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Abstract
Background: Cancer genes tend to be highly mutated under positive selection.

Better understanding the recurrently mutated genes (RMGs) in cancer is critical

for explicating the mechanisms of tumorigenesis and providing vital clues for

therapy. Although some studies have investigated functional impacts of RMGs in

specific cancer types, a comprehensive analysis of RMGs and their mutational

impacts across cancers is still needed.

Methods: We obtained data from The Cancer Genome Atlas (TCGA) and calcu-

lated mutation rate of each gene in 31 cancer types. Functional analysis was per-

formed to identify the important signaling pathways and enriched protein types of

RMGs. In order to evaluate functional impacts of RMGs, differential expression,

survival, and pairwise mutation patterns analyses were performed.

Results: Totally, we identified 897 RMGs and 624 of them were specifically

mutant in only a single cancer type. Functional analysis demonstrated that these

RMGs were enriched in hydrolases, cytoskeletal protein, and pathways like

MAPK, cell cycle, PI3K‐Akt, ECM receptor interaction, and energy metabolism.

The differentially expressed genes potentially affected by the same common

RMG showed a relatively low overlap across different cancer types. For the 19

Mucin (MUC) family genes, nine of them were RMGs and four of them

(MUC17, MUC5B, MUC4, and MUC16) were common RMGs shared in 8 to 17

cancer types. The results showed that recurrent mutations in MUC genes were

significantly associated with better survival prognosis. Only a small part of RMGs

was differentially expressed due to their own mutations and most of them were

downregulated. In addition, pairwise mutation pattern analysis revealed the high

frequency of co‐occurred mutations among RMGs in STAD.

Conclusion: Through the functional analysis of RMGs, we found that six signal-

ing pathways were disrupted in most cancer types and that energy metabolism

was abnormal in tumors. The results also revealed a strong correlation between

recurrently mutated genes from MUC family and human survival. In addition,
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gene expression and survival prognosis were associated with different mutation

types of RMGs.
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1 | INTRODUCTION

DNA mutation is a driver event in cancers. The accumula-
tion of necessary somatic mutations is a leading cause of
cancer initiation and development (Vogelstein & Kinzler,
1993). Mutations in cancer genome can influence molecu-
lar function of genes and signaling pathways, leading to
cell differentiation, proliferation, and survival (Hanahan &
Weinberg Robert, 2011; Watson, Takahashi, Futreal, &
Chin, 2013). Under positive selection, cancer genes tend to
be recurrently mutated, thus showing higher mutation rates
compared with background in cancers (Kandoth et al.,
2013). Therefore, a deeper understanding of recurrently
mutated genes (RMGs) could provide clues to better eluci-
date biological mechanisms of tumorigenesis and identify
biomarkers for diagnosis and therapy.

Large‐scale cancer genomics projects like International
Cancer Genome Consortium (ICGC) and The Cancer Gen-
ome Atlas (TCGA) provide opportunities for the integrative
analysis in pan‐cancer at multiple omics levels (Gong et
al., 2017). TP53 (OMIM *191170) was reported as the
most frequently mutated gene in diverse cancers, and
patients with TP53 mutation tend to have worse prognosis
(Wang & Sun, 2017). Kandoth et al. investigated 127 sig-
nificantly mutated genes in 12 cancers and categorized
them into 20 cellular processes, including Wnt/β‐catenin,
MAPK, and PI3K signaling pathways (Kandoth et al.,
2013). TCGA Research Network also explored the RMGs
in multiple cancers. For instance, 10 RMGs including
KRAS (* 190070), TP53, CDKN2A (* 600160), and
RREB1 (* 602209) were identified in Pancreatic Ductal
Adenocarcinoma (PDAC), and it was revealed that the fre-
quent disruptions in RAS‐MAPK pathway played a pivotal
role in this cancer (Network, 2014). Besides, dozens of sig-
nificantly mutated genes in various canonical signaling
pathways were identified in Muscle‐Invasive Bladder Can-
cer (BLCA), which highlighted the importance of these
pathways in the disease (Robertson et al., 2017). Collec-
tively, these findings reveal diverse functions of RMGs in
cancers. However, most of these studies analyzed RMGs in
a single cancer or investigated a specific RMG in cancers,
so the analysis of RMGs on pan‐cancer level should be
conducted to explore their common and unique features.

