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Abstract
The genotype of Hepatitis C Virus (HCV) strains is an important determinant of the severity and
aggressiveness of liver infection as well as patient response to antiviral therapy. Fast and accurate
determination of viral genotype could provide direction in the clinical management of patients with
chronic HCV infections. Using publicly available HCV nucleotide sequences, we built a global
Position Weight Matrix (PWM) for the HCV genome. Based on the PWM, a set of genotype specific
nucleotide sequence "signatures" were selected from the 5' NCR, CORE, E1, and NS5B regions of
the HCV genome. We evaluated the predictive power of these signatures for predicting the most
common HCV genotypes and subtypes. We observed that nucleotide sequence signatures selected
from NS5B and E1 regions generally demonstrated stronger discriminant power in differentiating
major HCV genotypes and subtypes than that from 5' NCR and CORE regions. Two discriminant
methods were used to build predictive models. Through 10 fold cross validation, over 99%
prediction accuracy was achieved using both support vector machine (SVM) and random forest
based classification methods in a dataset of 1134 sequences for NS5B and 947 sequences for E1.
Prediction accuracy for each genotype is also reported.

Background
Hepatitis C virus has a positive-sense single-stranded RNA
genome of about 9.6 kb containing one long open reading
frame (ORF) with untranslated regions at both ends [1].
The polyprotein is processed into structural and nonstruc-
tural proteins. The core and the two envelope proteins (E1
and E2) are part of the virion. So far, six major genotypes
(HCV-1 to HCV-6) have been described, each containing
multiple subtypes (e.g., 1a, 1b, etc.). The isolates formerly
published as genotypes 7 to 11 are now considered sub-
types within genotypes 3 (genotype10) and 6 (genotype 7,
8, 9, and 11) [2,3].

Infection by HCV is the leading cause of chronic liver dis-
ease worldwide [4]. The overall prevalence of HCV infec-
tion in the United States is 1.8%, with most of the patients
unaware of their infection and risk for developing cirrho-
sis and hepatocellular carcinoma [5]. The most prevalent
genotypes in the U.S. were 1 (71.0%), 2 (14.3%), and 3
(11.6%), followed by less common types 4 (1.7%), and 6
(1.5%). The remaining types represent less than 1% of the
population. The prevalence of each genotype in the popu-
lation was relatively stable [6].

The genotype of the HCV strain appears to be an impor-
tant determinant of the severity and aggressiveness of liver
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infection, as well as patient response to antiviral therapy
[7]. HCV genotypes display significant differences in their
global distribution and prevalence, making genotyping a
useful method for determining the source of HCV trans-
mission in an infected localized population. Due to the
chronic nature of HCV infection and the tremendous bur-
den on healthcare resources, clinicians and researchers
have looked for key epidemiological, pathological and
viral characteristics that may provide insight into disease
progression, severity and response to therapy to permit
the administration of effective therapeutic regimens as
well as long-term management of infected individuals [8].
The best available therapy for HCV infection, interferon in
combination with ribavirin, is effective in only a subset of
cases. The sustained virologic response rates of treated
patients range from 30 to 70% and are dependent on sev-
eral key clinical and virologic factors [9,10]. Genotype 1
infection has the lowest response rates and requires the
longest therapy [11]. The HCV genotype has emerged as
an important factor both in predicting a sustained
response to and in determining the duration of antiviral
therapy.

