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Abstract Invited Referees
Background: Electroencephalography (EEG) is a non-invasive tool that has 1 2
the potential to identify and quantify atypical brain development. We introduce a
new measure here, variance of relative power of resting-state EEG. We sought Previsen o
to assess whether variance of relative power of resting-state EEG could predict ) report
i) classification of infants as typical development (TD) or at risk (AR) for Verls'on 2

. L1 . .. published
developmental disability, and ii) Bayley developmental scores at the same visit 15 Nov 2018
or future visits.
Methods: A total of 22 infants with TD participated, aged between 38 and 203 version 1 ? o
days. In addition, 11 infants broadly at risk participated (6 high-risk pre-term, 4 published report report
low-risk pre-term, 1 high-risk full-term), aged between 40 and 225 days of age 11 Sep 2018

(adjusted for prematurity). We used EEG to measure resting-state brain
function across months. We calculated variance of relative power as the
standard deviation of the relative power across each of the 32 EEG electrodes.
The Bayley Scales of Infant Development (3" edition) was used to measure 5 Caterina Piazza, IRCCS Eugenio Medea,
developmental level. Infants were measured 1-6 times each, with 1 month Italy

between measurements.

Results: Our main findings were: i) variance of relative power of resting state
EEG can predict classification of infants as TD or AR, and ii) variance of relative
power of resting state EEG can predict Bayley developmental scores at the Comments (0)
same visit (Bayley raw fine motor, Bayley raw cognitive, Bayley total raw score,

Bayley motor composite score) and at a future visit (Bayley raw fine motor).

Conclusions: This was a preliminary, exploratory, small study. Our results

support variance of relative power of resting state EEG as an area of interest for

future study as a biomarker of neurodevelopmental status and as a potential

outcome measure for early intervention.

1 Wanze Xie, Harvard Medical School, USA
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Introduction

Early detection of atypical neurological development increases
the potential for successful intervention, as a body of basic
science laboratory data supports that a wide variety of inter-
ventions, from environmental enrichment to hypothermia or
implantation of stem cells, can enhance cerebral plasticity
during development'. Emerging data also support that clinical

interventions can increase the developmental potential of
children, rather than presuming a predetermined potential'.
Accordingly, early therapy intervention should have the great-
est benefit on neural development and functional outcomes.
However, there is a crucial roadblock here. In order to help
guide and monitor interventions seeking to promote healthy
brain development in the early years, we need suitable measures
of fetal and infant brain function and development’ prior to
functional impairments emerging.

Electroencephalography (EEG) offers one non-invasive tool
with the potential to identify and quantify atypical brain
development. While EEG has been used since the early 1900s to
diagnose conditions such as sleep and chronic seizure disorders,
it has more recently been investigated as a screening tool in the
neonatal intensive care unit for high-risk infant populations’.
The rapidly growing field of infant EEG seeks to uncover
specific abnormalities in activity patterns or key features, and
whether these are predictive of short-term and long-term risks
or outcomes®.

Previous research has determined that EEG measures have
some capacity in infancy to predict later functional outcomes.
El-Dib and colleagues’ demonstrated the ability of an EEG
measure of continuity, minimum amplitude, bandwidth, and
cycling within the first week of life to predict poor outcome
(death or severe delay on Bayley Scales of Infant Development,
version 2) at 4 months corrected age in 55 infants born pre-term
(2629 weeks gestational age) or with very low birth weight
(less than 1500 g). For poor outcomes, EEG had a sensitivity
of ~30%, specificity of ~90%, positive predictive value of ~60%
and negative predictive value of ~80%". They did not use cross
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validation to confirm accuracy of model. Hayashi-Kurabashi
et al’ demonstrated relationships between background activity
of EEG within the 36 days of life and a diagnosis of develop-
mental delay or cerebral palsy at 12—-18 months corrected age in
333 infants born pre-term (less than 36 weeks gestational age).
For prediction of a later diagnosis, EEG had a sensitivity of
50-61%, specificity of 74-86%, positive predictive value of
27-38% and negative predictive value of 91-93%>°. They did not
use cross validation to confirm accuracy of the model. An addi-
tional study by Périvier and colleagues® also related clinical
EEG data to infant outcomes. They found that out of 1744 preterm
infants (less than 32 weeks gestational age), 422 had non-optimal
outcomes at 2 years. A clinical rating scale that considered mul-
tiple aspects of abnormality of the EEGs performed in early
infancy (up to 33 weeks post-menstrual age) had good specifi-
city (0.95) but low sensitivity (0.16) for predicting non-optimal
outcomes. Non-optimal outcomes were non-optimal neuromotor
function or abnormal psychomotor development across any of
a number of clinical measures®. Although EEG measures show
some promise, to date they have only provided a piece of the
puzzle. In a number of studies where outcomes were predicted
using EEG it has been recommended that EEG assessment be
combined with other clinical measures*®’. More effort is needed
to determine the salient factors of EEG to be included for an
optimally accurate and efficient prediction of neurodevelopmental
outcomes, which led us to explore a new measure here.