Several studies have investigated the impacts of recurrent
mutations on gene expression and prognosis. A method

named TieDIE was developed to evaluate the connection
between mutations and transcriptional states and identify key
signaling pathways as well as interlinking genes (Paull et al.,
2013). According to the assessment of somatic coding muta-
tions, it was realized that amino acid‐altering and truncation
mutations were the most important factor that affected gene
expression (Jia & Zhao, 2017). Besides, it was reported that
the mutations of six RMGs including TP53, KDR (*
191306), PIK3CA (* 171834), ATM (* 607585), AKT1 (*
164730), and KIT (* 164920) were associated with a poor
prognosis in sporadic triple negative breast cancer (Pop et
al., 2018). The diagnostic and prognostic impacts of RMGs
(e.g., EZH2 (* 601573), ELP3 (* 612722), and IDH2 (*
147650)) in lymphoma were surveyed for better clinical
decision making (Rosenquist et al., 2016). Moreover, RMGs
(e.g., TET2 (* 612839), DNMT3A (* 602769), BAP1 (*
603089), and ASXL1 (* 612990)) involved in histone modifi-
cation, chromatin remodeling and DNA methylation were
associated with adverse outcome in thymic carcinoma
(Wang et al., 2014). Although some studies have identified
the RMGs and investigated their roles in a specific cancer
type, a systematic analysis of RMGs and the mutation
impacts on gene expression and prognosis across cancers is
still needed.

In this work, to survey and depict a comprehensive
landscape of RMGs, firstly we identified 897 RMGs span-
ning 31 cancer types, and investigated their functional
types, distribution of mutation rates as well as signaling
pathways. Then we analyzed the common RMGs (cRMGs)
and MUC family genes that were significantly enriched in
the RMGs. In addition, we also assessed the impacts of dif-
ferent mutation types on gene expression and prognosis.
Finally, we chose STAD as an example to check and ana-
lyze the pairwise mutation patterns. In general, this work
systematically investigated RMGs and their functions
through pan‐cancer analysis, which provided clues to reveal
the mechanisms of carcinogenesis and identify therapy targets.

2 | MATERIALS AND METHODS

2.1 | Materials

In this study, we downloaded MAF (mutation annotation
file) data, mRNA expression data and survival data for 31
cancer types from FireBrowse (Center BITGDA, 2016).
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These cancers include adrenocortical carcinoma (ACC),
bladder urothelial carcinoma (BLCA), breast invasive carci-
noma (BRCA), cervical and endocervical cancers (CESC),
cholangiocarcinoma (CHOL), lymphoid neoplasm diffuse
large B‐cell lymphoma (DLBC), esophageal carcinoma
(ESCA), glioblastoma multiforme (GBM), glioma
(GBMLGG), head and neck squamous cell carcinoma
(HNSC), kidney chromophobe (KICH), pan‐kidney cohort
(KIPAN), kidney renal clear cell carcinoma (KIRC), kidney
renal papillary cell carcinoma (KIRP), acute myeloid leuke-
mia (LAML), brain lower grade glioma (LGG), liver hepa-
tocellular carcinoma (LIHC), lung adenocarcinoma
(LUAD), lung squamous cell carcinoma (LUSC), ovarian
serous cystadenocarcinoma (OV), pancreatic adenocarci-
noma (PAAD), prostate adenocarcinoma (PRAD), sarcoma
(SARC), skin cutaneous melanoma (SKCM), stomach ade-
nocarcinoma (STAD), stomach and esophageal carcinoma
(STES), testicular germ cell tumors (TGCT), thyroid carci-
noma (THCA), thymoma (THYM), uterine carcinosarcoma
(UCS), and uveal melanoma (UVM).

2.2 | Identification of RMGs and mutation
analysis

We calculated the mutation ratio (number of mutated sam-
ples/number of total samples) of genes in each cancer type,
excluding silent mutations that did not change amino acid
sequences. To identify the RMGs, the threshold of muta-
tion ratio was set as 10%. If a RMG existed in at least one‐
quarter (n = 8) cancer types, we defined it as common
RMG (cRMG).

All the mutations were categorized into MS (including
missense and in‐frame mutations) and NS (including non-
sense, frame‐shift and splice site mutations) types for
RMGs with at least five samples in MS or NS mutation
type. To survey the pairwise mutation patterns among
RMGs in STAD, we used the R package “maftools” to
examine the mutual exclusivity and co‐occurrence (Maya-
konda & Koeffler, 2016). Mutually exclusive gene sets
were identified using the function somatic interactions.