Quick and accurate genotyping of hepatitis C virus (HCV)
is becoming increasingly important for clinical manage-
ment of chronic infection and as an epidemiological
marker [12]. Several methods for genotyping HCV have
been developed, including direct DNA sequencing
[13,14], type specific PCR [15], restriction fragment
length polymorphism, line probe assays [16], primer-spe-
cific and mispair extension analysis [17], heteroduplex
mobility analysis by temperature gradient capillary elec-
trophoresis [18] and denaturing high preference liquid
chromatography [19]. Since routine sequence analysis of
larger genomic regions is extremely laborious, many labo-
ratories have developed more rapid genotyping method-
ologies. Crucial to the development of genotyping assays
is the choice of the genomic region to be analyzed. The
region must contain subtype and type specific motifs
which faithfully represent the diversity of the entire
genome. In the meantime, variability of the region to be
analyzed should be sufficiently low to allow PCR amplifi-
cation of all HCV genotypes. Several regions of the HCV
genome have been analyzed with the purpose of geno-
typic classification. The 5' NCR, CORE, E1 and NS5B
regions have been frequently amplified and studied for
the purpose of genotypic classification [3,20,21] with
NS5B more often used for differentiation of subtypes and
confirmation of genotyping results in research settings.

Despite the limited sequence diversity found within the
HCV 5' NC region (NCR), practical considerations have
made the 5' NCR the preferred target for HCV genotyping
in most diagnostic laboratories [21]. Several HCV geno-
typing assays are currently commercially available, includ-

ing the TRUGENE HCV 5'NC genotyping kit (TRUGENE
5'NC; Bayer HealthCare LLC, Berkeley, Calif.) and the
VERSANT HCV genotype assay (LiPA; Bayer HealthCare
LLC). However, these methods were often found not to be
definitive, as more sequence data became available sug-
gesting 5' NCR might not contain enough sequence char-
acteristics that can be used to differentiate all genotypes
and subtypes [22].

A systematic comparison of the common HCV genome
regions in terms of their ability to predict viral genotype is
not currently available. In this study, utilizing the HCV
sequence records retrieved from GenBank, conservation
analysis of each position of the HCV genome within each
genotype was performed. Classification models were built
based on nucleotide signatures selected from four HCV
regions to differentiate 10 major genotypes and subtypes.
Two modern statistical classification methods were evalu-
ated in this paper: support vector machine (SVM) and ran-
dom forest.

Methods
Databases and resources
GenBank Release 149 was downloaded from http://
www.ncbi.nlm.nih.gov/Ftp/[23]. ClustalW [24] was used
for multiple sequence alignments. All statistical analyses
were carried out with R using packages randomForest
(from A. Liaw and M. Wiener) for random forest and
e1071 (E. Dimitriadou, K. Hornik, F. Leisch, D. Meyer and
A. Weingessel) for SVM. All non-commercial software
used in this study was written in PERL 5.0.

Construction of alignment
All HCV related sequences were extracted from GenBank
(Release 149) [23] by using the keywords HCV or Hepati-
tis C. In order to reduce weighting bias, redundant
sequences that might belong to the same isolates were
removed. For any two sequences that shared either 100%
identity over 500 bases or 100% identity over the entire
length of a 150 to 500 base sequence (excluding the 5'
UTR region), the longer sequence was chosen for the data-
set. Very short sequences (<150 bases) were excluded
from the analysis. D90208 was chosen as the organizing
template for its fully annotated genome in GenBank.
(Other organizing HCV genomes yielded virtually identi-
cal consensus sequences and PWM profiles.). Due to the
extreme genetic heterogeneity of the HCV genome and the
large number of complete and partial sequences in the
public database, a direct genome wide sequence align-
ment was not feasible. Pairwise alignments were made for
all HCV sequences with genotype information (total
10014 sequences) against D90208. Nucleotides at each
position were extracted from the alignments. For each
position on the HCV genome, nucleotide frequency in the
overall HCV population as well as in each genotype was
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calculated. A global position weight matrix (PWM) was
made as described previously [25]. Genotype specific
PWMs were also made accordingly. Genome wide PWMs
compiled in this step as well as genotype specific PWMs
were used to impute missing nucleotides in partial HCV
sequences used in model training and in the prediction
data set.

