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Abstract. Evidence is presented that endocytosis is in- 
volved in the transport to the cytosol of the cytotoxin 
from Shigella dysenteriae 1, Shiga toxin, which acts 
by removal of a single adenine residue in 28-S 
ribosomal RNA. Inhibition of endocytosis by ATP 
depletion of the cells prevented toxin uptake. Exposure 
of HeLa $3 and Vero cells to toxin at low extracellular 
pH, where translocation to the cytosol, but not en- 
docytosis is inhibited, allowed the toxin to accumulate 
in a compartment where it was protected against anti- 
bodies to the toxin. Upon transfer of the cells to nor- 
mal medium endocytosed toxin entered the cytosol. 
Electron microscopical studies of cells exposed at 0°C 
to a toxin-horseradish peroxidase (HRP) conjugate, or 
to unconjugated toxin followed by horse antitoxin anti- 
bodies and then protein G-gold, revealed that the 

Shiga toxin binding sites were randomly distributed on 
the cell surface, without any preference to, for exam- 
ple, coated pits. In contrast, when cells were exposed 
to toxin at 37°C, the binding sites were preferentially 
localized in coated pits. The Shiga-HRP conjugate was 
also seen in endosomes, lysosomes, and in the Golgi 
region. Endocytosis by the coated pit/coated vesicle 
pathway was selectively inhibited by acidification of 
the cytosol. Under these conditions, both the uptake of 
toxin-HRP conjugates and intoxication of the cells 
were inhibited. Evidence from the literature as well as 
our own results suggest that Shiga toxin binding sites 
are glycolipids. Thus, Shiga toxin appears to be the 
first example of a lipid-binding ligand that is endocy- 
tosed from coated pits. 

URING recent years endocytic uptake of a large num- 
ber of ligands has been studied. Most of these li- 
gands are bound to protein receptors, and they are 

usually taken up by the coated pit/coated vesicle pathway (5, 
13, 15, 21, 22, 32, 34). However, there has been an ongoing 
discussion as to whether alternative pathways of endocytosis 
also exist. Thus, ultrastructural data indicated that the glyco- 
lipid-binding toxins, cholera toxin and tetanus toxin (24, 46), 
as well as monoclonal antibodies directed against a cell sur- 
face glycolipid (45) are endocytosed from uncoated areas 
of the membrane. Furthermore, fluid-phase endocytosis ap- 
peared to continue even when receptor-mediated endocytosis 
was inhibited by high osmolarity in the medium (4). 

Also, the toxic protein ricin, which binds not only to gly- 
coproteins, but also to glycolipids with terminal galactose 
residues (for review, see reference 28), continued to be taken 
up when endocytosis from coated pits was blocked by potas- 
sium depletion of the cells (25), or by acidification of the 
cytosol (37, 38). Similar results were obtained with human 
rhinovirus 2 (20). Also insulin, which binds to protein recep- 
tors, has been reported to be endocytosed from uncoated 
areas of the membrane in some cell types (11, 12, 42), sug- 
gesting that the alternative pathway of endocytosis is not 
limited to ligands binding to glycolipids. 

Shiga toxin is an extremely toxic protein produced by 
Shigella dysenteriae 1, which is considered the most virulent 
agent of bacillary dysentery (8, 27, 51). Shiga-like toxins pro- 
duced by Escherichia coli are associated with hemorrhagic 
colitis and hemolytic uremic syndrome (17, 26). Shiga toxin 
consists of an enzymatically active A-chain and a pentameric 
B-subunit that binds to glycolipids containing the Gala 1-4 
Gal sequence (3, 16, 18, 19). The A-chain penetrates to the 
cytosol and inactivates the 60-S ribosomal subunits (33) by 
depurination of a single adenosine residue in 28-S RNA (9). 
It has been assumed that endocytosis is involved in the pene- 
tration of the toxin to the cytosol (28, 35). In the present pa- 
per we present evidence that this is the case and that the en- 
docytosis occurs by the coated pit/coated vesicle pathway 
despite the glycolipid nature of the Shiga toxin receptor. 

Materials and Methods 

Materials 
Horseradish peroxidase type VI (HRP), ~ transferrin, pronase, SPDP (3-[2 
pyridyldithio]-propionic acid N-hydroxysuccinimideester), Hepes, and Tris 

1. Abbreviations used in this paper: HRE horseradish peroxidase; PGG, 
protein G-gold. 
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were obtained from Sigma Chemical Co., St. Louis, MO. [~H] leucine was 
from the Radiochemical Centre, Amersham, UK. Recombinant protein G 
was obtained from Zymed Laboratories Inc., San Francisco, CA. Horse 
anti-Shiga toxin serum was obtained from Bureau of Biologics, Food and 
Drug Administration, Bethesda, M D Shiga toxin was purified as previously 
described (2). Monovalent conjugates of Shiga toxin and HRP were pre- 
pared by the SPDP method as previously described (50)_ 

Cel/s 

HeLa $3 cells and Vero cells were maintained as monolayer cultures in 
minimum essential medium complemented with penicillin, streptomycin, 
and 10% (vol/vol) fetal calf serum in an atmosphere containing 5% CO2. 
The day before use the cells were seeded out into 24-well disposable trays 
or T-25 flasks. 

