CORRECTION Open Access

Correction to: Nanog interaction with the androgen receptor signaling axis induce ovarian cancer stem cell regulation: studies based on the CRISPR/Cas9 system

Kaijian Ling^{1†}, Lupin Jiang^{1†}, Shi Liang^{2†}, Joseph Kwong³, Leiyan Yang¹, Yudi Li¹, PingYin¹, Qingchun Deng^{1*} and Zhiqing Liang^{1*}

Correction to: J Ovarian Res (2018) 11:36 https://doi.org/10.1186/s13048-018-0403-2

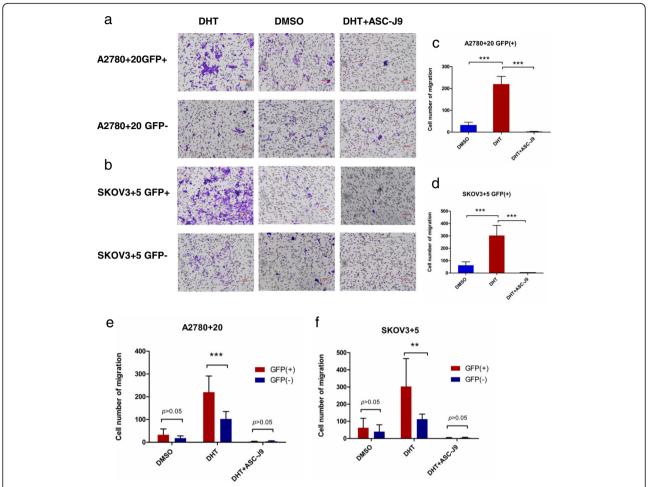
The original article [1] contains errors in Figs. 6 and 8. The corrected figures can be shown ahead.

Author details

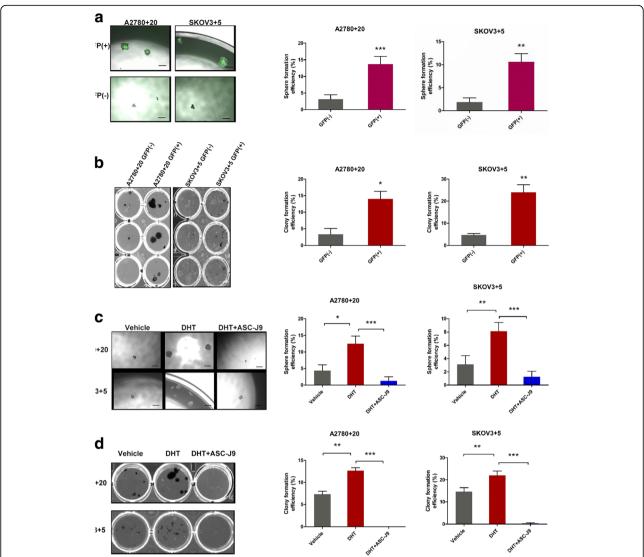
¹Department of Obstetrics & Gynecology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China. ²Bjrigham Young University, ID 272 Rigby Hall, Rexburg 83460–4500, USA. ³Department of Obstetrics & Gynaecology Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.

Published online: 30 January 2019

Reference


 Ling K, Jiang L, Liang S, et al. Nanog interaction with the androgen receptor signaling axis induce ovarian cancer stem cell regulation: studies based on the CRISPR/Cas9 system. J Ovarian Res. 2018;11:36 https://doi.org/10.1186/s13048-018-0403-2.

[†]Kaijian Ling, Lupin Jiang and Shi Liang contributed equally to this work. ¹Department of Obstetrics & Gynecology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China Full list of author information is available at the end of the article



^{*} Correspondence: qingchun0503@163.com; zhi.lzliang@163.com

Ling et al. Journal of Ovarian Research

Fig. 6 Migratory tendency of GFP (+)/GFP (–) cells when treated with different hormone drugs. **a** and **b**) The number of migratory cells increased in the DHT groups of the A2780 + 20 and SKOV3 + 5 GFP (+)/GFP (–) cell lines. **c** and **d**) Notably, when treated with DHT, the number of GFP (+) migratory cells increased markedly compared with DMSO or DHT + ASC-J9; **e** and **f**) The number of migratory in A2780 + 20 and SKOV3 + 5 Nanog GFP (+) cells were also higher than that of the Nanog GFP (–) cells. For analysis, the cells number in four fields was calculated at 40x magnification. Bar: 100μ M. DHT: 10 nM, and ASC-J9: 5μ M. **P < 0.01; ***P < 0.001

Fig. 8 AR signaling axis enhances the stemness characteristics of ovarian cancer cells. **a)** Sphere formation assays of the monoclonal GFP (+)/GFP (–) cells of the SKPV3 + 5 and A2780 + 20 cell lines. The sphere formation abilities of the GFP (+) cell lines were significantly stronger than those of the GFP (–) cell lines. Bar: 200 μM. **b)** Colony formation assays of the monoclonal GFP (+)/GFP (–) cells of the SKPV3 + 5 and A2780 + 20 cell lines. The clonal efficiency of the GFP (+) cells was higher than that of the GFP (–) cells. Bar: 200 μM. **c** and **d)** Androgen or inhibitor treatment in SKPV3 + 5 and A2780 + 20 GFP (+) cells. Sphere and colony formation were enhanced when DHT was added, while ASC-J9 decreased this effect. DMSO was used as the vehicle control. DHT: 10 nM, and ASC-J9: 5 μM; Bar: 100 μM. *P < 0.05, **P < 0.01, and ***P < 0.001