We introduce a new measure here, variance of relative power of
resting state EEG. We calculated variance of relative power as
the standard deviation of the relative power across each of the
32 EEG electrodes. We postulate that higher variance may
represent less organized cortical activity and be an intuitive
and useful metric for identifying and quantifying atypical brain
development within the first months of life. As such, higher
variance may represent a salient factor of EEG to include for an
optimally accurate and efficient prediction of neurodevelopmental
outcomes.

Methods

Recruitment

This was a preliminary study to explore potential relationships
of interest between EEG and developmental status, and we
used a sample of convenience. Data were collected between
17 February 2015 and 18 June 2016. A total of 22 infants with
typical development (TD) participated, between 38 and 203 days
of age (Table 1). There were 2 infants with TD measured once,
with the other 20 infants measured once per month for 3 to
6 visits. A total of 11 infants broadly at risk (AR) for develop-
mental disability participated (6 high-risk pre-term, 4 low-risk
pre-term, 1 high-risk full-term), aged between 40 and 225 days
of age (adjusted for prematurity; Table 1). Infants AR were
assessed once per month for 3 to 5 visits. Assessments started
as close to 1 month of age as possible, and continued until the
infant successfully reached and grasped a toy with high skill.
Inclusion criteria (TD): infants were from singleton, full-term
births (over 38 weeks). Exclusion criteria (TD): infants expe-
riencing complications during birth, or with any known visual,
orthopedic or neurologic impairment at the time of assessment,
or with a score at or below the 5" percentile for their age on the
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Table 1. Infant characteristics.

Visit Group

1 At risk, full term

Preterm, high risk

Preterm, low risk

Typical
development

3 At risk, full term

Preterm, high risk

Preterm, low risk

Typical
development

Descriptive
statistic

N

Mean

Std. Deviation
Minimum
Maximum

N

Mean

Std. Deviation
Minimum
Maximum

N

Mean

Std. Deviation
Minimum
Maximum

N

Mean

Std. Deviation
Minimum
Maximum

N

Mean

Std. Deviation
Minimum
Maximum

N

Mean

Std. Deviation
Minimum
Maximum

N

Mean

Std. Deviation
Minimum
Maximum

N

Mean
Std. Deviation
Minimum

Maximum

Age (in days, adjusted for

prematurity as applicable) (kg)

1
168

168
168
6
91
35
68
162

73
38
40
127
22

105
44
38
203

230

230
230

156
35

132
225

137
37
103
190
20

158
34
97
203

Weight Body

1
6.3

6.3
6.3
6
55
0.9
4.5
7.1
4
5.8
0.8
4.9
6.8
22

6.7
1.0
5.0
8.9
1

7.6

7.6
7.6
6
6.7
0.8
6.0
8.1
4
7.2
0.7
6.3
7.8
20

7.7
0.9
6.2
9.1

length (cm)
1
64.5

64.5
64.5
6
59.6
4.6
53.5
67.5
4
60.5
4.9
56.3
67.5
22

62.6
3.5

57.5
69.5

68.0

68.0
68.0

63.6
3.8

59.0
70.0

63.1
1.9
61.0
65.0
20

66.9
3.8

56.0
71.5

Head
circumference (cm)

1
39.7

39.7
39.7
6
38.9
1.7
37.5
42.0
4
37.8
2.1
35.0
40.0
22

40.1
1.9

37.5
43.6

40.2

40.2
40.2

41.2
1.5

40.0
44.0

40.6
1.1
39.0
41.2
20

415
1.6

38.0
45.0
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Bayley Scales of Infant Development, 3™ edition® would have
been excluded at the time of testing. Inclusion criteria (AR):
AR infants were born before 36 weeks of gestation (low risk) or
defined as at high risk for developmental delay per the definition
of the state of California’. Infants AR were a broad group and not
homogenous to one risk profile or level for this preliminary study.
Exclusion criteria (AR): infants with unstable medical conditions
would have been excluded. Infants were recruited by a member
of the research team in-person at the Eisner Health Clinic (Los
Angeles, CA, USA) and Children’s Hospital of Los Angeles
(Los Angeles, CA, USA). Infants were also recruited by referral
from Ventura County Medical Center (Ventura, CA, USA),
through fliers distributed or posted at the University of Southern
California (USC), and by word of mouth. This study was approved
by the Institutional Review Board of the USC (HS-14-00690).
A parent or legal guardian signed an informed consent form
prior to their infants’ participation.