Formaldehyde Fixation and lsobutanol Extraction 
of Cells 
Cells growing as monolayers were incubated for 30 rain at 4°C with 1% 
formaldehyde in PBS containing 2 mM CaC12. The cells were then washed 
twice in PBS and incubated for 10 min at 25°C with 50 mM NaBH4 in 
PBS. The cells were again washed in PBS, and when indicated, the cells 
were incubated for 10 min at 25°C with water saturated with isobutanol to 
extract lipids. At the end of this incubation the cells were again washed with 
PBS, 

Measurement of Cytotoxic Effect 
After incubation of cells with toxin as described in legends to figures, the 
medium or buffer was removed, and the cells were incubated in the same 
medium or buffer (no unlabeled leucine) for 10 min at 37°C with 1 t.tCi 
[3H]leucine per milliliter. Then the solution was removed, the cells were 
washed twice with 5% (wt/vol) trichloroacetic acid, and solubilized in KOH 
(0.1 M). Finally, the acid-precipitable radioactivity was measured. The ex- 
periments were carried out in duplicate. The differences between duplicates 
were <10% of the average value. 

Application of Shiga-HRP Conjugate 
HeLa $3 cells grown in T-25 flasks were washed and incubated at 0°C with 
Shiga-HRP, fixed, and processed for electron microscopy. Alternatively, af- 
ter preincubation at 0°C the cells were washed and further incubated for 
15-60 rain at 37°C before fixation. Other cells were washed and incubated 
directly (without preincubation) for 2, 5, or 15 rain at 37°C in the presence 
of Shiga-HRP before fixation. 

lmmunocytochemical Detection of Shiga Toxin 
HeLa $3 cells in T-25 flasks were washed and kept on ice in minimal essen- 
tial medium containing Hepes instead of bicarbonate for 10 min, then in- 
cubated with precooled medium containing Shiga toxin (10 #g/ml; 1 ml per 
flask) at 0*C for 30 min. Other cells were washed with prewarmed medium 
and then Shiga toxin (10 #g/ml; I ml per flask) was added. The cells were 
incubated in the presence of Shiga toxin for 15 min at 37°C. 

After these incubations the cells were washed with ice-cold PBS and in- 
cubated with horse anti-Shiga toxin serum for 60 rain on ice before washing, 
incubation for 60 min at 0°C with protein G-gold (PCd3), washing, fixation, 
and processing for electron microscopy. Recombinant protein G, which has 
a high binding affinity to horse IgG, was conjugated to 6 am colloidal gold 
particles (1). The gold particles were prepared according to Slot and Geuze 
(41). 

In control experiments carried out at 0°C, either Shiga toxin or anti- 
Shiga toxin serum were omitted from the protocol before incubation with 
PGG. The amount of unspecific (background) gold labeling in these con- 
trois was virtually zero and can be ignored. 

Processing for Electron Microscopy 
HeLa cells treated as described above, were fixed in the monolayer with 2 % 
glutaraldehyde in 0.i M Na-cacodylate buffer, pH 7.2, for 60 min at room 
temperature. In experiments with Shiga-HRP the cells were then carefully 
washed with PBS and incubated with diaminobenzidine-H2Oz as previ- 
ously described (50). In experiments with Shiga-HRP and PGG labeling 
cells were thereafter scraped off the flasks, pelleted, postfixed with OsO4, 

treated with 1% uranyl acetate in distilled water, embedded in Epon, cut at 
50 nm, and examined in a JEOL 100 CX electron microscope as previously 
described (50). 

Results 

Evidence That Shiga Toxin Binds to 
Glycolipid Receptors 
There is now good evidence from several laboratories that 
Shiga toxin binds to glycolipids in a specific manner (3, 16, 
18, 19, 23). To test whether glycolipids in fact represent the 
cell surface receptors for the toxin, we studied the effect of 
lipid extraction on the ability of Vero and HeLa cells to bind 
the toxin. To maintain the integrity of the cells after the lipid 
extraction, we used formaldehyde-fixed cells in this experi- 
ment. Control experiments showed that the formaldehyde 
treatment had little or no effect on the ability of the cells to 
bind the toxin in a specific way (Table I). 

As shown in Table I, 80-90% of the binding activity of 
formaldehyde-fixed cells was removed by extraction with wa- 
ter saturated with isobutanol. This supports the view that the 
cellular receptors for Shiga toxin are indeed lipids. 

To further test if Shiga toxin was bound to protein recep- 
tors, cells in which the surface proteins had been labeled by 
lactoperoxidase catalyzed radioiodination were incubated 
with Shiga toxin. After solubilization of the cells with Triton 
X-100, we carried out immunoprecipitation of cell surface- 
bound toxin with anti-Shiga toxin antiserum. We did not find 
any evidence for coprecipitation of a putative protein recep- 
tor (data not shown). 

Although the data above are consistant with the contention 
that glycolipids represent the major part of the toxin recep- 
tors, the possibility could not be excluded that protein recep- 
tors were involved in the binding of small amounts of toxin. 
If this was the case, only the binding to protein receptors 
could be relevant for intoxication, while binding to the glyco- 
lipid receptors could be nonproductive. To test this possibil- 
ity we treated Vero cells and HeLa cells with trypsin and then 
tested the toxin sensitivity of the cells. We found that the pro- 
tease treatment had little or no effect on the sensitivity of the 
cells to the toxin (Table II). 

