills tumor, Clear cell

sarcoma

Overall survival,
Treatment response

Genomics Data Commons
(GDC)

https://portal.gdc.cancer.gov/

miRNA Sequencing

Whole Exome Sequencing

Whole Genome Sequencing

Genotyping Array

METABRIC [75]
Copy Number Variation

Breast cancer
Overall survival, Dis-
ease specific survival,
Treatment response

https://www.synapse.org/#!Sy-
napse:syn1688369/wiki/27311mRNA Expression (Illumina HT 12 arrays)

GSE6532 [76] mRNA Expression (Affymetrix) Breast cancer Treatment response
https://www.ncbi.nlm.nih.gov/-

geo/query/acc.cgi?ac-
c=GSE6532

GSE1379 [77]
mRNA Expression (Arcturus 22k human oligonu-

cleotide microarray)
Breast cancer Treatment response

https://www.ncbi.nlm.nih.gov/-
geo/query/acc.cgi?ac-

c=GSE1379

GSE1456 [78] mRNA Expression (Affymetrix) Breast cancer Treatment response
https://www.ncbi.nlm.nih.gov/-

geo/query/acc.cgi?ac-
c=GSE1456

GSE78870 [79]
miRNA Expression (TaqMan microRNA Low-Den-

sity Array pools A and B version 2.0)
Breast cancer Treatment response

https://www.ncbi.nlm.nih.gov/-
geo/query/acc.cgi?ac-

c=GSE78870

GSE41994 [80]
mRNA Expression (Agilent_ human_DiscoverPrint-

_15746)
Breast cancer Treatment response

https://www.ncbi.nlm.nih.gov/-
geo/query/acc.cgi?ac-

c=GSE41994

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/projects/WCDT-MCRPC
https://portal.gdc.cancer.gov/projects/WCDT-MCRPC
https://portal.gdc.cancer.gov/projects/WCDT-MCRPC
https://portal.gdc.cancer.gov/projects/CGCI-HTMCP-CC
https://portal.gdc.cancer.gov/projects/CGCI-HTMCP-CC
https://portal.gdc.cancer.gov/
https://www.synapse.org/#!Synapse:syn1688369/wiki/27311
https://www.synapse.org/#!Synapse:syn1688369/wiki/27311
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE6532
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE6532
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE6532
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE1379
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE1379
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE1379
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE1456
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE1456
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE1456
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE78870
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE78870
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE78870
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE41994
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE41994
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE41994
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not  utilize  their  relationship  to  the  outputs.  On  the  other
hand, supervised learning (e.g., decision tree [84], Random
Forests [85], support vector machines [46], regression-based
models [86], etc.) utilizes outputs as ground truth and learns
relationships between input and output variables so that the
final model can be used to predict the outputs for a new set
of inputs (e.g., in new patients).

Generally speaking, supervised learning estimates a func-
tion f that maps input variable/s X (i.e., predictor) to output
variable/s Y (i.e., outcome/response variables), so that,

As mentioned above, in predictive modeling of therapeu-
tic  response,  predictor  variables  could  include clinical  pa-
tient data (i.e., age, gender, race, initial disease aggressive-
ness,  etc)  and molecular data (i.e.,  gene expression,  muta-
tions,  epigenomic changes such as  DNA methylation,  etc)
obtained from biopsies,  tumor-removing surgery,  blood or
urine  samples,  etc.  Outcomes/response  variables  include
time  to  treatment  failure  (e.g.,  defined  as  tumor  re-occur-
rence,  local  or  distant  metastasis,  or  cancer-related  death
etc) or simply an indication, if treatment response was good
or poor (defined using a specific clinical test or time-related
threshold, such as a 1-year or a 5-year relapse or survival)
[2, 9]. Depending on the type of outcome/response data, su-

pervised  learning  can  either  utilize  (a)  regression  model
(i.e., output data is continuous, such as time to treatment fail-
ure) or (b) classification model (i.e., output data is categori-
cal, such as good or poor response).

In a clinical setting, supervised learning tailored for pre-
dictive modeling of therapeutic response utilizes the follow-
ing three steps: training (i.e., the model is learned/trained),
testing (i.e., evaluating the ability of the model to predict out-
comes),  and  forecasting  (i.e.,  outcomes  are  predicted  for
new  incoming  cases)  (Fig.  2).  To  successfully  implement
the first two steps, supervised learning divides available data
into  training  and  test  sets  (usually  training  set  constitutes
2/3rd and test set 1/3rd of the available data). Training data is
utilized to learn the model (function f), while test data is util-
ized to test the ability of such model to effectively predict
outputs.  In  training  step,  inputs  and  outputs  (labels)  are
known  to  the  model  and  their  relationships  are  actively
learned (Fig. 2, Left), while in the test step, the outputs are
hidden on purpose and are only uncovered at the end in or-
der to evaluate if the predictions were correct (Fig. 2, Mid-
dle). The culmination of such model training and testing re-
sults  in  the  third,  most  important  step  in  clinical  decision
making - forecasting - predicting outputs/labels for new in-
coming patients (Fig. 2, Right). If such predictions are later
proven to be accurate,  these additional data are utilized to
re-train and improve the original model.

Fig. (2). Schematic representation of steps in supervised machine learning to build a predictive model for classification problem.Left:
Build/learn the model using training patient cohort. Cross-validation is employed to reduce model variance and improve robustness. Middle:
Test and evaluate the model’s performance using the test patient cohort. Right: Forecasting/predicting outcomes for new incoming patients,
with subsequent model re-training/improvement. (A higher resolution / colour version of this figure is available in the electronic copy of the
article).