Assessment

Infants were measured primarily in the family’s home, in the
morning. Per the family’s preference, three families came to the
laboratory at the USC Health Science Campus for some of their
visits. Each visit lasted for around 1 hour. At each visit, the
infant’s weight, body and limb lengths, and head and limb
circumferences were measured. Motor, cognitive and language
development were assessed using the Bayley Scales of Infant
Development, 3 edition®. A small wearable sensor was placed
on each arm, and 5 minutes of video of the infant’s spontaneous
movement in supine was recorded. Wearable sensors remained
on for the rest of the day. Wearable sensor data are reported in
previous publications'”'" and are not discussed further here.
The parent or guardians’ highest level of education completed
was recorded. Families were compensated for each visit. Data
were stored on a password-protected server or in a REDCap
electronic database (version 6.14.2) hosted by USC.

Electroencephalography assessment

During each visit, EEG data were acquired using a Biosemi
system with 32-electrode infant headcaps (standard 10/20
system) at sampling rate of 512 Hz. Infants sat on the lap of
a caregiver. First, 2 trials of 20-second resting-state EEG data
were recorded. During resting state recording, a lighted, spinning
globe toy was presented out of participants’ reach to attract their
visual attention and minimize head and body movement. This is
standard in infant EEG data collection®’. Next, arm reaching
skill was assessed using 20-second blocks where a toy was
presented at midline within reaching distance of the infant
alternating with 20-second blocks without a toy to reach for.
This was repeated five times. Finally, another session of resting-
state EEG data were collected, similar to the first session.

Data analyses

EEG analyses. EEG analysis methods are described in detail
in a previous publication'”. Only resting state EEG data were
analyzed here, ranging from 14-82 seconds. Resting-state EEG
variables explored here are individual power, relative power,
and variance of relative power. Briefly, EEG data from all
electrodes were re-referenced to the average of T7 and TS.
Next, a bandpass infinite impulse response filter (0.3-30 Hz)
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was applied to the re-referenced data. Resting EEG segments
were epoched and noisy segments were rejected. After rejection,
remaining EEG data from 11 infants AR and 22 infants with
TD were: AR visit 1 = 11, AR visit 3 =9, TD visit 1 = 21, TD
visit 3 = 13. Power spectral density (PSD) was estimated on
these preprocessed EEG data using the “pwelch” function in
MATLAB (ver. 2016A, MathWorks Inc., Natick, MA, USA).
PSDs were transformed into relative powers so that spectral
activities from all individual sessions were directly comparable.
The relative powers were calculated between 0 and 30 Hz.
For each frequency bin within this range and each electrode,
relative power was computed by dividing PSD by the sum PSD
from all bins. Variance of relative power was calculated as the
standard deviation of the 32 relative power measurements for
each infant, calculated by taking the standard deviation of peak
power across each channel.

Bayley scales of infant development. Bayley scales of infant
development version 3 raw scores for gross motor, fine motor,
expressive language, receptive language, and cognition were
transformed into composite scores and percentile ranks by age
corrected for gestational age less than 38 weeks for motor,
cognitive and language domains. Bayley composite scores are
determined in 2-week, age-normalized windows and created to
have a range of 40-160, mean of 100 and SD of 15. Composite
score classification are: 130 and above, very superior; 120-129,
superior; 110-119, high average; 90-109, average; 80-89, low
average; 70-79, borderline; 69 and below, extremely low®. An
infant developing at a steady rate would be expected to have
composite scores that remained steady over time.

Statistical analyses. Logistic regression was conducted to
predict at-risk status of infants in the cohort using resting state
EEG data recorded at visit 1. Leave-one-out cross-validation
was performed as a method to confirm accuracy of logistic
regression model. Multivariate linear regression was conducted
to predict current (visit 1) and future (visit 3) Bayley scores
using resting-state EEG data. Statistical analyses were performed
using R, version 3.5.1. Bayley score models were compared
using analysis of variance. It is important to note that the EEG
analysis (RX) and the statistical analysis (AH) were performed
independently from one another.

Prediction of AR status

The resting state data for each infant was derived into individual
power and relative power readings from each electrode,
32 electrodes in all. Raw data are available on figshare'.
Initially, all 32 power and relative measurements from visit 1
were input into various machine learning algorithms (including
K-nearest Neighbor, Support Vector Machine, and Logistic
Regression with L1 regularization) to predict the infant’s at-risk
status. Leave-one-out cross-validation was performed on each
model. Then, the variance of relative powers across 32 elec-
trodes were computed as input features for logistic regression to
test their predictive efficacy for the classification task.

Prediction of same visit (1st visit) Bayley scores
Multivariate linear regression was conducted to predict current
and future Bayley scores to identify if variance of relative power
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made a significant contribution to prediction. We designed
12 different linear regression models with each one specific to a
different category/composite of Bayley score (Table 2). First,
we implemented models that only used age in days to predict
each Bayley category. These models did not use variance of
relative power as a predictor and thus served as the baseline
models to be compared against the baseline models plus variance
of relative power.