A protein receptor for Shiga toxin would most likely be a 

Table L Effect of Formaldehyde Fixation and Isobutanol 
Extraction on the Ability of Cells To Bind 125I-labeled 
Shiga Toxin 

Toxin-bound (% of control) 

Treatment Vero cells HeLa cells 

None 100 100 
Fixed cells 105 84 
Fixed and isobutanol- 

treated cells 14 17 

Cells growing in 24-well disposable trays were fixed with formaldehyde and 
extracted with isobatanol as described in Materials and Methods. Both untreat- 
ed and treated cells were then incubated with ~-~I-labeled Shiga toxin (200 
ng/ml, sp act 2.110 cpm/ng) for I h at 0°C in Hepes medium, pH 7.2. The 
cells were then washed three times with PBS, dissolved in 0.1 M KOH, and 
the radioactivity associated with the cells was measured. The amount of radio- 
activity associated with the cells in the presence of 20 t~g/ml unlabeled Shiga 
toxin was subtracted in all cases. 
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Table 11. Effect of Treatment of Cells with Trypsin, 
Swainsonine, and Tunicamycin on Their Sensitivity 
to Shiga Toxin* 

Sensitivity 

Treatment IDs(~,,,,,JID~,) .~,~.d ~ 

None  1.0 
Tryps in§ 0 .8  
Swainsoninel l  1.9 

Tunicamycinl l  1.5 

* Vero cells were incubated with increasing concentrations of Shiga toxin, and 
the rate of protein synthesis was measured as indicated below. 

IDso. the toxin concentration necessary to reduce protein synthesis to 50%. 
Vero cells were incubated for 20 min at 37°C with 50 pg/ml trypsin. Con- 

trol cells were incubated without trypsin. The cells were then washed, increas- 
ing concentrations of Shiga toxin were added, and, after 15 min further 
incubation, unbound Shiga toxin was removed by washing. The cells were in- 
cubated overnight in Hepes medium containing 5 % serum to allow bound toxin 
time to intoxicate the cells. The rate of protein synthesis was then measured. 
II Vero cells were incubated for 72 h with 3 #g/ml swainsonine or for 24 h 
with 0.25 pM tunicamycin. Increasing concentrations of Shiga toxin were then 
added, and the cells were incubated for 3 h in the presence of toxin. Finally, 
the rate of protein synthesis was measured. 

glycoprotein carrying the Galod-4 Gal sequence. In that 
case, incubation of  cells for at least 24 h in the presence of 
swainsonine or tunicamycin might reduce the sensitivity of 
the cells to Shiga toxin. The data in Table II show that this 
was not the case. Altogether, we therefore consider it very 

unlikely that a protein receptor is involved in the binding and 
internalization of Shiga toxin. 

Evidence That Endocytosis Is Involved in 
Shiga Toxin Action 

Endocytosis is involved in the penetration into the cytosol of 
a number of  protein toxins which act on cytosolic targets (for 
review, see reference 28). To test if this is also the case with 
Shiga toxin, we exposed the cells to the toxin under condi- 
tions where toxin translocation to the cytosol, but not en- 
docytosis, was prevented. We then inactivated with anti- 
Shiga toxin serum any toxin remaining at the cell surface, 
and finally incubated the cells overnight to allow toxin that 
was shielded from the antibodies (i.e., endocytosed toxin) 
time to exert its toxic effect on the cells. 

These experiments depend on the ability of the antitoxin 
to neutralize surface-bound toxin. We therefore tested to 
what extent the horse antiserum here used was able to protect 
cells against the toxic effect of surface-bound toxin. Cells 
were exposed to increasing concentration of Shiga toxin at 
0°C to allow binding, but not endocytosis to take place. Then 
the cells were washed and treated with different concentra- 
tions of anti-Shiga toxin serum. Subsequently, the cells were 
incubated at 37°C to allow cell-bound toxin not inactivated 
by the antibodies time to exert its toxic effect. Finally, the rate 
of protein synthesis was measured. The data in Fig. 1 show 
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Figure L Ability of horse anti-Shiga serum to inactivate cell-bound 
Shiga toxin. Vero cells growing in 24-well disposable trays were in- 
cubated for 1 h at 0°C with increasing concentrations of toxin. The 
ceils were then washed and ice-cold growth medium containing the 
indicated amounts of antitoxin was added. The cells were trans- 
ferred to a CO2 incubator and incubated overnight at 37°C. Fi- 
nally, the rate of protein synthesis was measured. 
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Figure 2. Ability of Shiga toxin endocytosed at low pH to intoxicate 
cells. Vero cells in 24-well disposable trays were incubated at 37°C 
in Hepes medium adjusted to pH 6.1 or 7.0. Increasing concentra- 
tions of toxin were then added. (A) The rate of protein synthesis was 
measured after 1 h. (B) The medium was removed after 1 h and 
cold growth medium containing horse antitoxin was added. The 
cells were transferred to a CO2 incubator and incubated for 18 h as 
described in Fig. 1. Finally, the rate of protein synthesis was mea- 
sured. 
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that addition of 10/~l/ml horse antiserum was highly efficient 
in neutralizing cell-bound toxin. Smaller amounts of an- 
titoxin protected the cells to a lesser extent. 