Genotypes and HCV subregions used in this analysis
The most popular genotypes (with at least 40 sequence
records in GenBank) were chosen for this study to warrant
significant statistical analysis. The genotypes and subtypes
used in this study are 1a, 1b, 2a, 2b, 2c, 3a, 3b, 4, 5, and
6. For sequences that belong to rare genotypes [4-6], gen-
otypes were used instead of subtypes for genotype classifi-
cation. For example, all the 4a and 4b subtype sequences
were classified into genotype 4. The objective of this study
is to explore the possibility of using a statistical modeling
approach in predicting the HCV genotype and to provide
direction in choosing the HCV region for genotype classi-
fication using a sequencing based approach. Therefore,
sub-region sequencing, which can be achieved in one
sequencing read experimentally, was preferable (~500
bp). Since most of the HCV sequences retrieved from Gen-
Bank are partial sequences, a sub region was selected for
each HCV genome region (5' NCR, CORE, E1 and NS5B)
in order to balance the sequence coverage of each geno-
type (Table 1). The total number of sequences which cover
each sub region were randomly divided into two equal
subsets. One subset was used for model training and
model building while the other set was used to estimate
the generalization power of the model.

Position selection (feature selection) and missing value 
imputation
To maximize the prediction power and minimize the sig-
nature position number required for the prediction
model, the nucleotide positions in the HCV genome were
pre-selected based on their conservation information pro-
vided by PWM. We require that the positions included in
model building need to be conserved within genotypes
and diversified across genotypes. Positions which are at

least 80% conserved within the same genotype were cho-
sen in the model training. Positions that are conserved
across all genotypes were eliminated from model training.

Most HCV related sequences retrieved from GenBank
were partial sequences and some sequences did not have
the full coverage for all signature nucleotide positions
selected according to the PWM. To facilitate model build-
ing, those missing nucleotide positions for each partial
sequence were imputed using the consensus nucleotides
derived from the PWM. For the training sequence set, the
missing nucleotides were imputed using the genotype spe-
cific conserved nucleotides. For the prediction sequence
set, missing nucleotides were imputed using conserved
nucleotides across all genotypes. Partial sequences miss-
ing more than one third of the selected positions were
eliminated from both the training and prediction sets.

Classification methods
Various classical and modern statistical methods are avail-
able for classification [26]. To discriminate HCV geno-
types using the signature nucleotides in different HCV
genome regions, two modern classification methods were
chosen: support vector machine (SVM) and random for-
est.

SVM is a learning algorithm which from a set of positively
and negatively labeled training vectors learns a classifier
that can be used to classify new unlabeled test samples.
SVM learns the classifier by mapping the input training
samples {x1, . . . , xn} into a possibly high-dimensional
feature space and seeking a hyperplane in this space which
separates the two types of examples with the largest possi-
ble margin, i.e. distance to the nearest points. If the train-
ing set is not linearly separable, SVM finds a hyperplane,
which optimizes a trade-off between good classification
and large margin. [27]. In addition to linear versions of
SVMs, they have been extended to nonlinear cases via ker-
nels. We tested linear, polynomial, sigmoid and radial
basis kernels with various other parameters. The perform-
ance was evaluated using 10-fold cross validation. In this
study, we reported our experimental result using the

Table 1: Sub regions selected for analysis in this study.

Genome Region Range on D90208 Region Selected # of Sequences

5' NCR 1–329 73–298 611

CORE 330–889 330–700 498

E1 900–1475 900–1475 947

NS5B 7587–9413 8200–8600 1134

The sub regions were selected to maximize the sequence record coverage of each genotype and the sizes were limited to the length of one 
sequencing read (~500 bp).
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default kernel implemented in package e1071 (radial
basis).

Random forest is a classification algorithm developed by
Leo Breiman that uses an ensemble of classification trees.
It also provides feature importance [28]. Its basic idea is as
follows: A forest contains many decision trees, each of
which is constructed by instances with randomly sampled
features. The prediction is by a majority vote of decision
trees. Random forest uses both bagging (bootstrap aggre-
gation), a successful approach for combining unstable
learners, and random variable selection for tree building.
Each tree is unpruned (grown fully), so as to obtain low-
bias trees; at the same time, bagging and random variable
selection result in low correlation of the individual trees.
The algorithm yields an ensemble that can achieve both
low bias and low variance (from averaging over a large
ensemble of low-bias, high-variance but low correlation
trees).

