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Abstract: Pneumoconiosis in miners is considered a global problem. Improving the performance of
individual protective materials can effectively reduce the incidence of pneumoconiosis. In this study,
the blend membrane of sodium dodecyl sulfate and polyvinylidene fluoride with a dual structure
was prepared using electrospinning techniques, and the morphological structure, fiber diameter,
and filtration performance of the nanofiber membranes were optimized by adjusting the PVDF
concentration and SDS content. The results show that the incorporation of SDS enabled the nanofiber
membranes to show tree-like and beaded fibers. Compared with the original PVDF membrane, the
small content of tree-like fibers and beaded fibers can improve the filtration efficiency and reduce the
resistance of the fiber membrane. The prepared nanofiber membrane has excellent comprehensive
filtration performance, and the quality factor is 0.042 pa−1 when the concentration of PVDF is 10 wt%
and the addition of SDS is 0.1 wt%. Furthermore, after high-temperature treatment, the membrane
could still maintain good filtration performance. The PVDF/SDS blend nanofiber membrane has
outstanding filtration efficiency and good thermal stability and can fully meet the personal protection
of miners in underground high-temperature operation environments.

Keywords: electrospinning method; individual protection equipment; polyvinylidene fluoride; co-
blending modification; nanofiber membrane

1. Introduction

Pneumoconiosis is currently one of the most serious occupational diseases in China,
and it is mainly found in the mining industry. The concentration of respirable dust directly
affects the incidence of pneumoconiosis [1]. In order to solve the problem of high dust
concentration in coal mines, the current methods of dust reduction using ventilation, dust
removal equipment, and coal seam water injection [2–10] have played a positive and
effective role in improving the working environment and reducing the dust concentration
at the working face. However, the above measures are mostly physical–chemical methods,
and the concentration of respiratory dust is still very high. It can be seen that it is of great
practical significance to carry out research on individual protection equipment for coal
miners and effectively make the last line of protection for coal miners.

Individual protection equipment mainly applies fiber filter membranes to achieve effi-
cient filtration of dust particles, and the performance of the filter membrane directly affects
whether it can play an effective protective role for miners. Polyvinylidene fluoride has
excellent mechanical properties [11–14], chemical resistance, biocompatibility, etc. These
excellent properties of PVDF and the structural uniqueness of electrospun nanofibers make
PVDF nanofiber membranes widely used [15–18]. However, because the fiber diameter
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of PVDF fiber membranes is still larger, the filtration performance is difficult to improve
further. Various strategies have been proposed to improve PVDF membrane properties
and filtration performance. Li et al. [19] designed PVDF tree-like nanofiber webs and
investigated the filtration properties of the membranes with different basis weights. Li
et al. [20] fabricated a PVDF nanofiber/nanonet air filter by adding anionic surfactant.
This membrane could be a promising candidate in various air filtration applications. Liu
et al. [21] developed a novel electrospun nanofiber film PVDF–ESNF to maintain the
removal efficiency of ultrafine particulates at more than 86.9 wt%. Most studies were
conducted at a flow rate of 32 L/min to remove airborne particulate matter (PM). However,
there is a special environment of high dust concentration, high temperature, and high labor
intensity in mines [10]. The research on membranes must be carried out at a high flow rate
and achieve the best filtration performance. To further develop mine personal protective
equipment that is comfortable, low respiratory resistance, high filtration efficiency, and
good thermal stability are of great significance.

Therefore, this study aimed to prepare a dual-structure individual protective filter
membrane for miners using a co-blending modification of PVDF. Furthermore, in order to
further obtain more perfect fiber membrane materials, the effects of the polymer concentra-
tion as well as the additive content on the morphology and filtration performance of the
nanofibers were investigated. Thus, the application of electrospun PVDF nanofibers for
dust masks in coal mines is further expanded.

2. Methods
2.1. Materials

Polyvinylidene fluoride (PVDF, MW = 534,000), N,N-Dimethylformamide (DMF,
99.8%), acetone (ACS reagent, ≥99.5%), and sodium dodecyl sulfate (SDS, ≥98.5%) were
purchased from Sigma-Aldrich. All chemicals were used without further purification in
this work.