We have previously shown that when cells are incubated 
with Shiga toxin in medium with low pH, the toxin is unable 
to inhibit protein synthesis, suggesting that it is not translo- 
cated to the cytosol (8). Similar results were obtained with 
abrin and ricin (36). We could show that abrin and ricin were 
endocytosed under such conditions, and that the endocytosed 
toxins were able to inhibit protein synthesis upon transfer of 
the cells to neutral medium. 

To carry out a similar experiment with Shiga toxin, Vero 
cells were incubated with the toxin for 1 h at pH 6.1 or 7.0. 
In some cases, protein synthesis was measured immediately 
after this incubation. As shown in Fig. 2 A, the cells that 
were exposed to the toxin at low pH were strongly protected. 
(It should be noted that in this experiment we varied the pH 
in the medium, not in the cytosol. As will be discussed be- 
low, acidification of the cytosol inhibits endocytosis from 
coated pits.) 

In other cells, horse anti-Shiga toxin was added after the 
1-h exposure to the toxin to inactivate any toxin remaining at 
the cell surface. Then the cells were incubated overnight in 
neutral medium to allow toxin that was endocytosed and 
therefore shielded against the antiserum time to express its 
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effect. Protein synthesis was measured the next day. As shown 
in Fig. 2 B, in this case the cells were intoxicated to the same 
extent whether they had been exposed to the toxin at pH 6.1 
or 7.0. Similar results were obtained when the exposure to 
the toxin lasted only 15 min and the cells were then incubated 
with antitoxin overnight. The data indicate that Shiga toxin 
taken up by endocytosis is fully capable of being translocated 
to the cytosol. 

Depletion of cells for ATP induces a general inhibition of 
endocytosis (36, 40). To test whether such inhibition pre- 
vents the transfer of Shiga toxin to a compartment where it 
is shielded against antitoxin, we incubated cells with a com- 
bination of azide and 2-deoxyglucose to inhibit cellular ATP 
production, and then Shiga toxin was added. Cells exposed 
to toxin in the absence of metabolic inhibitors were used as 
a control. After 15 min, surface-bound toxin was neutralized 
with antitoxin and the cells were incubated overnight. Finally 
the rate of protein synthesis was measured. As shown in Fig. 
3, much higher toxin concentrations were required to in- 
toxicate the ATP-depleted cells than the control cells. This 
indicates that upon inhibition of endocytosis, Shiga toxin re- 
mained at the cell surface where it was subsequently neu- 
tralized by antitoxin. 

To reduce strongly the ATP level in the cells, both NaN3 
and 2-deoxyglucose were required. The presence of either 
azide or 2-deoxyglucose alone did not inhibit transfer of the 
toxin to a location where it was shielded against antitoxin 
(data not shown). Although the data obtained do not exclude 

e h ~ m e t ,  inhib. " the possibility of a direct transport of Shiga toxin through the 8 ~ o e  x ~  plasma membrane, they show that endocytosed Shiga toxin 
can be efficiently transported to the cytosol. 
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Figure 3. Ability of metabolic inhibitors to prevent shielding of 
Shiga toxin from antitoxin. Vero cells in 24-well disposable trays 
were incubated for 10 min at 37°C in Hepes medium with and with- 
out 10 mM NaN3 and 50 mM 2-deoxyglucose. Then increasing 
concentrations of toxin were added, and, after 15-rain further incu- 
bation at 37°C, the metabolic inhibitors were removed, and the cells 
were transferred to growth medium containing neutralizing 
amounts of antitoxin. Protein synthesis was measured after 18-h in- 
cubation at 37°C. 
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Figure 4. Internalization rate of cell surface-bound Shiga toxin. 
HeLa $3 cells growing in 24-well disposable trays were exposed for 
1 h at 0°C to increasing concentrations of toxin. The cells were 
washed and then incubated at 37°C. Growth medium with or with- 
out antiserum to Shiga toxin was added after the indicated periods 
of time. The cells were then incubated overnight at 37°C, and finally 
the rate of protein synthesis was measured. 
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Figure 5. Distribution of binding sites for Shiga toxin on the surface of HeLa $3 cells. Cells were incubated at 0°C with Shiga toxin followed 
by anti-Shiga toxin serum and PGG. The cells were then fixed and processed for electron microscopy. The binding sites are distributed 
randomly over the cell surface (a) and are mostly excluded from coated pits (arrows) as seen in a-c, although a few coated pits do contain 
binding sites (d-e). Bars, 0.25 ~m. 

Rate of Endocytosis of Surface-bound Shiga Toxin 
To study the internalization rate of cell-bound Shiga toxin, 
cells were first exposed to toxin for 1 h at 0°C to allow bind- 
ing of the toxin to the cell surface to take place in the absence 
of endocytosis. Unbound toxin was removed by washing, and 
then the cells were incubated at 37°C to allow endocytosis 
of surface-bound toxin to take place. After different periods 
of time, toxin uptake was interrupted by addition of antitoxin, 
and then the ceils were incubated overnight to allow endocy- 
tosed toxin time to exert its effect on the cells. 