Each model was examined for assumptions of linear regression
(i.e. heteroschedasticity and multicollinearity). Visual inspection
of residuals and analysis of correlation between predictors
revealed that each model maintained their regression assump-
tions. A baseline statistical model (a model that only included
age in days and at-risk status) was compared to a nested
model of the baseline model features plus variance of rela-
tive power to determine significant predictive effects of vari-
ance of relative power beyond baseline prediction. We used
analysis of variance to determine significant predictive effects of
variance of relative power across Bayley scores.

Prediction of future visit (3" Visit) Bayley scores

A multivariate linear regression was conducted with age, at-risk
status, and variance of relative power at visit 1 to predict Bayley
scores at visit 3. On average, visit 3 took place 60 days after
visit 1. The 3-regressor model using age, at-risk status, and
variance of relative power was compared against a 2-regressor
model using age and at-risk status only.

Results

Prediction of AR status

Leave-one-out cross-validation was performed on each machine
learning model to predict at-risk status among 32 infants
(11 at-risk) with a mean age of 90 days. Only modest
accuracy was identified with typically a high false negative
rate for features from conventional metrics (i.e., power and
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relative power). On the other hand, variance of relative power
was calculated as standard deviation of the 32 relative power
measurements foreachinfantand wasusedasthe only predictor within
the model. A test of the full model (at-risk status ~ variance of rela-
tive power) compared to a baseline model (at-risk status ~ intercept
only) was statistically significant, indicating that variance of relative
power accurately classified at-risk status (chi square = 7.64,
p < 0.01, df = 2, odds ratio = 1.18). Conversely, at-risk sta-
tus significantly predicted variance of relative power (p < 0.01,
F =833, R?>=0.217, df = 2). A designation of at-risk was asso-
ciated with higher variance of relative power. Interestingly, as
shown in Figure 1, age in days did not predict variance of relative
power (p > 0.05).

Leave-one-out cross-validation was performed using the iden-
tified logistic model to create a confusion matrix. Results
demonstrated an overall accuracy of 75%, with a true nega-
tive rate of 86% (18/21) and a true positive rate of 55% (6/11).
Results of the analysis demonstrated that an infant with higher
variance of relative power across all EEG electrodes had a
higher probability of being classified as AR (Figure 2).

Prediction of same visit (1st visit) Bayley scores

Results demonstrated that variance of relative power provided
a significant contribution to 1st visit scores of Bayley raw fine
motor, Bayley raw cognitive, Bayley total raw score, and motor
composite score (p < 0.05, see Table 2).

Prediction of future visit (3 Visit) Bayley scores

The 2-regressor model was significantly different from a baseline
model (p < 0.001, F = 15.61, adjR? = 0.58, df = 2). Analysis
of variance was used to compare the 2-regressor model to the
3-regressor model at alpha = 0.05. This result demonstrated
that the addition of variance of relative power from visit 1
contributed to prediction of Bayley raw fine motor score
at visit 3 (p < 0.001, F = 14.13, adjR* = 0.65, df = 3). Overall,

Table 2. Between-model statistical results.

Clinical test Adj R*2 null
Bayley raw fine motor 0.59
Bayley raw gross motor 0.61
Bayley raw receptive language  0.11
Bayley raw expressive language 0.28
Bayley raw cognitive 0.65
Bayley total raw score 0.69
Cognitive composite 0.17
Cognitive percentile rank 0.06
Language composite 0.11
Language percentile composite  0.00
Motor composite 0.19
Motor percentile rank 0.09

Adj R*2 full BIC null BIC full ANOVA
p-value
0.64 159.89 157.89 0.03
0.63 169.19 169.99 0.12
0.13 111.22 11299 0.22
0.27 107.43 110.20 0.43
0.71 164.44 16142 0.02
0.74 232.00 228.62 0.01
0.22 26450 264.83 0.1
0.07 277.45 279.45 0.25
0.11 2556.08 257.46 0.32
0.03 202.36 203.60 0.18
0.30 267.77  265.09 0.02
0.17 308.41 307.94 0.06
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Relationship of Age in Days to Variance of Relative Power
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Figure 1. Age in days does not predict overall variance of relative power. Blue line represents linear regression fit, shaded area is

standard error of fit.

variance of relative power was able to contribute an extra 7%
of variance explained compared to a 2-regressor model using
measures of age and at-risk status.

Discussion

Our main findings were: i) variance of relative power of rest-
ing state EEG can predict classification of infants as TD or
AR, and ii) variance of relative power of resting state EEG can
predict Bayley developmental scores at the same visit (Bayley
raw fine motor, Bayley raw cognitive, Bayley total raw score,
Bayley motor composite score) and at a future visit (Bayley raw
fine motor).