𝑌 = 𝑓(𝑋)
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One of the essential sub-steps in the training step of su-
pervised  learning  is  cross-validation.  Cross-validation  al-
lows to mitigate overfitting  (where the model can perform
well by chance due to the nature of the training set selected)
and evaluate how the model is expected to perform  on the
unseen data. This technique is also utilized to tune parame-
ters when necessary (e.g., for supervised learning methods
that require parameter estimation to define f, called paramet-
ric models, e.g., linear regression). To achieve this, the train-
ing set is divided into k folds/subsets (as for example in Fig.
2, Left, k = 5), so that one of the subsets is kept on-hold and
the model is trained on the k-1 subsets. Once trained, the sub-
set on-hold is used to evaluate (i.e., validate) model’s expect-
ed accuracy using Mean Squared Error (i.e., the average of
the sum of squared difference between actual response and
predicted response, MSE), which reflects how far our predic-
tions are from the actual output values. The process is repeat-
ed k times, combining MSEs for all folds, followed by aver-
aging it over k, which results in the estimation of cross- vali-
dation error. This error is used to evaluate how the construct-
ed model is expected to perform on unseen data or (when pa-
rameter tuning) which parameters result in the lowest error
and should be selected for optimal model performance.

As a part  of  supervised learning,  the machine learning
field  has  adopted two main methods on how to  learn/esti-
mate parameters from training data for prediction purposes:
frequentist and conditionalist (i.e., Bayesian) [87]. Frequen-
tists’ viewpoint estimates a parameter that is a constant and
assume no prior knowledge for this process [88]. In Baye-
sian viewpoint, a parameter is viewed as a variable with its
own distribution (set of values), utilized to make predictions
with degrees of certainty, and prior knowledge is considered
for  this  process  [88].  The  main  difference  between  these
viewpoints is in the way they measure uncertainly in parame-
ter estimation [89]. When frequentist methods obtain a point
estimate of the parameters, they do not assign probabilities
to possible parameter values. To measure uncertainty, they
rely on confidence intervals, where at least 95% of estimat-
ed confidence intervals (from enough population samples)
are expected to include the true value of the parameter [90].
At  the  same time,  when Bayesian  methods  estimate  a  full
posterior distribution over the parameters (or point estimates
that maximize the posterior distribution), this allows them to
get uncertainty of the estimate by integrating the full posteri-
or distribution [91]. In large, utilization of any of these ap-
proaches depends on the philosophy, type of prediction we
want  to  achieve (point  estimate  or  probability  of  potential
values) and data availability of appropriate data (i.e., where
we have prior knowledge that can be used in the modeling
process)  [92].  Classical  examples  of  supervised  machine
learning models that utilize a frequentist approach include lo-
gistic and linear regression [93, 94] and those that utilize the
Bayesian approach include Bayesian Neural Networks [95],
Markov Chain Monte Carlo [96], Bayesian linear regression
[97], etc.

These  general  principles  of  supervised learning design
are utilized as essential building blocks by different machine
learning algorithms for predictive modeling of therapeutic re-
sponse,  including  tree-based  methods  (e.g.,  decision  trees

and  Random  Forests),  support  vector  machines,  artificial
neural  networks,  and  classical  regression-based  models
(e.g.,  linear  regression  and  logistic  regression).  Here,  we
will discuss their mathematical foundations, advantages, dis-
advantages, and clinical applications, specifically in model-
ing therapeutic response in cancer patients.

4.  SURVEY  OF  MACHINE  LEARNING  IN  TREAT-
MENT RESPONSE MODELING

4.1. Random Forests
Random Forests is a collection of decision trees [47, 84,

98-101], which have been highly popular in healthcare and
medical research due to their interpretability and decision-
making capability.  A typical  decision tree consists  of  root
node,  inner  nodes,  and  leaf  nodes,  all  connected  by  tree
branches (Fig. 3). In a decision tree, features/inputs are util-
ized for each tree split (represented by the root node and in-
ternal nodes), allowing to make a decision about the output
categorization (outputs or “decisions” are stored at the leaf
nodes).  For  example,  in  a  classical  classification  example
(Fig. 3A), in a dataset with n = 10 patients (i.e., four patients
with good response and six patients with poor response) and
M = 3 features (i.e., gene A, B, and C), expression level θb

of gene B is selected at the root as the most important fea-
ture to best split/classify the patients (four patients for the
left branch with the expression level of gene B ≤ θb and six
patients  for  the  right  branch  with  the  expression  level  of
gene B > θb ).

In general, to select the most important feature at each
node split, a decision tree evaluates all provided features and
calculates a so-called node purity, which for example, can
be estimated by minimizing the residual sum of squares (for
regression models), Gini Index or entropy (for classification
models). Entropy (E), which conceptually measures the ran-
domness associated with the outcome at each node, is calcu-
lated as:

where  p(x)  is  the  probability  of  a  category  X  (i.e.,  pa-
tients with poor or good treatment response) in the training
set. It is calculated for each available feature at each node
split (starting from the root), so that a feature with the high-
est entropy gain (compared to the entropy for the entire set)
is selected at each split, as described in Fig. (3A) (where ex-
pression levels of gene B are selected for a root node split
due to its highest gain in entropy - for simplicity, we assume
a single expression threshold available for each gene). This
principle is employed at each node split until all the samples
have been classified or until a certain threshold set by the us-
er  or  estimated  by  a  tuning  parameter  is  reached  (we  will
touch on Random Forests’ parameters that can be tuned lat-
er). Once built, such decision tree is utilized to either make
predictions for out-of-bag patients or forecasting for new pa-
tients (Fig. 3B).