The data in Fig. 4 show that antiserum added after 30 min 
was essentially unable to protect against the toxin, indicating 
that most of the toxin was internalized by this time. Also 
when the antiserum was added after 15 min, the cells were 
strongly intoxicated, indicating that the surface-bound toxin 
is internalized rapidly. 

Ultrastructural Studies of Surface Binding and 
Endocytosis of Shiga Toxin 

To visualize cell surface binding of Shiga toxin two ap- 
proaches were used: (a) immunocytochemical detection of 
the ligand using PGG, and (b) incubation with a monovalent 
Shiga-HRP conjugate. These two approaches support each 
other although certain differences were noticed because of 
the particulate and enzymatic nature of the labels. In the im- 
munocytochemical experiments the cell surface was ran- 
domly labeled with gold after incubation with Shiga toxin at 
0°C (Fig. 5). However, marked variations in the amount of 
gold particles were obtained from cell to cell. More than 
99 % of the gold particles were localized to nonspecialized 
membrane. Only a few coated pits (<5 %) were gold labeled 
as judged from random individual sectioning (Fig. 5, d and 
e). Control experiments showed that the immunogold label- 
ing was specific (see Materials and Methods). 
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Figure 6. Distribution of Shiga toxin binding sites on the surface of HeLa $3 cells as revealed by incubation of the cells at O°C with monova- 
lent Shiga-HRP conjugate, a-c show a rather uniformly distributed peroxidase reaction product which is also seen in many coated pits 
(arrows). d-e show that no labeling is detectable when the cells were incubated at 0°C with unconjugated Shiga toxin before adding the 
Shiga-HRP conjugate. Bars, 0.25 #m. 

When cells were incubated at 0°C with Shiga-HRP, many 
cells showed a marked labeling of  their entire surface and of 
many coated pits (Fig. 6, a-c).  The fact that more coated pits 
appeared labeled here than with the immunogold technique 
can most likely be ascribed to the enzymatic nature of  the 

Shiga-HRP conjugate. Also some small uncoated pits were la- 
beled. Preincubation at 0°C with excess unconjugated Shiga 
toxin prevented the binding of Shiga-HRP (Fig. 6, d and e), 
thus demonstrating that the conjugate was bound to the cells 
in a specific manner. 

Figure 7. Redistribution of binding sites for Shiga toxin at 37°C in the presence of ligand conjugate, a-d show that after 15 min of incubation 
at 37°C in the presence of Shiga toxin, the toxin is predominantly localized close to or within coated pits (arrow) as revealed by immunogold 
(PGG) labeling. This distribution of binding at 37°C is even more marked when using Shiga-HRP: (e) 2 min at 37°C; ( f )  5 min at 37°C; 
(g-i) 15 min at 37°C in the presence of Shiga-HRP. In e and h uncoated pits (arrowheads) are also labeled, and in i a labeled multivesicular 
body is shown. Bars, 0.25 /~m. 
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When the cells were incubated for 15 min at 37°C in the 
presence of Shiga toxin, the labeling pattern as revealed with 
the immunogold technique changed from the random one 
seen at O°C to a selective sequestration into, or close to, 
many of the coated pits (10-20% of the total population of 
coated pits as counted on random, individual sections of 
gold-labeled cells) (Fig. 7, a-d). On occasion gold labeling 
of small uncoated (flask shaped) pits was also noticed. When 
cells prelabeled with Shiga-HRP at 0°C were washed and 
warmed to 37°C (not shown), or cells were incubated di- 
rectly at 37°C in the presence of Shiga-HRP (for 2, 5, or 15 
min; Fig. 7, e-i), the change from the random labeling pat- 
tern at 0°C was more dramatic than seen with the immuno- 
gold technique. Hence, the peroxidase reaction product ap- 
peared to a very high degree located selectively to coated pits 
(20-40 % of the total amount of coated pits on labeled cells). 
Some uncoated pits were also labeled (Fig. 7, e and h). 

To test whether the change in localization of Shiga toxin 
which occurs upon transfer of cells with bound Shiga-HRP 
from 0 to 37°C could be due to selective dissociation of toxin 
from uncoated areas of the membrane, we measured the 
dissociation of t25I-labeled toxin from cells under similar 
conditions. The experiments which involved prebinding of 
~25I-labeled Shiga toxin at 0°C, washing and subsequent in- 
cubation at 37°C, clearly showed that dissociation of toxin 
from the cell surface could not account for the disappearance 
of Shiga toxin from uncoated areas of the cell membrane 
(data not shown). 

In conclusion, the experiments with immunogold detec- 
tion of Shiga toxin and with the Shiga-HRP conjugate strong- 
ly suggest that at 0°C the Shiga binding sites (receptors) are 
randomly distributed on the cell surface with no preferential 

binding to, for example, coated pits, whereas at 37°C the 
receptors with bound toxin are localized in coated pits. 