Cross-validation
In order to evaluate the generalization power of each of
the classification methods and to estimate their prediction
capabilities for unknown samples, we used a standard 10-
fold cross-validation technique and split the data ran-
domly and repeatedly into training and test sets. The train-
ing sets consisted of randomly chosen subsets containing
90% of each class (genotypes); the remaining 10% of the
samples from each class were left as test sets. In order to
keep computing times reasonable, we reported accuracy
and standard deviation estimates over 100 runs. More
runs are required if more accurate estimates are desired.
We also reported the accuracy of prediction using the pre-
diction set which are never used for model training.

In order to assess the accuracy of prediction methods, we
used three measures: sensitivity, specificity and overall
accuracy which are defined by

where TP, FP, TN and FN refer to the number of true pos-
itives, false positives, true negatives and false negatives,
respectively.

Results and discussion
A large number of HCV related sequences have been
deposited in GenBank, making genome wide comparison

of different HCV genotypes and subtypes possible. In this
report, 10014 full length and partial HCV sequences with
genotype and subtype information were extracted from
GenBank (Release 149). Similar databases of HCV
genome sequences have been constructed by other groups
[29,30]. These HCV sequences were classified into 10
major genotypes and subtypes (1a, 1b, 2a, 2b, 2c, 3a, 3b,
4, 5, 6) in this study. For genotypes that were not well-rep-
resented, the subtypes were all represented under the gen-
otype. For example, viral subtypes 4a and 4b were
combined and represented by genotype 4. For each of the
regions that are widely used for HCV genotyping (5' NCR,
CORE, E1 and NS5B), a "sub-region" was selected.
Sequence coverage for these sub-regions in GenBank was
summarized in Table 1. Table 2 detailed the number of
HCV sequences used in the study for each genotype. The
total pool of HCV sequences was randomly split into two
sets. One set of sequences was used to generate a genome
wide consensus sequence and Position Weight Matrix
(PWM) and was used for statistical modeling for genotype
classification. The other set of sequences was used to test
the accuracy of genotype prediction models built using
the first set of sequences.

Intuitively, a good feature set for classification model
building should consist of those members highly corre-
lated within a class but uncorrelated with other classes
[31]. Finding the "best" set of features to build a predictive
model is a complex combinatorial problem and available
methods are generally classified into two categories: filter-
ing methods (those which rank individual features

sensitivity =
+
TP

TP FN

specificity =
+

TN
TN FP

overall accuracy = +
+ + +

TP TN
TP TN FP FN

Table 2: Number of HCV sequences used in the study for each 
genotype.

Genotype # of Sequences

1a 1667

1b 5845

2a 198

2b 406

2c 222

3a 591

3b 168

4 542

5 148

6 227
Page 4 of 9
(page number not for citation purposes)



Journal of Biomedical Science 2009, 16:62 http://www.jbiomedsci.com/content/16/1/62
according to some criteria) and more involved wrapper
algorithms, which use classification methods directly to
evaluate a particular set of features. In this study we
reported only filtering based methods since they per-
formed reasonably well. We used filtering based variable/
feature selection methods using global genome conserva-
tion data derived from our PWM. The criteria imposed are
that selected signature nucleotide positions need to be at
least 80% conserved within genotypes and diversified
across genotypes. Partial sequences with missing signature
nucleotide sequences were imputed using the PWM we
constructed to allow inclusion in the analysis.

Support vector machine (SVM) and random forest are two
modern statistical classification methods. Classification
based on SVMs has several applications in bioinformatics
and computational biology. It has been widely used to
predict protein secondary structures [32]; protein-protein
binding site [33,34]; remote protein homologs [35]; pro-
tein domains [36]; protein subcellular localization

[37,38] and gene and tissue classification from microarray
expression data [39]. Random forest is relatively new and
comparisons with SVM have not been widely reported.