𝐸 =  − ∑ 𝑝(𝑥) log2 𝑝(𝑥)

𝑥 ∈𝑋

, 
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Fig. (3). Training and testing of a decision tree; (A) Decision tree built using 3 genes A, B and C for 6 poor responders (patients in orange)
and 4 good responders (patients in green). At a single expression threshold, entropy gain for each gene is calculated and gene with highest en-
tropy gain is selected as a node for splitting. For example, entropy gain for each gene is calculated (Table, left) and gene B is selected as it
has the highest entropy gain (highlighted in red) for the root node. The root node is denoted by a diamond and the intermediate nodes are de-
noted by a circle. At threshold θb, gene B splits (black arrows) the training set such that 6 patients have gene B expression less than or equal
to threshold θb and the 4 patients have expression above threshold θb. All 4 patients with gene B expression less than or equal to threshold θb

belong to the poor responder category and, therefore, are represented in leaf node (light blue rectangle). (B) The predictive ability of the deci-
sion tree model is evaluated using a test set. (A higher resolution / colour version of this figure is available in the electronic copy of the arti-
cle).

While  a  single  decision tree  is  prone to  overfitting,  an
ensemble of decision trees, known as Random Forests, has
been widely  utilized  to  increase  prediction  accuracy  [101,
102]. In particular, to reduce variance and increase model ro-
bustness,  Random  Forests  utilizes  several  important  tech-
niques, including (i) bootstrapping (where patients are sub-
sampled with replacement multiple times and each sub-sam-
ple is utilized to build a decision tree) (Fig. 4, top); (ii) fea-
ture sub-sampling (only a specific number of features are se-
lected  for  each  tree  split)  (Fig.  4,  middle);  (iii)  bagging
(where the output of sample and feature sub-sampling is inte-
grated  and  averaged  for  predictive  purposes)  (Fig.  4,
bottom). Bootstrapping employs sampling with replacement,
producing a bagged subset (n bagged patients, sampled with
replacement from a patients’ set of size n) and an out-of-bag
subset (similar to hold-on cross-validation subset in Fig. 2).
On average, during bootstrapping 2/3rd of the training set is
utilized to build a bagged subset and 1/3rdof the training set
for out-of-bag subset. Each kth round of bootstrapping pro-
duces  a  decision  tree,  resulting  in  k  decision  trees  overall
(Fig. 4, middle).

To ensure that all decision trees in the Random Forests
are uncorrelated, each tree split feature sub-sampling is em-
ployed. If a total number of features is M, it is recommended
that features selected for classification lie within the range
of   and   features  are  selected  for  the  regression
model  (Fig.  4,  middle).  Finally,  bagging  utilizes  outputs
from bootstrapping  and  feature  sub-sampling  so  that  each
sample  from  the  out-of-bag  subsets  (from  each  bootstrap

round) is validated using decision trees built without utiliz-
ing this specific sample. After predictions are made for each
sample/patient, bagging utilizes a majority vote to make a fi-
nal prediction, used to calculate Mean Squared Error or clas-
sification error (average misclassifications) (Fig. 4, bottom),
thus  minimizing  model  variance.  To  control  for  bias-
variance trade-off, important parameters in Random Forests
to consider and thus tune are the number of trees, tree depth
(or number of samples at the leaf nodes), number of features
at each tree split etc.

One of the clinically relevant and most widely used out-
puts in Random Forests is feature importance, which is of-
ten used to evaluate which clinical or molecular determinan-
t/s are most important for predicting therapeutic response. It
is calculated using the average of the total decrease in Gini
Index/ entropy for each feature across all trees (for classifica-
tion model) or the average of the total decrease in residual
sum of squares across all trees (for regression models). Yet,
when evaluating feature importance, one should be careful
about the presence of collinear features. While not affecting
model performance per se, they can reduce the importance
of one another and could be easily misinterpreted in the clini-
cal setting.

Due to its robustness and ability to perform well even in
moderate-sized datasets, Random Forests has been actively
utilized for predictive modeling of treatment response in can-
cer patients [55, 103-122]. In a classic example by Tsuji et
al. [59], Random Forests was implemented to identify gene
expression  markers to  stratify  patients  based  on  their  re-
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Fig. (4). Schematics for Random Forests. Random Forests has three unique features (i) bootstrapping (top), feature selection (middle) and
bagging (bottom). First Random Forests performs bootstrapping whereby n random patients are chosen with replacement from a patient set
of size n. This process is continued k times, producing k different patient subsets. Each patient subset (known as bootstrap sample) is used to
build a decision tree. Patients considered for building a tree are known as bagged patients and patients that are left out of the bootstrap sam-
ples are known as out-of bag samples. Next, to build a tree, at each split, out of total M features available, a subset of m features is consid-
ered. This process is known as feature selection. Finally, after building k decision trees, Random Forests performs a procedure called bag-
ging whereby each patient from out of bag subsets is validated across trees that did not use that specific patient while building their trees.
The final output by the Random Forests is the prediction from each tree is recorded and the vote is selected as the final output of the model,
known as average bagging. Finally, to evaluate the predictive ability of the Random Forests, out of bag error is calculated. (A higher resolu-
tion / colour version of this figure is available in the electronic copy of the article).
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sponse to mFOLFOX therapy in colorectal cancer. A total of
83  patients  with  colorectal  cancer  without  prior  treatment
were enrolled and received mFOLFOX6 treatment after sam-
ple collection. Out of 83 samples, 54 samples (2/3rd of 83)
were selected for training purposes and 29 (1/3rd of 83) for
testing. Gene expression profiles (i.e., 17,920 probes) were
used  as  inputs/features.  Response  to  the  therapy  (out-
comes/labels)  was assessed through computer tomography
(for the appearance of lesions) and evaluated after 4 cycles
of  the  treatment.  The  multi-layered  analysis  identified  14
most important genes, which successfully predicted 12 out
of 15 (80%) patients with good response and 13 out of 14
(92.8%) patients with poor response in the test set, establish-
ing Random Forests as a robust, reliable method for thera-
peutic response modeling.