2.2. Experimental Process
2.2.1. Preparation of Spinning Solution

At room temperature, PVDF and SDS were dissolved in the mixed solvent comprised
of acetone and DMF at a ratio of 1:1 and stirred with a magnetic stirrer for more than
12 sh until a uniform spinning solution was formed. The concentration of PVDF in the
solution were 8%, 10%, and 12 wt%, and the concentrations of SDS were 0.1, 0.2, and
0.3 wt%, respectively.

2.2.2. Preparation of Nanofiber Membrane

The spinning solution was injected into the syringe with a metal needle, and the inner
diameter of the needle was 0.7 mm × 38 mm. Then, the syringe was fixed on the syringe
pump and connected to the spinneret through a tube. The feed rate was 0.8 mL/h, and the
spinneret speed was 10 mm/s. A flat plate was placed under the spinneret. The distance
between the needle and the flat plate was 10 cm. The positive pole of the high-voltage
power supply was connected to the spinneret, and the negative pole was connected to the
flat plate. The voltage was 20 kV. In a high-voltage electric field, because of the action of
the electric field force, the spinning solution overcomes the surface tension and ejects from
the top of the Taylor cone to form a charged jet. The jet is further stretched, accompanied
by solvent volatilization and solidification, and finally forms a nanofiber membrane to be
deposited on the flat plate. The schematic representation of the experimental process is
shown in Figure 1.
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Figure 1. Schematic representation of experimental process.

2.3. Characterization

The morphology and structure of the prepared nanofiber films were studied using a
scanning electron microscope, and the diameter of the fibers was measured and calculated
using Image-Pro Plus. XRD and FTIR were used to analyze the chemical structure properties
of nanofiber membranes. The thermal stability of the nanofiber membrane was tested using
a thermogravimetric analyzer. The test process involved raising the temperature from
30 ◦C to about 600 ◦C under N2 conditions. The membrane was coated with supporting
non-woven fabric to test the filtration performance. The filtration performance (filtration
efficiency and pressure drop) of the membrane was obtained using a tester conforming
to the Chinese mask standard GB2626. The flow rate was set to 85 L/min, and the test
area was 100 cm2. The aerosol used in the test was composed of NaCl particles with a
diameter of 0.3 um. Each sample was tested three times, and the average value was taken.
The quality factor [22] was used to evaluate the comprehensive filtration performance of
membranes, and the calculation formula is as follows:

QF = − ln(1 − η)

∆p

where QF denotes the quality factor; η denotes the filtration efficiency; ∆p denotes the
pressure drop.

3. Results and Discussion
3.1. Morphological Analysis of Nanofiber Membranes

As shown in Figure 2, at 8 wt% PVDF concentration, the fibers appeared to be bonded,
and the average fiber diameter was about 0.4 um as measured by Image-pro Plus. As
the polymer concentration increased, the fiber diameter gradually increased, and the
distribution uniformity was also relatively improved. At 10 wt% PVDF, the average
diameter was about 1.1 um, and at 12 wt% PVDF, the average diameter was about 1.6 um.

Figure 2. SEM images of PVDF nanofiber membranes with different concentrations: (a) 8 wt%,
(b) 10 wt%, and (c) 12 wt%.

As shown in Figure 3, compared with the PVDF original membrane, the diameter of
the PVDF/SDS modified membrane was significantly smaller. In addition, PVDF/SDS
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nanofibers showed tree-like [23] and beaded structures [24]. The forming mechanism is
shown in Figure 4. The formation of tree-like nanofibers comprised of trunk fibers and
branch fibers was observed and corresponded to the increased conductivity caused by the
incorporation of SDS. In addition, the electric forces overcame the surface tension. This
led to a greater stretching force on the jet, which facilitated the splitting of the jet in the
electric field and made it easier to obtain finer fibers. With increasing SDS content, the
conductivity of the spinning solution increased, and the surface tension decreased [20,23].
Thus, the formation and stabilization of the Taylor cone were affected, and the stretching
of the jet was hindered, which promoted the aggregation of some of the solution to form
beads. The intermolecular interaction introduced between the PVDF molecules and the
surfactant SDS may have adjusted the molecular structure of the polymer, thus changing
the solution properties, and may have also promoted the generation of this morphology.