We generated SVM and random forest models for features
(nucleotide positions) selected from four HCV regions (5'
NCR, CORE, E1 and NS5B) to predict the most common
HCV genotypes and subtypes. Error rates are computed as
average error rates over 100 runs of 10-fold cross valida-
tion, that is, a cross-validation procedure of training on
90% of the data and testing on the remaining 10% was
repeated 100 times and the errors averaged (Table 3).
Both SVM and random forest methods demonstrated
comparable predictive power in this study. However, the
random forest method seems to perform slightly better.
Error rates for each genotype and subtype were also esti-
mated for both SVM and random forest models (Figure
1). Notably, predictive models derived from features
selected from the NS5B and E1 regions tended to have
more predictive power than those from more conserved

Average classification error rate (percent) over 100 runs on different genotypes from 10-fold cross-validationFigure 1
Average classification error rate (percent) over 100 runs on different genotypes from 10-fold cross-validation.
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regions such as 5' NCR and CORE. This was observed for
all genotypes (Figure 1). Traditionally, the conserved
nature of the 5'NCR has made it the preferred target for
HCV RNA detection tests, and sequence analysis of ampli-
cons from these tests is the most efficient way to genotype
HCV in a clinical laboratory setting since both tests can be
completed with the product from a single amplification
reaction. However, as indicated in this study, 5' NCR
might not be the best choice if more accurate genotyping
results are required. This observation is in accordance
with a previous study which showed that 5'NCR is too
conserved for accurate discrimination of all subtypes [40-
42].

The average conservation scores for the selected regions in
5' NCR, CORE, E1, NS5B are 96%, 91%, 80% and 80%
respectively suggesting that a region which can serve to
discriminate genotypes tends to be modestly conserved if
not the least conserved. Practically, it is considerably eas-
ier to develop assays for more conserved regions such as 5'
NCR. However, with the HCV global PWM in hand, it is
straightforward to derive the most conserved sequence
stretches within NS5B and E1 which facilitates the design
of robust nucleotide primers. This process and associated
criteria have been described in our previous study [25].
Genotype or subtype specific primers with higher selectiv-
ity for NS5B and E1 can also be derived from PWM if nec-
essary.

As indicated in Figure 1, the error rate for determining
subtype 1b is the most significant contributor to the over-
all error rate, especially in models built on the 5' NCR.
This might be caused by the high degree of genome simi-
larity between subtype 1a and 1b. The consensus
sequences of 1a and 1b share over 99% similarity in 5'
NCR (73–298); 95% in CORE (330–700); 76% in E1
(900–1475); 83% in NS5B(8200–8600) respectively. In
models built using NS5B or E1 signature nucleotides, gen-
otypes 1a and 1b can be easily differentiated with very low
error rate suggesting that closely related subtypes can be
effectively differentiated by using a less conserved region.
The cause of the small remaining error rate is not very

Table 3: Average error rates over 100 runs on features from four 
HCV genome regions using two different classification 
algorithms.

Classification Method Region on HCV Genome

5' NCR CORE E1 NS5B

SVM 21.98 19.66 1.60 0.21

Random Forest 24.28 3.98 0.56 0.19

Error rates are computed as average error rates over 100 runs, that 
is, a cross-validation procedure of training on 90% of the data and 
testing on the remaining 10% was repeated 100 times and the errors 
averaged.