4.2. Support Vector Machines
Support  vector  machines  or  SVMs  [46,  123,  124]  are

popularly used for binary classification problems (yet their
recent extensions can handle multi-class [125, 126] and re-
gression modeling [127, 128]). Conceptually, SVM is a gen-
eralization of the optimal separating (i.e., maximal margin)
classifier  and  support  vector  (i.e.,  soft  margin)  classifier,
with  the  advantage  of  allowing  for  misclassified  samples
and non-linear class boundaries. The main objective of SVM
is to identify an optimal hyperplane which would effectively
separate classes from each other (e.g., poor responders and
good responders). The SVM hyperplane is defined in a way
such  that  the  distance  between  the  separating  hyperplane
and training data observations is maximized (such distance
is also known as a margin) (Fig. 5). One can think about the
hyperplane  as  the  widest/maximal  ribbon  that  can  fit  be-
tween the two classes (this is classically known as a maxi-

mal margin classifier, Fig. 5A). Yet, an advancement over
the maximal margin classifier - support vector classifier - al-
lows a margin to be “soft” and have some observations in-
side  a  margin  or  even  have  some  observations  (i.e.,  mis-
matches) on a wrong part of the hyperplane, having at most
epsilon deviation from the hyperplane (Fig. 5B). In support
vector classifier, samples that lie directly on the margin are
known as support vectors as they “support” the hyperplane
(only  these  observations  affect  the  hyperplane  and  if  they
move, the hyperplane would move as well). It is interesting
that SVM classification is only based on a small number of
observations (i.e., support vectors) and is robust to the obser-
vations that are far from the hyperplane/margin. The size of
the margin (and the corresponding support vectors) is a pa-
rameter to optimize in SVM.

A unique and valuable characteristic of SVM in addition
to utilizing a support vector classifier is that it works not on-
ly with linear but also with non-linear observations. In order
to accommodate non-linear boundaries between the classes,
SVM  enlarges  the  feature  space  through  kernels  (widely
used  non-linear  kernels  include  polynomial  [129],  radial
[130], and hyperbolic tangent kernels [131]). However, util-
ization of kernels could be computationally expensive, as it
turns optimization involved in SVM in a quadratic program-
ming problem [132-134]. This might cause a computational
challenge, especially as data depth and breadth increase, as
is the case with Big Data [135-141].

The mathematical way to define a hyperplane (which is
M-1 dimensional) is,

Fig. (5). Support vector machines determine a hyperplane that can separate patients into two classes. (A) SVM identifies a hyperplane such
that it can maximize the margin and no patients lie inside the margin. (B) SVM can also identify hyperplane where patients lie inside the mar-
gin. This is known as soft margin. (A higher resolution / colour version of this figure is available in the electronic copy of the article).

𝑓(𝑥) = 𝛽0 + ∑ 𝛼𝑖

𝑆

𝑖=1

𝑦𝑖 𝐾(𝑥, 𝑥𝑖),      
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Fig. (6). Schematics of Artificial Neural Network (ANN). (A) An example of deep neural network which has three components: input layer,
2 hidden layers, and output layer. (B) Each of the predictors in input layer (red and yellow stars) is multiplied by its corresponding weights
(black balls) and along with bias is input to net input function (also known as summation function). The output of the summation function is
passed through the activation function (i.e., stepwise function), to determine the output of ANN. (A higher resolution / colour version of this
figure is available in the electronic copy of the article).

where β0 is the intercept, S is the number of support vec-
tors, αi is the Lagrange multiplier, yi is the class label for a
support vector i so that y1…ys are in {-1,1} (where 1 repre-
sents one class/good response and -1 the other class/poor re-
sponse), K(x, xi) is a kernel function, and xi is a feature vec-
tor of size M for a support vector i. One can think of hyper-
plane as an entity that divides M-1 dimensional space into
two parts, so that all points/samples with ƒ(x) > 0 lie to one
side of the hyperplane and points/samples with ƒ(x) < 0 lie
to the other side of the hyperplane.

Once SVM classifier is built, the samples to be evaluat-
ed/predicted are subjected to ƒ(x) and their class is predict-
ed/assigned based on the sign of the ƒ(x) (i.e., if it is posi-
tive, the sample is assigned to class 1 and if it is negative, to
class  -1).  Interestingly,  the  magnitude  of  ƒ(x)  can  suggest
how far the observation is from the hyperplane and thus how
confident we are in assigning a class membership [143] (i.e.,
the further away from the hyperplane a sample is, the more
confident we are in its predicted membership).