Prediction of AR status

Higher variance of relative power predicted AR status, while
age in days did not. We propose that higher variance may repre-
sent less organized cortical activity associated with an atypical
trajectory of brain development. This is consistent with the use
of ‘EEG complexity’ as a measure to distinguish infants with

TD from infants at high risk for autism spectrum disorders'.
While age must certainly be considered—as a bias toward syn-
aptic formation leads to a peak in synaptic density between
6-18 months of age, followed by a shift to synaptic pruning'"—
these studies imply that trajectories between populations of
infants are diverging along the course of development. It is
important to note that these studies both include infants who are
at risk, without considering their ultimate outcomes (diagnoses).
Further, we included both low- and high-risk infants in this
study. We did not expect the AR infants to be a homogenous
group with regards to their brain development and EEG data,
rather we expected the AR infants to be different than the TD
group, potentially in different ways across infants. Predicting
or classifying risk status is not interchangeable with predicting
future developmental outcomes/diagnoses.

Prediction of Bayley scores
Our results showed that variance of relative power provides a
significant contribution to Ist visit (same visit) score prediction
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Prediction of At—-Risk Status from Variance of Relative Power
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Figure 2. Infants with higher variance of relative power across all 32 electroencephalography electrodes had a higher probability of
being classified as at-risk. Blue line represents logistic regression fit, shaded area is standard error of fit. Superior data points are variance of
relative power measures for infants at risk, inferior data points are variance of relative power measures for infants with typical development.

of Bayley raw fine motor, Bayley raw cognitive, Bayley total
raw score, Bayley motor composite score. Further, we found that
variance of relative power from visit 1 contributes to prediction
of Bayley raw fine motor score at visit 3. This is consistent with
our previous work, where we found a relationship between a
different measure, EEG coherence, and Bayley raw fine motor
and gross motor scale scores in infants with TD (the same sample
of infants with TD as included here)'?.

Previous research in infants with TD has also found relation-
ships between EEG measures of power and coherence and motor
and cognitive skill performance in infants. One study found a
relationship between power in the alpha band and crawling onset
in 5- to 7-month-old infants with TD'. Another study demon-
strated differences in the power and coherence of EEG signals of
7- to 12-month-old infants with TD in relation to success with a

cognitive skill, the A-not-B task (object permanence). Infants who
were successful displayed changes in frontal EEG power and
increased anterior-posterior brain region coherence compared
to infants who were not successful. The changes in EEG were
attributed to increased organization and excitability in the
frontal region'®. The researchers also demonstrated differences
in the power and coherence of EEG signals of 8-month-old
typically developing infants with various amounts of crawling
experience’ and, recently, in 12-month-old typically developing
infants with various amounts of walking experience'.

Taken together, these studies link brain function, as measured by
EEG, to motor and cognitive skill performance across various
EEG measures and skills. Our study is unique as the infants here
are younger than previous studies, and we have included infants
AR in addition to infants with TD.
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Limitations and future directions

This was a preliminary study in a small sample of infants. Our
goal was to highlight potential relationships of interest to be
pursued in future, larger, adequately powered studies. In an effort
to avoid biased findings based on observations from a small
data set, we conducted the EEG analysis and statistical analyses
independently. In addition to the small sample size, our study is
limited both by factors related to EEG as a tool and by factors
related to studying infant development.

EEG as a tool has known limitations. EEG power is sensitive to
non-neural factors like thickness and shape of tissues between
electrodes and the cortex, as well as recording noise due to
differences in hair thickness, the fit of the cap, or differing
amounts of eye movement between participants. One way we
addressed this was by using the relative power instead of the
absolute power, another way was by showing that there were no
systematic changes with age in overall variance (Figure 1). It is
also important to note that EEG is not a direct measure of corti-
cal activity, so our proposal that higher variance may represent
less organized cortical activity may or may not be valid. Future
work that directly measures cortical activity is needed.

There are many potential factors that likely influence develop-
mental rate and outcomes in infants with TD and AR, and the
same factor may or may not have similar effect strength in each
group. Potential contributing factors to examine include: amount
and type of movement experience, quality of caregiver—infant
interaction, parenting style, cultural expectations, birth order,
socioeconomic status, physical growth rate, nutritional status,
amount and quality of sleep, personality/motivation, and genet-
ics. Additionally, individual EEG predictors show limited power
in predicting outcomes. There is the potential to aggregate these
together as features to feed into machine learning algorithms
for classification and prediction. We hope to pursue larger, more
complex predictive models in future work with a larger sample.
Adding EEG measures such as coherence and synchronization
of oscillations might increase predictive power, so might includ-
ing structural brain imaging data or clinic variables. Under-
standing the relative contribution of each factor to predicting
outcomes, as well as their responsiveness to intervention,
will be key to providing early intervention to reach optimal
developmental potential in infants AR.

This was a preliminary, exploratory, small study of the poten-
tial importance of variance of relative power, as measured by
resting state EEG data. Our results support variance of rela-
tive power as an area of interest for future study as a biomarker
of neurodevelopmental status and as an outcome measure for
intervention in infants AR. Higher variance may represent less
organized cortical activity and be an intuitive and useful metric
for identifying and quantifying atypical brain development within
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the first months of life. We see the potential to combine variance
of relative power with other EEG and clinical measures identified
in previous studies and to leverage these multiple features using
machine learning techniques to improve predictive reliability.