After 15-min incubation at 377C Shiga-HRP was found to 
label various tubular and vacuolar endosomal structures 
(Fig. 7 i). On rare occasions, also elements of the Golgi 
complex contained some Shiga-HRP. After 60 min of incu- 
bation at 37°C, endosomal and lysosomal structures through- 
out the cytosol, but most frequently in the Golgi region, were 
heavily labeled (Fig. 8, a and b). Moreover, stacked Golgi 
elements (presumptive Golgi cisternae; 47-50) contained 
Shiga-HRP (Fig. 9). Interestingly, not only elements on one 
side of the Golgi stack were labeled, but also what appeared 
to be medial cisternae were occasionally labeled (Fig. 9 c). 
Whether such cisternae are truly medial or actually in con- 
tinuity with the trans-cisternae as reported in a serial section 
study by Orci et al. (29) remains uncertain. Similar observa- 
tions on internalization of Shiga toxin were made when the 
cells were incubated in the medium at pH 6 rather than at 
pH 7. This demonstrates that the observation that the toxic 
effect is inhibited at low pH in the medium (see above) is not 
due to inhibition of endocytosis or transport to the Golgi 
region. 

Biochemical Evidence That Shiga Toxin Is 
Endocytosed from Coated Pits 

Endocytosis of ligands from coated pits is strongly inhibited 
at cytosolic pH <6.5, whereas endocytic uptake of ricin, pos- 
sibly from uncoated areas of the cell surface, is inhibited to 
a much lesser extent (37, 38, 49). To test whether the endocy- 
tosis of Shiga toxin that leads to intoxication of cells takes 
place predominantly from coated or from uncoated pits, we 

Figure 8. Shiga-HRP labeling of tubular and vacuolar endosomes/lysosomes after incubation for 1 h at 37°C. Bars, 0.25/~m. 
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Figure 9. Examples of Shiga-HRP in the Golgi complex in HeLa $3 cells after incubation for 1 h at 37°C. While Shiga-HRP typicaUy 
labels one face (cis or trans) of the Golgi stack (a and b), it sometimes labels an apparently medial cistern (c, arrows). Bars, 0.25 #m. 

lowered the cytosolic pH by the NI-LCI prepulsing tech- 
nique (37) and exposed the cells to Shiga toxin for 15 min. 
Then cell surface-bound toxin was neutralized with antitoxin 
while the internal pH was still low. Subsequently, the cells 
were incubated overnight in normal medium to allow any in- 
ternalized toxin time to intoxicate the cells• The results in 
Fig. 10 A show that when acidified cells were exposed to the 
toxin, they were protected against Shiga toxin. In a control 
experiment where addition of  antitoxin was omitted, the cells 
were intoxicated to the same extent whether they were acid- 
ified or not during the exposure to the toxin (Fig. 10 B) 

demonstrating that the acidification period did not have any 
long lasting effect interfering with toxin entry. 

The experiment here demonstrated was carried out with 
HeLa cells, but similar results were also obtained with Vero 
cells (data not shown). The data indicate that not only en- 
docytosis of  Shiga-HRP as shown by electron microscopy, 
but also endocytosis of  Shiga toxin relevant for intoxication 
occurs from coated pits. 

Ultras tructural  Observat ions  on Acid i f ied  Cel ls  

We have shown elsewhere that acidification of the cytosol 
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Figure 10. Inability of Shiga toxin 
to enter cells at low cytosolic pH. 
HeLa cells growing in 24-well 
disposable trays were incubated 
for 30 min at 3"/°C in Hepes medi- 
um, pH 7.0, with and without 40 
mM NI-L, C1. The medium was 
then removed and a buffer con- 
mining 0.14 M choline chloride, 
20 mM Hepes, pH 7.0, and 2 mM 
CaCI2 was added. After 2-min 
incubation, increasing concentra- 
tions of toxin were added and, 15 
min later, the cells were trans- 
ferred to growth medium with 
(A) and without (B) neutralizing 
amounts of antitoxin. The ceils 
were incubated for 18 h at 37°C, 
and then the rate of protein syn- 
thesis was measured. 
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Figure 11. Details of an experiment where HeLa $3 cells were acidified by preincubation for 30 min with 30 mM NI-I4CI which was then 
removed and replaced by medium without NH4C1 and Na ÷. This resulted in a reduction in the uptake of J25I-transferrin from 62% of total 
cell bound to 6% as measured after 10 min incubation at 37°C. Nevertheless, distinct coate.,d pits at the cell surface are present, both with 
Shiga-HRP (a, arrow) and without Shiga-HRP (b and c). It is clearly seen that the coated structures are not just empty cages, but represent 
coated membrane profiles (vesicles or pits). Bars, 0.1 #m. 

inhibits endocytosis of transferrin, although coated pits are 
still present at the surface of the acidified cells (37, 38). How- 
ever, when peroxidase conjugates or immunoperoxidase cy- 
tochemistry are used to localize, for example, transferrin (37) 
and Shiga toxin receptors in coated pits, it is often difficult 
to demonstrate the clathrin coat and the membrane of a 
coated pit at the same time in a convincing manner (Fig. 11 
a). The demonstration of a distinct coated pit membrane 
in continuity with the plasma membrane (or a vesicular 
profile membrane) is necessary to conclude that the coated 
structure of interest is really a pit (or a vesicle) and not an 
empty clathrin cage. In the present study we have therefore 
paid special attention to show unequivocally the presence 
of coated pits at the surface of acidified cells in which bio- 
chemical measurements on parallel cultures (experiments 

carried out the same day with the same NI-LCI concentra- 
tion, etc.) showed marked inhibition in endocytosis of  trans- 
ferrin. Coated pits from one of these experiments are shown 
in Fig. 11. The two coated profiles in Fig. 11 a as well as 
those in c may represent coated vesicles rather than pits. 
Such vesicles may have pinched off immediately before the 
acidification exerted its effect on the coated pits. However, 
serial section analysis has revealed that most coated vesicu- 
lar profiles close to the cell surface are, in fact, coated pits 
(31). 