Figure 3. SEM images of PVDF/SDS nanofiber membranes with different SDS concentrations:
(a) 0% wt, (b) 0.1 wt%, (c) 0.2 wt%, and (d) 0.3 wt%.

Figure 4. Forming mechanism of PVDF/SDS nanofibers.

When the content of SDS was 0.1 wt%, fewer tree-like nanofibers were observed, which
may be due to the low electrical conductivity of the solution. The tree-like nanofibers were
composed of trunk fibers with a 113 nm average diameter and branch fibers with a 38 nm
average diameter. The average diameter of beaded fibers was 202 nm. As the content of
SDS increased to 0.2%, the uniformity and content of tree-like branch fibers increased. The
tree-like nanofibers were composed of trunk fibers with a 63 nm average diameter and
branch fibers with a 36 nm average diameter. The average diameter of the beaded fibers
was 178 nm. This was because the incorporation of SDS significantly increased the electrical
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conductivity of the solution and the charge density of the jet, which caused the jet to split
and form fine fibers.

As the content of SDS increased to 0.3 wt%, the electrical conductivity of the solution
became too large, and the spinning process was unstable. The tree-like nanofibers were
composed of trunk fibers with a 105 nm average diameter and branch fibers with a 37 nm
average diameter. The average diameter of the beaded fibers was 207 nm. When the
concentration of SDS was constant, SEM images of the PVDF/SDS nanofiber membrane
were taken, as shown in Figure 5.

Figure 5. SEM images of PVDF/SDS nanofiber membrane with different PVDF concentrations:
(a) 8 wt%, (b) 10 wt%, and (c) 12 wt%.

As shown in Figure 4, with an increasing concentration of PVDF, the number of
tree-like fibers gradually reduced, and the fiber diameter increased with a constant SDS
concentration. It can be seen that although SDS increased the conductivity of the solution,
the conductivity decreased as the concentration of PVDF increased, and the high viscosity
of the solution inhibited the draw refinement of the fibers, which caused the fiber diameter
to become thicker. These results indicate that the concentration of PVDF and SDS can
strongly affect the structure and morphology of nanofibers.

3.2. The Chemical Structure Properties of Nanofiber Membranes

From the XRD spectra in Figure 6a, it can be seen that the PVDF fiber membrane
showed a weak peak at 2θ = 16.82◦ and a strong peak at 2θ = 20.30◦, which corresponded
to the α-crystalline phase with the reflection planes of (020) and (110). After SDS blending
modification, all the above diffraction peaks vanished, and the PVDF/SDS nanofiber
membrane had no crystal structure. The reason might be that SDS molecules interact
with PVDF molecules and finally present an amorphous state. As can be seen from the
FTIR spectra in Figure 6b, the typical characteristics of the α-phase of the PVDF fiber
membrane were about 610 cm−1 and 760 cm−1. The peaks at 3020 cm−1 and 2980 cm−1

were the stretching vibrations of C-H, and the peak at 1402 cm−1 was the deformation and
rocking vibration of CH2. The peak at 1180 cm−1 was the stretching vibration of CF2. The
peaks at 1180 cm−1 and 880 cm−1 were assigned to the vibration of C-C. However, the
characteristic absorption peaks of CF2 and the α-phase did not appear in the PVDF/SDS
nanofiber membrane. These results were in accordance with the XRD analysis. Thus, it
can be speculated that the interaction between the low surface energy of CF2 and the SDS
molecules contributes to the formation of the nanofiber membrane structure.
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Figure 6. (a) XRD patterns of nanofiber membranes, (b) FTIR spectra of nanofiber membranes.