Conclusions

Infant development is a variable and complex process. As a field,
we are starting to determine how and when we can intervene
in infants AR to have a positive impact on developmental
outcomes. Our findings here, of the ability of variance of relative
power of EEG to predict classification of infants as TD or AR
and Bayley developmental scores, supports the potential of using
variance of relative power of EEG to trace out and classify the
developmental trajectories of the nervous system.

Data availability

A spreadsheet with resting state relative power EEG data and
Bayley Scales of Infant Development Scales (version 3) scores
for each participant at each assessment is available at figshare:
https://doi.org/10.6084/m9.figshare.6994946'.

Data are available under the terms of the Creative Commons
Zero “No rights reserved” data waiver (CCO 1.0 Public domain
dedication).
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Current Referee Status: v v

Referee Report 22 November 2018

https://doi.org/10.21956/gatesopenres.13984.r26765

+ Wanze Xie
Boston Children's Hospital, Harvard Medical School, Boston, MA, USA

The authors have addressed my concerns in their revision.

Competing Interests: No competing interests were disclosed.

I have read this submission. | believe that | have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

Referee Report 01 October 2018

https://doi.org/10.21956/gatesopenres.13952.r26655

"  Caterina Piazza
Bioengineering Lab, Scientific Institute, IRCCS Eugenio Medea, Lecco, ltaly

The manuscript describes an interesting preliminary study proposing a new EEG measure (i.e. variance of
relative power of resting state EEG) as an early biomarker for the prediction of the developmental status.
Results seem to suggest the potential of using this measures to evaluate developmental trajectories,
since it was able to classify infants with typical development (TD) and at risk(AR) infants and it predicted
some Bayley scores both at the same time of the EEG recording and 3 months later.

The study is clearly and accurately presented. However, some specific comments that should be
addressed by the authors are listed below.

1. The variance of relative power was calculated by taking the standard deviation of peak power in
the frequency band 0-30Hz. The position of this peak should be reported, | expected that in most
cases it was found in the low frequencies. Why did you decide to use this broad band? Did you try
to calculate the same measure in the different EEG frequency bands (i.e. theta, alpha beta, etc.).

2. ltis not clear if the resting-state EEG measures you took into account (i.e. individual power, relative
power and variance of relative power) were computed on all the resting state trails you recorded
(i.e. the 2 trails at the beginning of your experiment and the trial at the end of the procedure).
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The variance of relative power seem to be a promising biomarker. However | think that your hypothesis
that higher variance may represent less organized cortical activity should be better investigated. EEG
scalp-based data measure surface potential changes caused by a combination of underlying signals from
various sources within the brain, as well as extra-brain sources. In my opinion there are a lot of factors that
may potentially contribute to higher variance at the scalp level.

Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Yes

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Yes

Competing Interests: No competing interests were disclosed.
Referee Expertise: Neuroscience, EEG

| have read this submission. | believe that | have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

Beth A. Smith,

Thank you for your insightful review. In response:

1. We have looked at power variance in the individual frequency bins and peak power is typically
within theta. One analysis looking at the alpha frequency was also predictive of 3rd visit scores
using 1st visit resting state EEG. We did try prediction within each frequency brand specifically and
we found looking across the spectrum to be the most robust.

2. The resting state data came from both periods, to include as much clean data as possible. We
have added a sentence in the data analyses section, Only resting state EEG data were analyzed
here, ranging from 14-82 seconds”. The first part of the sentence addresses a concern from
another Reviewer.

Final comment: We agree! We have been careful to say that higher variance in EEG power may
represent less organized cortical activity, as opposed to state that it does represent less organized
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cortical activity. We have added the possibility of noisier data due to extensive eye movements for
some infant participants in the limitations section. We also added a sentence in the limitations
section, “Itis also important to note that EEG is not a direct measure of cortical activity, so our
proposal that higher variance may represent less organized cortical activity may or may not be
valid. Future work that directly measures cortical activity is needed.”

Competing Interests: No competing interests were disclosed.

Referee Report 24 September 2018

https://doi.org/10.21956/gatesopenres.13952.r26662

?

Wanze Xie
Boston Children's Hospital, Harvard Medical School, Boston, MA, USA

The manuscript describes an EEG-study investigating the prediction of developmental status in infants
(TD or AR for developmental disability) and their cognitive outcomes (Bayley scores) using variance in
EEG power across electrodes. There were 22 typical developing infants and 11 infants broadly at risk for
developmental disability included in the EEG analysis. The variance of EEG relative power across 32
electrodes was calculated using resting-sate EEG data. A logistic regression model was used to predict
infants’ AR status, and multivariate linear regressions were conducted to predict the effects of variance in
EEG power on infants’ concurrent and future Bayley scores. The authors found that variance of EEG
power can classify infants’ developmental status and predict the outcomes/scores of a few Bayley
subscales.