Given its flexibility in allowing mismatches and ability
to work with non-linear relationships, SVM have been wide-
ly utilized for predictive modeling of treatment response in
cancer  patients  in  the  last  decade  [144-164].  One  of  the
bright examples is the work of Huang et al. [60], which de-
veloped an open sourced SVM to predict drug response to
seven  chemotherapeutic  drugs  using  gene  expression  data
across 60 human cancer cell lines. To increase performance
accuracy and reduce the number of features (especially im-
portant for SVM and discussed later in the Limitations and
alternative approaches section), they utilized recursive fea-
ture elimination (RFE) approach. The model was tested on
273 ovarian cancer patients and showed significant predic-
tive ability, when compared to previous reports. In addition,
the  same  group  later  demonstrated  that  utilization  of  the

SVM-RFE model (i.e., SVM model along with recursive fea-
ture elimination approach) when employed on 152 patients
with different cancers from TCGA produced predictions of
treatment  response  to  gemcitabine  and  5-flurouracil  with
high accuracy > 80% [56].

4.3. Artificial Neural Networks
Artificial neural network (ANN) is an algorithm inspired

by the biological neural network of the human brain and has
been widely utilized in pattern recognition and image pro-
cessing [165]. Generally, ANN consists of three parts: one
input  layer,  multiple  hidden  layers,  and  one  output  layer
(Fig. 6A). The hidden layers allow for processing of the data
that are not linearly separable and if more than one hidden
layer is present, the neural network is commonly known as a
deep neural network. Inputs to the input layer are predictors
(e.g.,  molecular  or  clinical  features),  which  are  then  as-
signed weights that either amplify or dampen the inputs thus
indicating input significance. Value for each predictor (e.g.,
expression level for a gene) multiplied by its weight (called
weighted nodes) along with a bias (which also has its own
weight)  are  summed  up  in  a  summation  function  (also
known as Net input  function)  (Fig.  6B).  The output  of  the
summation  function  is  then  sent  to  an  activation  function
which is an important step of the ANN as it directly affects
its  output,  accuracy,  convergence,  and computational  effi-
ciency. Activation function can be as simple as a binary step
function (i.e., based on a threshold, determines if a neuron is
activated  or  repressed)  or  account  for  non-linear  relation-
ships and data complexity utilizing sigmoid, hyperbolic tan-
gent,  rectified  linear  unit,  soft-max,  swish  functions,  etc
[166-169].

The objective of the training step in ANN is to find the
best/optimal set of weights for inputs and bias to solve a spe-
cific problem (i.e., treatment response prediction). This is of-
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ten implemented as a backpropagation [169], where weights
for input and bias are optimized to minimize the difference
between  the  actual  and  the  predicted  output  values  (e.g.,
measured as sum of squared errors or entropy), although this
solution is not always global.  To control for bias-variance
trade-off, the model could be tuned for the number of units
in hidden layer and amount of weight decay.

ANN has been utilized by several groups to study treat-
ment response in cancer [170-175]. One of the bright exam-
ples is the study of Tadayyon et al. [61], which built an artifi-
cial  neural  network  classifier  based  on  quantitative  ultra-
sound imaging to predict response to neoadjuvant chemother-
apy for 100 breast cancer patients. The ANN classifier could
predict response to the treatment with an accuracy of 96 ±
6%.

4.4. Linear and Logistic Regression
Linear and logistic regressions have earned their histori-

cal foundational role in statistical inference and learning and
have been widely utilized in treatment response modeling in
the recent decade [176-177] [115, 120, 178-183].

Linear regression estimates linear relationship between
input  and  output  variables  and  fits  a  so-called  regression
line (Fig. 7A) in a way so that the sum of the squares of the
distances between the line and the data points (i.e., residual-
s) is minimized. In mathematical terms, function f for a re-
gression line can be re written as

where M is the number of input variables/predictors, β 0

is the y-intercept and β1, β2, ... βM are the slope coefficients
for  input  variables  x1,  x2,  ...  xM  (reflecting how much each
predictor affects the outcome Y). If only one input/predictor
variable is present, it is referred to as a simple linear regres-

sion and when more than one input/predictor variable is pre-
sent, it is referred to as a multiple (or multivariable) linear
regression. One of the significant extensions of linear regres-
sion is Cox proportional hazards modeling, particularly im-
portant  in  modeling  therapeutic  response,  where  the  out-
comes  are  represented  by  treatment-related  survival  time:
time to treatment failure or time to latest follow-up (i.e., for
censored patients).

In logistic regression, the output is a binary variable (i.e.,
class membership) and if p is the probability of belonging to
a specific output class (e.g., good or poor response), then f
takes the following form:

For example, if the probability threshold is p = 0.5, pa-
tients with probability p ≥ 0.5 are classified as poor respon-
ders and p < 0.5 as good responders (Fig. 7B).

Due to their interpretability and wide dissemination, lin-
ear and logistic regression have been widely utilized to mod-
el treatment response in cancer [115, 120, 178-183]. For ex-
ample, Jahani et al. [62], analyzed DCA-MR images of 132
locally  advanced breast  cancer  patients  after  being treated
with neoadjuvant chemotherapy. Voxel-wise changes in mor-
phologic, kinetic, and structural features were quantified us-
ing image registration technique. Strength of identified fea-
tures  in  determining  pathological  complete  response  was
evaluated using logistic regression analysis first on a base-
line model which included age, race, hormone receptor sta-
tus, and tumor volume as explanatory variables. Following
this, voxel-wise features were added to the baseline model
and were shown to improve early prediction of response to
neoadjuvant chemotherapy in locally advanced breast cancer
patients.