In acidified cells very little internalized Shiga-HRP was 
observed after 15 min of incubation at 37°C. Sliiga-HRP was 
present on the cell surface and in particular in coated pits 
(Fig. 11 a). These data strongly support our biochemical 
observations on the lack of Shiga toxin internalization in 
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acidified cells (Fig. 10) and also support our notion that acid- 
ification of the cytosol somehow immobilizes coated pits at 
the cell surface, thereby preventing endocytosis of ligands 
that normally use this pathway (37, 49). Also, our combined 
biochemical and morphological findings indicate that Shiga 
toxin is predominantly taken up via coated pits and vesicles. 

Effect of Temperature on the Ability of Shiga Toxin to 
Inhibit Cellular Protein Synthesis 
Since the ultrastructural studies indicated that Shiga toxin is 
transferred to the Golgi apparatus, and since we have earlier 
found that such transport is inhibited at 18°C (39, 47), we 
decided to study the effect of temperature on the ability of 
Shiga toxin to inhibit cellular protein synthesis. It was earlier 
reported that when HeLa cells were incubated with Shiga 
toxin for a short period of time at 18°C, the toxic effect was 
much less than when the incubation was at 37°C (8). Since 
the reduced toxicity could be due to slow transfer of toxin to 
the compartment from which it enters the cytosol, we in- 
cubated HeLa cells with Shiga toxin at 37 and 18°C for 
different periods of time and then measured the toxic effect. 
As shown in Fig. 12 A, there was a large difference in the 
toxic effects obtained at the two temperatures. It is clear that 
increased incubation time did not diminish this difference. 

To study if the low toxic effect at 18°C was due to low bind- 
ing or endocytosis of toxin at this temperature, we allowed 
toxin to bind to the cells for 30 min at either 18 or 37°C. Then 
the cells were washed and incubated overnight at 37°C to al- 
low the bound toxin time to exert its effect on the cells. The 
results showed that at 18°C it was necessary to expose the 
cells to approximately twice the toxin concentration required 
at 37°C to obtain the same toxic effect (Fig. 12 B). This indi- 
cates that at low toxin concentration approximately twice as 
much is bound at 37 as at 18°C. 

Essentially, the same difference in protein synthesis inhibi- 
tion was obtained in an experiment where the cells were ex- 
posed to toxin for 30 rain at the two temperatures, then 
treated with antitoxin to inactivate surface-bound toxin and 

subsequently incubated overnight at 37°C in the absence of 
toxin (Fig. 12 B). This indicates that approximately the same 
amount of toxin is endocytosed at the two temperatures. 
Clearly therefore, the twofold difference in binding is far too 
small to account for the >100-fold difference in toxin sensi- 
tivity of the cells at the two temperatures. The data are con- 
sistent with the idea that transport of Shiga toxin to the Golgi 
apparatus is required for intoxication of cells. 

Discussion 

The most important finding here described is that a glyco- 
lipid-binding ligand, Shiga toxin, is endocytosed from coated 
pits. This is in contrast to other glycolipid-binding ligands, 
such as tetanus toxin and cholera toxin, which have been 
reported to be endocytosed from uncoated areas of the cell 
membrane (24, 46). To our knowledge, Shiga toxin is the 
first glycolipid-binding ligand that has been found to be en- 
docytosed from coated pits. 

Glycolipid Nature of the Receptor for Shiga Toxin 
It is now well established that Shiga toxin, and the almost 
identical Shiga-like I toxin, bind to glycolipids containing 
Galod-4 Gal sequences (3, 16, 18, 19, 23). Not only does 
Shiga toxin bind to the glycolipids, but there is evidence that 
naturally resistant cells practically lack glycolipids with 
Galal-4 Gal sequence (18). Furthermore, a mutant cell line 
selected from Daudi cells for resistance to Shiga-like toxin 
I, was deficient in these glycolipids and did not bind the toxin 
(3). 

We here show that lipid extraction removes 80-90% of the 
binding sites. However, since Veto and Hela cells contain a 
high number (,'ol06/cell) of Shiga toxin binding sites (8), 
the experiment did not exclude the possibility that a consid- 
erable number of glycoprotein receptors were present as 
well. The findings here reported that trypsin treatment did 
not reduce significantly the toxin-sensitivity of the cells, and 
that it did not remove 125I-labled Shiga toxin bound to cells, 
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Figure 12. Effect of tempera- 
ture on toxic effect, binding, 
and internalization of Shiga 
toxin. (,4) HeLa $3 cells grow- 
ing in 24-well disposable trays 
were incubated for the indi- 
cated time periods at either 37 
or 18°C with increasing con- 
centrations of Shiga toxin, and 
then the rate of protein synthe- 
sis was measured. (B) The 
cells were incubated with tox- 
in for 30 min at either 37 or 
18°C, then washed, and incu- 
bated overnight at 37°C in 
growth medium with or with- 
out neutralizing amounts of 
antitoxin. Finally, the rate of 
protein synthesis was measured. 
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argue against the possibility of a protein receptor. Further- 
more, immunoprecipitation of toxin that was bound to 125I- 
labeled cells did not result in precipitation of a labeled pro- 
tein. Finally, swainsonine and tunicamycin that interfere with 
glycosylation and processing of glycoproteins did not affect 
the sensitivity of cells. Altogether, several lines of evidence 
argue against the involvement of a glycoprotein receptor. 