There is accumulating evidence supporting the capacity of EEG measures to predict functional outcomes
in childhood, and thus it is important to seek for efficient and suitable EEG metrics to optimize the
prediction. While this work has the potential to advance the field further, there are several issues requiring
revision or clarification.They are listed below in the order of appearance in the manuscript.

1. Why does higher variance in EEG power represent less organized cortical activity? This
assumption has been made in the introduction and discussion without solid evidence supporting it.
Please either cite studies for this assumption or analyzing the network organization to examine the
association between variance in EEG power and cortical organization. This is important because
other factors can also contribute to higher variance of EEG power across electrodes, such as
noisier data in the frontal electrodes due to extensive eye movements for some infant participants.

2. What is the rationale for using variance of relative EEG power to predict developmental status in
infants, as well as their cognitive outcomes? Is it because this measure has been tested and
validated in the adult literature, or it is just one of the few measures tested by the authors that
worked the best?

3. The presentation of the EEG paradigm could be clearer. My understanding is that 2 trials of 20s
resting-state EEG data were recorded, followed by a couple of “arm reaching” trials, and then an
additional 2 resting-state trials were presented. Is this correct? If so, did the authors use all the data
(2 RS + the Arm R trials + 2 RS?) or just the 4 resting-state trials?

4. What is the length of the epochs?
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5.

10.

11.

12.

13.

14.

15.

It is stated that the variance of EEG relative power was calculated by taking the standard deviation
of the peak power of the entire frequency band (0 — 30 Hz) across the channels. | wonder if it would
make sense to use the variance of EEG power for a certain frequency band (e.g., theta, alpha,
beta) to control for the potential effect of artifacts (e.g., movements) on the high frequency

bins. Given the PSD distribution for infants at this age, is it likely that the peak power will always
reside in the low frequency bins in the theta band if there is no artificial effect on the higher
frequency bins?

What is the attrition rate of the current EEG analysis?

Under the section of “prediction of AR Status”, machine learning results were reported. They
should belong to the results section.

It seems to me that the authors tested a few machine learning algorithms using the EEG raw and
relative power as predictors. Selection among these machine learning algorithms with the full
dataset can render circular an otherwise appropriate analysis and “the best” results, which is called
“circular analysis” or “double dipping” — the use of the same data for selection and data

analysis. There are a few issues associated with circular analysis (Kriegeskirte et al., 2009) and
neuroscientists tend to avoid spurious effects related to double dipping by using separate datasets
for model selection and testing. In your situation, if using EEG variance of power and machine
learning approaches to predict cognitive outcomes is one of the ultimate goals, | would recommend
you select a machine learning algorithm (e.g., SVM or K-nearest Neighbor) based on a portion of
the dataset (e.g., a few subjects) and then only apply this algorithm to the rest (or all) of the data in
your future research.

Why did the authors use a logistic regression for variance of power but machine learning
approaches for raw and relative power?

There is typo at the beginning of the section “Prediction of same visit (1Slvisit) Bayley scores.

“Multivariable linear regression”. Should it be “multivariate linear regression” or “multiple linear
regression”?

Page 5, “Corresponding null models to null models plus variance of relative power ... Bayley
scores.” This sentence is confusing to me. Please clarify.

In table 2, do those ANOVA p-values represent the significance of the whole multivariate
regression model, or the t-test p-values for one independent factor, i.e., variance of relative power?
My understanding is the latter, but please clarify it.

Many analyses were done with these data (N >= 247?). Is the .05 significance level
appropriate? Should it be adjusted?

Does “at-risk status” also predict concurrent or future Bayley scores? It would be great to see the
results and discussion for this factor.

Why is variance of EEG power predictive of some concurrent subscales of Bayley (e.g., raw fine
motor, raw cognitive score, and total raw score) but not the others? Why is it only predictive of
future Bayley raw fine motor score? This would be an interesting point for further discussion.
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16. This is a perplexing situation. On Page 8, | agree with the authors’ statement that individual EEG
predictors may have limited power in predicting cognitive outcomes for infants and children. Then
why not use a combination of EEG measures (e.g., power, variance, coherence, synchronization of
oscillations, etc.) to predict the outcomes and infants’ developmental status, as some of these
variables are already available to the authors? Will aggregate these measures in one model result
in the highest prediction accuracy? Does any of the measures outperform the other measures? |
feel these are important questions relevant to the current study and should be tested or discussed.

Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Partly

Are sufficient details of methods and analysis provided to allow replication by others?
Partly

If applicable, is the statistical analysis and its interpretation appropriate?
Partly

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Yes

Competing Interests: No competing interests were disclosed.

I have read this submission. | believe that | have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard, however | have significant reservations, as outlined
above.