Fig. (7). Schematics for linear and logistic regression. (A) Simple linear regression between gene expression (input/predictor variable) and
time to treatment response (output/dependent variable) is shown. The regression determines the regression line with slope β 1 and β 0 y-inter-
cept . (B) Logistic regression between gene expression (predictor/independent variable) and response to treatment (response/dependent vari-
able). At a threshold (p=0.5), if the probability of belonging to a specific class is p ≥ 0.5, patients belong to a class (i.e., poor responders) and
if p < 0.5, patients belong to another class (i.e., good responders). (A higher resolution / colour version of this figure is available in the elec-
tronic copy of the article).
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Recently,  a  series  of  regression-based  methods  have
been utilized for integration of different data types in predic-
tive therapeutic response modeling. In particular, in Panja et
al. [6], linear regression-based analysis was employed to elu-
cidate relationships between epigenomic (i.e., DNA methyla-
tion) and transcriptomic (i.e., gene expression) determinants
of response to first generation androgen-deprivation therapy
in prostate cancer. To specifically study primary resistance,
localized primary prostate cancer tumors (at radical prosta-
tectomy)  from The  Cancer  Genome Atlas  (TCGA-PRAD)
patient cohort, not receiving any treatment prior to sample
collection, but treated with adjuvant (post-operative) andro-
gen deprivation therapy, were specifically selected. Linear
regression analysis  between DNA methylation sites  (inde-
pendent variable) and gene expression of the site-harboring
genes (dependent variable) identified 5 site-gene pairs with
functional importance in therapeutic response. These mark-
ers were shown to differentiate patients at risk of resistance
to androgen deprivation therapy in prostate cancer with 90%
accuracy and were demonstrated to be active in patients that
failed androgen-deprivation with metastatic disease.

In Epsi et al. [8], and Rahem et al. [17], molecular deter-
minants of therapeutic response were evaluated not as single
independent  entities,  but  as  groups  of  genes  connected  by
their  biological  function  -  biological  pathways.  These
studies utilized logistic regression-based methods and Cox
proportional  hazard  modeling  to  establish  relationship  be-
tween  activity  levels  of  biological  pathways  (used  as  fea-
tures) and therapeutic response to carboplatin + paclitaxel in
lung  adenocarcinoma  (Epsi  et  al.,)  and  to  tamoxifen  in
breast  cancer  (Rahem et  al.,).  Identified  pathway  markers
were  shown to  accurately  stratify  patients  at  risk  of  resis-
tance across multiple independent patient cohorts (82%-94%
accuracy)  and  have  been  shown  to  outperform  non-path-
way-based methods.

5.  LIMITATIONS  AND  ALTERNATIVE  APP-
ROACHES

As  more  clinical  and  molecular  data  from  cancer  pa-
tients  become  available  for  computational  use,  machine
learning is becoming a backbone for predictive modeling of
treatment response. Yet, some of the limitations inherent to
its design needs special attention, especially when applied to
therapeutic response modeling.

Big Data provides the necessary breadth and depth for
the  elucidation  of  complex  mechanisms  that  govern  treat-
ment response, yet since its single determinants are used as
features/inputs  in  a  machine  learning setting,  their  magni-
tude  can  easily  overwhelm  the  system,  resulting  in  over-
fitting.  In  fact,  it  is  recommended  that  the  number  of  fea-
tures should be significantly less compared to the number of
samples/patients M<<n. Given that the thousands of molecu-
lar features are routinely profiled using high-throughput tech-
nologies,  it  would  require  even  more  patient  samples  and
might not be feasible. To overcome this limitation, various
feature  selection  techniques  have  been  proposed  and  util-
ized, including (i) wrapper methods [184-186], which evalu-

ates all possible combination of features to identify optimal
set  of  features  that  maximize  model  performance,  where
commonly  used  wrapper  methods  include  forward  [187],
backward [188], stepwise selection [189], simulated anneal-
ing [190], genetic algorithms [191], etc.; (ii) filter methods
[192-195], which evaluate relevance of predictors outside of
the training model (i.e., usually features are evaluated indivi-
dually), where commonly used filter methods include corre-
lation  [196],  information  theory  [197],  rough  set  theory
[198],  distance  measures  [199],  etc.;  (iii)  hybrid  methods
[200-202],  which identify  features  using a  combination of
both filter and wrapper methods, with most popular being F-
score  and  Supported  Sequential  Forward  Search  (FSSFS)
method [203], which utilizes F-score (i.e., filter method) to
first  preprocess  and  identify  a  subset  of  features  which  is
then subjected to supported sequential forward search (i.e., a
wrapper  method)  to  identify  the  final  list  of  features;  and
(iv) embedded methods [204-206], where feature selection
is  a  part  of  model  selection  process,  including  L1  -  regu-
larization based methods such as Least Absolute Shrinkage
and  Selection  Operator  (LASSO)  [49],  which  is  a  regu-
larized  linear  regression  model  that  penalizes  all  features
equivalently,  shrinking  unimportant  ones  (i.e.,  features
which  are  unlikely  to  impact  response  variable)  to  zero.
Apart  from  LASSO,  another  commonly  used  embedded
method for feature selection is Smoothly Clipped Absolute
Deviation Penalty (SCAD) [207], which penalizes both im-
portant and unimportant features, shrinking unimportant fea-
tures to zero whereas having a lesser  impact  on important
features compared to LASSO. Besides computational meth-
ods, feature selection can also be performed through feature
masking based on domain knowledge, where users can util-
ize their domain knowledge to facilitate feature selection. A
classic example of such feature selection was described by
Yan et al. [208], incorporating prior knowledge of staining
pattern to identify texture based features that can help quanti-
fy cellular phenotype.