3.3. The Analysis of Thermal Stability

The thermal stability of the PVDF/SDS membrane (sample M2) was analyzed and
compared with the original PVDF membrane (sample M1). Figure 7 shows the TG and
DTG curves of M1 and M2 at 30–600 ◦C. The pyrolysis process of the filter membrane
included three stages. The first stage was mainly the volatilization of the solvent and the
preheating process of the sample. The TG curve decreased slightly, and the DTG curve
reflected that the thermal weight loss rate remained unchanged. The second stage was
mainly the decomposition process of the PVDF main chain, and the TG and DTG curves
decreased sharply. The decomposition temperature of the PVDF filter membrane was
about 427 ◦C, and the decomposition temperature of the PVDF/SDS filter membrane was
about 441 ◦C. The third stage was the slow decomposition process of residues, which is
mainly the process of continuous heat loss of substances that are difficult to decompose
by pyrolysis. The temperatures corresponding to the maximum weight loss rate of the M1
and M2 filter membranes are 479 ◦C and 482 ◦C, respectively. The results showed that the
thermal decomposition temperature of the modified PVDF fiber membrane (sample M2) is
increased and has better thermal stability.

Figure 7. TG and DTG curves of (a) PVDF nanofiber membrane-M1 and (b) PVDF/SDS nanofiber
membrane-M2.
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3.4. The Filtration Performance of Nanofiber Membranes

Fiber membrane filtration [25,26] occurs mainly through the action of force (inertial
force, electrostatic force, and van der Waals force) and the internal structure of materials
(fiber diameter and fiber bulk density). Generally, when the filter membrane filters dust
particles, several effects work at the same time. Figure 8 shows the schematic diagram of
the filtration mechanism.

Figure 8. Filtration mechanism of membranes [10].

To obtain nanofiber membranes with better filtration performance, the effects of the
PVDF and SDS content on the filtration efficiency, pressure drop, and quality factor of the
fiber membranes were studied. Figure 6 shows the filtration efficiency and resistance of the
original PVDF and PVDF/SDS (0.1 wt% SDS).

As shown in Figure 9, the PVDF/SDS nanofiber has higher filtration efficiency and
lower filtration resistance than the original PVDF membrane. That is because the tree-like
nanofibers are composed of trunk fibers and branch fibers. The overlapping of coarse
and fine fibers can reduce the bulk density, increase air permeability, and reduce filtration
resistance. At the same time, the branch fibers can capture finer particles, and thus the
filtration efficiency improves. The filtration performance of the fiber membrane was
comprehensively evaluated by the quality factor (Figure 10).

Figure 9. Filtration efficiency and pressure drop of membranes.
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Figure 10. Quality factor of membranes.

As shown in Figure 10, when the content of PVDF was 10 wt%, the quality factor was
highest. To further study the impact of SDS content on filtration performance, Figure 11
shows that the content of PVDF is 10 wt%, the content of SDS is 0 wt%, 0.1 wt%, 0.2 wt%,
0.3 wt%, which are recorded as M1, M2, M3, and M4.

Figure 11. Filtration performance of PVDF/SDS nanofiber membranes with different
SDS concentrations.

As shown in Figure 11, the filtration performance was significantly improved by
adding SDS. However, with the increase in SDS content to 0.2 wt%, there were more branch
fibers, and the pressure drop increased sharply. When the SDS concentration increased
to 0.3 wt%, the jet began to be unstable. The fiber diameter increased, according to the
SEM images, resulting in a reduction in the pressure drop. In conclusion, when the PVDF
content is 10 wt% and SDS content is 0.1 wt%, the PVDF/SDS fiber membrane has the
best filtration performance. The quality factor is the highest, which is 0.042 pa−1. After
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heat treatment, the membrane retained a low pressure drop (96 ± 5 Pa) and high filtration
efficiency (98.2 ± 0.2%).

4. Conclusions

This work developed a new promising dual-structure PVDF/SDS nanofiber membrane.
The surface morphology, fiber diameter, chemical structure, filtration performance, and
thermal stability of the prepared membranes were characterized by SEM, XRD, FTIR,
automated filter tester, and TG-DTG. The PVDF/SDS nanofiber membrane shows low
pressure drop, high filtration efficiency, good thermal stability, and high temperature
resistance, and it has potential in the rapidly developing field of respiratory protection
equipment in mines. However, the use of organic solvents may affect environmental safety
and human health. In the future, green solvent and solvent-free synthesis technology will
be further studied to realize the goal of healthy and sustainable development.
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