Endocytic Uptake of Shiga Toxin 
The evidence presented here that endocytic uptake is in- 
volved in the action of Shiga toxin is in accordance with ear- 
lier findings with most other toxins that exert their action in 
the cytosol (28). We found that when cells were allowed to 
endocytose toxin under conditions where the translocation to 
the cytosol was blocked as estimated from the lack of protein 
synthesis inhibition, the toxin was accumulated in a location 
where it was shielded against antitoxin, probably in compart- 
ments of the endocytic pathway. When the translocation 
block was removed, the shielded toxin was highly efficient 
in intoxicating the cells. This intoxication must occur from 
within intracellular vesicles since any toxin that is recycled 
back to the plasma membrane would be inactivated by the 
anti-Shiga toxin that remained in the medium for the rest of 
the experiment. 

On the other hand, when ATP-depleted cells were exposed 
to the toxin, they were unable to accumulate toxin in a com- 
partment where it was shielded against the antibody. This is 
in accordance with the observation that endocytosis is in- 
hibited in ATP-depleted cells (36, 40). 

Ultrastructural studies strongly suggest that Shiga-HRP 
was endocytosed from coated pits. Shiga-HRP was observed 
mainly in coated pits, even after a short incubation at 37°C. 
In agreement with this, acidification of the cytosol, which in- 
hibits pinching off of coated vesicles (37), inhibited this 
entry. 

In addition to in coated pits, we also found Shiga toxin in 
some uncoated pits or caveolae which may be involved in en- 
docytosis as well (11, 12, 24, 46). The fact that acidification 
of the cytosol inhibits uptake of Shiga toxin almost com- 
pletely means that either (1) the uncoated pits or caveolae are 
not involved in endocytosis, or (2) they are involved in inter- 
nalization, but (a) were inhibited as were the clathrin coated 
pits in internalization, or (b) they still take up Shiga toxin, 
but the uptake kinetics are so slow that it makes no difference 
in 15 min (a notion that fits with the data of Tran et al. [46]). 

Both the electron microscopical studies, and the experi- 
ments where entry was estimated from toxicity measure- 
merits, indicate that there is a rapid entry of Shiga toxin into 
an endocytic compartment. The kinetics of endocytosis are 
similar to those of other ligands, such as transferrin and 
epidermal growth factor, which are rapidly removed from 
the cell surface by the coated pit/coated vesicle pathway. In 
contrast, ricin that seems to enter both from coated as well 
as from uncoated areas of the cell membrane, and cholera 
toxin that is reported to enter exclusively from uncoated 
areas, are endocytosed much more slowly (36, 46). 

Coated pits are involved in endocytosis of transferrin, low 
density lipoprotein, and epidermal growth factor, which all 
bind to protein receptors. It is widely accepted that the cyto- 
plasmic domains of these receptors are required for transport 
to the coated pits (5, 32, 34). While our results strongly indi- 

cate that Shiga toxin is taken up by coated pits, it remains un- 
certain whether a direct clustering of Shiga toxin receptors 
takes place at 37°C. However, our observation that at 0°C 
<5 % of the coated pits contained receptor-bound Shiga toxin 
as determined by immunogold labeling, whereas at 37°C 
10-20% of the coated pits were labeled, suggests that some 
clustering takes place. 

It is not clear how clustering of glycolipids in coated pits 
could occur, but interactions of the glycolipids with integral 
membrane proteins would most likely be involved. Glyco- 
sphingolipids, in contrast to glycerolipids, are in fact known 
to form intermolecular hydrogen bonds (30). It should also 
be noted that the composition of phospholipids in coated pits 
differs from that in the rest of the plasma membrane (6), sug- 
gesting that selective migration to or retention of certain 
lipids in these structures does take place. 

Intracellular Transport of Shiga Toxin 
The electron microscopical studies showed that Shiga toxin 
is transported to the Golgi region. Transport to the Golgi ap- 
paratus has been demonstrated with other ligands that are en- 
docytosed from coated pits. Thus, both the transferrin and 
mannose 6-phosphate receptors as well as cell surface mole- 
cules in general are transferred to different compartments in 
the Golgi apparatus (7, 10, 43, 44). 

Interestingly also ricin, which is largely endocytosed by a 
mechanism not involving coated pits, is transported to the 
Golgi apparatus (14, 39, 47-50). This transport is inhibited at 
18°C (39, 47). Under the same conditions the toxic effect is 
strongly reduced, suggesting that transport of ricin to the 
Golgi apparatus is required for translocation to the cytosol. We 
here show that also intoxication of cells with Shiga toxin is 
strongly reduced at 18°C as compared with 37°C. It is there- 
fore possible that Shiga toxin must be transferred to the Golgi 
apparatus before it can subsequently be translocated to the 
cytosol. 
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