Beth A. Smith,

Thank you for your insightful review. In response:

1. We appreciate this point and have been careful to say that higher variance in EEG power may
represent less organized cortical activity, as opposed to state that it does represent less organized
cortical activity. We have added the possibility of noisier data due to extensive eye movements for
some infant participants in the limitations section. With such factors in mind, we carefully designed
the experiment, e.g., introducing a spinning globe, to attract subjects’ attention, and rejected eye
movement artifacts during preprocessing steps using independent component analysis to minimize
the effect from EEG artifacts. We also added a sentence in the limitations section, “It is also
important to note that EEG is not a direct measure of cortical activity, so our proposal that higher
variance may represent less organized cortical activity may or may not be valid. Future work that
directly measures cortical activity is needed.”
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2. This is an exploratory study to shed light on new potential metrics in EEG that could serve as
features to capture early risk stratification and outcome prediction for infants at risk of
developmental disability. Out of the available data, that being power and relative power of each
electrode, variance of relative power was the measure that worked best.

3. The reviewer is correct regarding the study design. Only resting state data were analyzed here.
We have added a sentence in the data analyses section, Only resting state EEG data were
analyzed here, ranging from 14-82 seconds”.

4. We have added a sentence in the data analyses section, Only resting state EEG data were
analyzed here, ranging from 14-82 seconds”.

5. We have looked at power variance in the individual frequency bins and peak power is typically
within theta. One analysis looking at the alpha frequency was also predictive of 3rd visit scores
using 1st visit resting state EEG. We did try prediction within each frequency brand specifically and
we found looking across the spectrum to be the most robust.

6. A total of 22 infants with TD and 11 infants AR participated. After rejection, remaining EEG data
were: AR visit 1 =11, AR visit 3=9, TD visit 1 =21, TD visit 3 = 13. We have added information to
a sentence in the “Data analyses” section so that it now reads, “After rejection, remaining EEG data
from 11 infants AR and 22 infants with TD were: AR visit 1 =11, AR visit3=9, TD visit 1 =21, TD
visit3=13.”

7. We deleted the text “and only modest accuracy was identified with typically a high false negative
rate” from the methods section and added the sentence “Leave-one-out cross-validation was
performed on each machine learning model to predict at-risk status among 32 infants (11 at-risk)
with a mean age of 90 days. Only modest accuracy was identified with typically a high false
negative rate for features from conventional metrics (i.e., power and relative power)” to the results
section.

8. We understand your concern, but we do not feel the initial use of machine learning on the entire
data set would be considered double dipping. This is an exploratory study and the data set here
was generated for the purposes of selecting a machine learning/statistical model. Future data
collections of this work would use the same data analysis to further confirm and add to the existing
data set as an independent set. We are really only advocating that variance of power is a variable
of interest to be pursued.

9. We tested various machine learning algorithms including logistic regression, one of the simplest
linear models, using conventional EEG metrics (power and relative power) as input features for the
AR classification task. We have updated the description in our methods and results to clarify this.
All models yielded poor performance with high false negative rate for these EEG metrics. On the
other hand, with the proposed variance of relative power, the simple logistic regression already
demonstrated improved accuracy over the other EEG metrics, for the classification task.

10. Thank you for catching this, we have corrected it as “multivariate linear regression”.
11. We have clarified this statement as follows: “A baseline statistical model (a model that only

included age in days and at-risk status) was compared to a nested model of the baseline model
features plus variance of relative power to determine significant predictive effects of variance of
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relative power beyond baseline prediction. We used analysis of variance to determine significant
predictive effects of variance of relative power across Bayley scores.”

12. The ANOVA p-values represent the probability that the more complex multivariable linear
regression model, baseline plus variance of relative power, is significantly better than the baseline
model alone. Specifically, the p-value is from the computation of an F-test between the two models
to determine if the sum of squares for the more complex model is significantly different than the
simpler model. This is only appropriate when the complex model is a nested version of the simple
model, which is what we have done here.

13. No. The many analyses here were each is done independently of one another. One test for
each outcome variable, one dependent variable to each independent variable. A case for alpha
value adjustment, such as a Bonferroni correction, to ensure an adequate false positive rate, would
be in the case of multiple comparison where it is multiple independent variables for one dependent
variable. For example, multiple t-tests to determine if several independent variables are
significantly different than the dependent variable.

14. At-risk status does not predict concurrent Bayley scores but it does predict future (3rd visit)
Bayley score of raw receptive language, p < .05, R"2 = .18.

15. We agree with the Reviewer that this is a very interesting consideration. Perhaps movement
requires a more stable brain than other measures? Or the movement measures are more sensitive
of brain behavior than the other tests? We are really not comfortable speculating on this in the
manuscript, though, as this is such an exploratory study.

16. We hope to explore this in future work. We have added in the Limitations and Future Directions
section, “We hope to pursue larger, more complex predictive models in future work with a larger
sample. Adding EEG measures such as coherence and synchronization of oscillations might
increase predictive power, so might including structural brain imaging data or clinic variables.”

Competing Interests: No competing interests were disclosed.
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