It is possible to pre-select features even prior to feature
selection, as is referred to as feature screening, such as (i)
Sure Independence Screening (SIS) [209], which determines
the association between each predictor and response variable
through correlation analysis to determine the important fea-
tures; (ii) Sure Independence Ranking and Screening (SIRS)
[210], which utilizes expectation of squared correlation be-
tween a predictor and an indicator function of the response
variable to determine a minimum number of important fea-
tures; (iii) Distance Correlation Sure Independence Screen-
ing (DC-SIS) method [211] which screens features based on
their distance correlation with response variable (by comput-
ing distance between simultaneous observations of each pre-
dictor, and as well as simultaneous observations of response
variable), etc.

The large number of predictors can also lead to the subs-
tantial presence of non-informative features. While this can
be easily overcome with some machine learning algorithms
(e.g., Random Forests), it might substantially affect the per-
formance of other methods such as multiple linear and logis-
tic regression, SVM and neural networks. One of the solu-
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tions is to filter features based on their data cross-integration
or biological relevance (e.g., biological pathways, like in Ep-
si et al. [8] and Rahem et al. [17]) and for their association
with therapeutic response ahead of time. Additional advan-
tage  in  reducing  the  feature  space  to  informative  features
only is in the fact that fewer corresponding model terms/pa-
rameters need to be optimized, thus improving model perfor-
mance.

Furthermore,  the  presence  of  multiple  co-occurring
molecular  features  or  a  correlation  between  clinical  and
molecular features (often observed in therapeutic response
data) could lead to feature co-linearity, which can substan-
tially interfere with model performance (e.g., in neural net-
works and SVM) and could substantially affect its interpreta-
tion (e.g., Random Forests’ feature importance is not inter-
pretable in cases of feature co-linearity). To overcome these
limitations,  in  addition  to  feature  selection  techniques  de-
scribed above, it is recommended to test for feature co-linear-
ity ahead of time and keep the most important representative
feature  or  the  most  biologically  relevant  feature  from  the
group, “eliminating” non-important features. Alternatively,
co-linear features could be represented as a group and util-
ized in the analysis as one entity.

While high throughput techniques to generate Big Data
have brought significant advantages to our understanding of
cancer progression and therapeutic response, they could be
prone to experimental noise or missing values [212]. While
some machine learning algorithms are relatively immune to
noise or missing data (e.g., Random Forests), others will suf-
fer  in  terms  of  their  model  performance.  To  address  this
problem, in the last two decades, several methods have been
developed to deal with noise in the data [213-215], includ-
ing robust regression methods such as M-estimation, S-esti-
mation and MM-estimation [216, 217] and domain knowl-
edge (e.g.,  pathology expertise) [218].  M-estimation mini-
mizes a function of residuals to estimate coefficients for a re-
gression model, in the presence of outliers (i.e., noise), spe-
cifically in response variables [219], yet not taking into ac-
count outliers from predictor variables [219]. Thus to over-
come  this  limitation,  S-estimation  was  developed,  which
modified the residual function of M-estimation by introduc-
ing the standard deviation of residuals, being able to handle
more diverse sources of noise [220]. However, S-estimation
has a major drawback as it requires a large number of sam-
ples to accurately estimate coefficients for regression model
(i.e., has low efficiency) [220]. Therefore, to compensate for
the efficiency and at the same time to have a model which
can consider outliers from both predictor and response vari-
ables, MM-estimation, a combination of M- and S-estima-
tion, was introduced [220].

At the same time, missing data can substantially affect
model  performance  and  accuracy  of  prediction  [221]  and
can be tackled with (i) expectation-maximization (EM) algo-
rithms [222-224], utilized to estimate missing data from ex-
pected complete data by maximizing a likelihood function;
(ii) matrix completion-based methods such as simple, com-
plex  optimization  program  [225,  226],  which  compute  a

complete low rank matrix from a matrix with missing data
by minimizing the nuclear norm.

Furthermore, even though molecular Big Data has pro-
duced  a  lot  of  features  (i.e.,  M  is  large),  the  available  da-
tasets for therapeutic response modeling still offer cohorts of
relatively small sizes (i.e., n is smaller than M), thus limiting
possible  machine  learning  applicability  and  performance.
This is especially important for methods that requires estima-
tion of parameters for each hidden layer (thus the number of
parameters  is  further  amplified)  such  as  neural  networks,
while other methods perform relatively well even in moder-
ate-sized patient cohorts (i.e., linear and logistic regression,
Random Forests, etc.). Finally, while linear relationships are
the  most  natural  way  to  start  data  explorations,  molecular
Big Data’s complexity and its association with therapeutic
response often require non-linear solutions. In such settings,
machine  learning  methods  that  account  for  such  relation-
ships  are  preferred,  such  as  Random  Forests,  SVM  with
non-linear kernels, or neural nets.