Table 4: HCV genotype prediction accuracy using an independent data set (result was reported for models built based on NS5B and E1 
only)

Genotype E1 NS5B

SVM RF SVM RF

SN SP AC SN SP AC SN SP AC SN SP AC

1a 98.9 98.3 98.8 98.4 96.7 97.4 100 100 100 100 100 100

1b 94.8 99.7 98.8 100 99.7 98.2 99.4 100 99.8 99.4 99.3 99.3

2a 100 100 100 100 100 100 100 100 100 75 100 99.8

2b 100 100 100 100 100 100 100 100 100 100 100 100

2c 100 100 100 55.6 99.8 99 100 100 100 93.3 100 99.8

3a 100 100 100 100 100 100 100 99.8 99.8 100 99.8 99.9

3b 100 100 100 100 100 100 100 100 100 100 100 100

4 100 99.8 99.8 90.4 100 99 100 100 100 100 100 100

5 100 100 100 100 100 100 96.3 100 99.8 96.3 100 99.8

6 100 100 100 84.6 100 98.4 100 99.8 99.8 80 100 99.8
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Table 5: Suggested primer stretches (for sequencing and PCR) based on HCV whole genome PWM for analyzing signature nucleotides selected for NS5B and E1 region.

Forward Primers Reverse Primers

Start End Conservation Score (%) Sequence Start End Conservation Score (%) Sequence

NS5B 8050 8074 93.2 AGCCAGCTCGCCTTATCGTATTCCC 8629 8605 94.5 GCGGAATACCTGGTCATAGCCTCCG

8083 8107 89.1 GGGTTCGTGTGTGCGAGAAGATGGC 8800 8776 91.1 ACTGGAGTGTGTCTAGCTGTCTCCC

8082 8106 89.0 GGGGTTCGTGTGTGCGAGAAGATGG 8634 8610 89.7 GGGGGGCGGAATACCTGGTCATAGC

8125 8149 85.9 CCACCCTTCCTCAGGCCGTGATGGG 8633 8609 89.7 GGGGGCGGAATACCTGGTCATAGCC

8124 8148 84.3 TCCACCCTTCCTCAGGCCGTGATGG

E1 709 733 94.1 CATGCGGCTTCGCCGACCTCATGGG 1612 1588 89.3 TTCAGGGCAGTCCTGTTGATGTGCC

708 732 94.0 ACATGCGGCTTCGCCGACCTCATGG 1605 1581 89.3 CAGTCCTGTTGATGTGCCAGCTGCC

733 757 93.0 GGTACATTCCGCTCGTCGGCGCCCC 1629 1605 83.2 TGAGGCTGTCATTGCAGTTCAGGGC

821 845 91.2 TGCAACAGGGAACCTTCCTGGTTGC

To ensure optimal polymerization, the 3' end and the penultimate position were required to be G or C with frequencies of ≥0.98 and the upstream position, (3' -2), a G or C with a frequency of ≥0.90 or 
alternatively an A or T with a frequency of ≥0.95.
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clear and one possible source might be misclassified
records from GenBank that were included in the model
building and prediction data set. Manual inspection of
some of the mispredicted records indicated that at least
some of them are due to the short available sequences and
a significant amount of data imputation for signature
nucleotide positions.

The predictive accuracy of SVM and random forest model
for region NS5B and E1 on unseen HCV sequences (as
described in Materials and Methods) are also very good
(Table 4), with accuracy in the high ninety percent range.
Analyses of the misclassification cases also suggests that
sequencing more than one region, predicting with more
than one model, and taking majority vote will give maxi-
mal predictive accuracy (data not shown).

The predictive performance of models built on the
selected variables using a recursive redundant variable
removal approach was also examined. The predictive
accuracy of the models after backward feature elimination
is comparable to that of using signature nucleotides that
was selected with a filtering based method (data not
shown). Since the goal of this study is to classify HCV gen-
otypes and subtypes, selecting the smallest possible set of
features is not the main interest as long as the features can
be obtained within one experiment. On the other hand,
with all the features being easily obtained within one
sequencing read, keeping redundant variables might be
beneficial when nucleotide reads at certain positions are
not easily available due to experimental reasons.

In conclusion, we have developed SVM and random forest
based methods for discriminating HCV genotypes and
subtypes. Models built based on features from NS5B and
E1 perform better than those based on features from
CORE and 5' NCR. In addition, a global PWM for the HCV
genome can be used to successfully design both global
and genotype and subtype specific primers for less con-
served regions such as NS5B and E1 (Table 5).
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