6. DISCUSSION
Recent advancements in Big Data high throughput tech-

nology hold a promise to move the field of therapeutic pre-
dictive modeling fast forward. Techniques such as CRISPR,
ChIP-Seq, HI-C etc. have been widely utilized in cancer re-
search [227-229], with great potential to be effectively ex-
panded  to  predicting  treatment  response.  One  of  the  most
promising shifting paradigms, which has revolutionized can-
cer research in recent years, is single-cell sequencing [230].
Not only such technique is utilized to analyze complexities
of biological systems at single cell level, it also reflects tu-
mor  heterogeneity  [231-233],  clonality  [234,  235],  and
epithelial-stromal interactions [236, 237], opening doors to
better precision therapeutics and in-depth monitoring of treat-
ment response, perfectly suited for complex machine learn-
ing tasks [238].

While  such  advances  have  significantly  improved  the
treatment  response investigation,  several  challenges in  the
field of therapeutic monitoring remain to be thoroughly ad-
dressed. First of all, access to available molecular data in the
public domain pose significant challenges when rapid predic-
tions need to be made or results reproduced/validated [239].
Furthermore,  the access to facilities  and cost  of  the tumor
molecular profiling at the time of biopsy and surgery remain
substantial obstacles for many patients and institutions [240]
and pose a substantial challenge for subsequent effective ap-
plication of predictions from multi-omic integrative machine
learning techniques [241]. Moreover, this challenge is fur-
ther amplified if such samples need to be obtained repeated-
ly, for treatment monitoring [242]. One of the ways to over-
come this problem and effectively monitor disease and treat-
ment progression is through utilizing liquid biopsies, a rapid
non-invasive technique, which can analyze cancer cells from
tumors circulating in the blood [243] and can be applied re-
peatedly. Such technique has been widely utilized by the can-
cer community [244, 245] and holds a promise for effective
therapeutic monitoring and analyses, providing plethora of
data for effective machine learning utilization and accurate
predictions.
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As the therapeutic monitoring becomes more accessible
and molecular datasets become larger (i.e., n increase), we
foresee the utilization of more advanced machine learning
techniques, which require sufficient number of samples for
their  optimal  performance.  One  such  example  is  deep
learning [57, 246]. The advantage of deep learning is in its
ability to capture the biological complexities at a more granu-
lar  level  compared  to  other  machine  learning  algorithms.
One of  the  algorithms widely utilized for  deep learning is
deep  neural  networks  (i.e.,  neural  networks  with  multiple
hidden layers), where its additional hidden layers allow for a
“deeper” learning. Given the complexity of mechanisms and
molecular  cross-talks  implicated  in  therapeutic  response,
deep learning is ideally suited to elucidate mechanisms and
markers of therapeutic response, yet in large-sized patient co-
horts.

Even though deep learning might offer an elucidation of
more complex deep relationships in the data, it often suffers
from  output  interpretability  [247,  248],  when  knowledge
about the prediction is essential for a well-informed decision
[249, 250]. In deep neural network, tracing which variables
are combined to make the prediction could become too com-
plex and hides conditions at which the models can fail (i.e.,
black box model) [251]. Several alternative solutions have
been proposed to overcome this problem, where a complex
model  is  followed  by  the  subsequent  explanatory  model
[252, 253],  yet not fully providing an accurate representa-
tion [252].

Another example of machine learning algorithms ideally
suited  for  therapeutic  modeling  is  causal  methods
[254-256]. Causal methods look for causal rather than acci-
dental associations among data points, essential in identify-
ing  mechanisms  underlying  treatment  response  and  novel
therapeutic targets. Causal models and analysis have already
been used in a clinical setting, such as establishing a causal
relationship between lower lipid levels in the body and high-
er bone mineral density [257], in epidemiology [258], or in
cancer progression [259]. Yet, the absolute beauty of causal
analysis  is  obtained  with  time  series  data,  established  by
Kleinberg et al. [254, 256, 260], and later applied to cancer
progression using cross-sectional data by Ramazzotti et al.,
[261]. As the availability of time-series monitoring data for
therapeutic response in cancer patients is underway, its press-
ing need, importance, and interpretability will undoubtedly
benefit from causal analysis.

We foresee that future utilization of currently utilized ap-
proaches for predictive modeling alongside causal analysis,
as machine learning paradigm for modeling of therapeutic re-
sponse, will not only overcome limitations of finding simple
association relationships, but will also provide outputs easily
interpretable  by  the  clinicians  and  pave  a  road  to  inter-
pretable  precision  therapeutics.

CONCLUSION
Over  the  last  decade,  there  has  been  a  significant  in-

crease  in  the  utilization  of  machine  learning  in  predictive
modeling of treatment response in cancer patients. In this re-
view, we have discussed machine learning algorithms cur-
rently utilized for this purpose, their mathematical founda-

tions,  and specific  applications  in  a  practical  setting.  Vol-
ume and heterogeneity of Big Data in therapeutic modeling
allows for elucidation of complex mechanisms implicated in
treatment response, yet requires special considerations due
to the large number of unfiltered determinants/features it pro-
vides. We have discussed these limitations and approaches
to overcome them. We conclude that as patient datasets be-
come larger  and  better  characterized,  we foresee  effective
utilization of deep learning and causal analysis in therapeu-
tic  modeling  in  cancer  patients,  paving  a  road  to  inter-
pretable  precise  outcomes.
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