2.3 | Functional category for RMGs

We classified the sets of RMGs into different protein cate-
gories by PANTHER Classification system (Mi,

Muruganujan, Casagrande, & Thomas, 2013). The signifi-
cance of each protein type in cancers was tested by Chi‐
square test with p < 0.05. The lists of oncogenes and
tumor suppressor genes were downloaded from the onco-
gene database (Wishart et al., 2017) and TSGene database
(Zhao, Kim, Mitra, Zhao, & Zhao, 2016). To assess the
functional effects of gene sets, we performed Gene Ontol-
ogy (GO) and KEGG pathway enrichment analysis via
DAVID (https://david.ncifcrf.gov/) (Huang, Sherman, &
Lempicki, 2008, 2009).

2.4 | Differential expression and survival
analysis

Differentially expressed genes were detected between
RMG‐mutation, RMG‐MS or RMG‐NS cancers and RMG
wild‐type cancers by the R package “NOISeq” (Tarazona,
García‐Alcalde, Dopazo, Ferrer, & Conesa, 2011). We
selected the genes with |fold‐change| >1.5 and FDR < 0.1
as significant ones.

We performed survival analysis using R package “sur-
vival” as our GSCALite web server (Liu et al., 2018). The
differences of overall survival time between RMG‐muta-
tion, RMG‐MS or RMG‐NS patients and RMG wild‐type
patients were shown by KM survival curves (log‐rank test).
RMGs with p‐value <0.05 were considered as survival cor-
related RMGs.

3 | RESULTS

3.1 | Summary and pathway analysis of
RMGs in cancers

To survey the RMGs in cancers, we calculated mutation
rates of genes in each cancer and considered genes with
mutation rates >10% as RMGs. As a result, we identified
897 unique RMGs across 31 cancer types (Supporting
Information Table S1). Among them, 134 genes (20.5%)
were drug targets in DrugBank database (Wishart et al.,
2017). The number of RMGs in each cancer type was var-
ied from 1 to 543 (Figure 1a). There were more than 100
RMGs in SKCM, STAD, LUSC, LUAD, ACC, and DLBC
(see the abbreviations of cancer types in method section),
indicating that these cancers were closely related to gene
recurrent mutations. However, there were less than three

FIGURE 1 Overview of RMGs and specifically mutated RMGs in human cancer. (a) The number of RMGs in cancers. In this figure, the
outermost circle means each cancer type, and the numbers outside the circle are numbers of RMGs. The middle circle represents the organ to
which each cancer belong. The inner circle indicates corresponding biological system, where RS, CS, IS, and LS mean the respiratory system,
circulatory system, integumentary system, and locomotor system, respectively; (b) Protein classes encoded by all RMGs. Seven cancer types with
specific protein classes enriched were shown; (c) The mutation rate distribution of RMGs in cancers. Each point corresponds to one single RMG,
colored in term of mutation ratios; (d) specifically mutated RMGs. The numbers in brackets mean the number of smRMGs in each cancer type.
Only top five RMGs were listed for cancers with more than five smRMGs. See also Supporting Information Table S2
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RMGs in cancers THYM, OV, PRAD, and THCA. The
numbers of RMGs in two lung cancers (LUAD and LUSC)
were similar, whereas they were very different in STAD
and ESCA, two cancers from digestive system.

We classified the 897 RMGs into 20 categories accord-
ing to their protein functions. Of which, 10.14% encoded
hydrolases, 9.4% encoded nucleic‐acid binding proteins,
and the products of the other RMGs were enzyme modula-
tors, transporters, cell adhesion molecules, receptors,
cytoskeletal proteins, etc. (Supporting Information Fig-
ure S1). The compositions of these protein categories
encoded by RMGs vary among cancers (Figure 1b).
Intriguingly, the RMGs in BLCA, ESCA, LUSC, STAD,
and STES were significantly enriched (p < 0.05, Chi‐
square test) in cytoskeletal protein, suggesting the tumor
cell morphology has undergone major changes in these
cancer types. Results showed that RMGs in BLCA and
DLBC were enriched in nucleic acid binding, whereas in
ESCA and LUAD, they were enriched in hydrolase. Gene
Ontology functional enrichment analysis also identified 121
RMGs that were enriched in ATP binding and ATPase
activity (p‐value < 10−8), and this revealed the abnormal
energy metabolism in cancer.

The distribution of mutation rates of RMGs across can-
cers is presented in Figure 1c. While mutation rates of
most RMGs (90.59%) were ranged from 10%–25%, TP53
showed extremely high mutation rates in multiple cancer
types. Specially, its mutation rate was incredibly more than
75% in UCS, OV, ESCA, and LUSC. Except for TP53,
there were only two genes with mutation rates greater than
75%, IPH1 (77%) in brain lower grade glioma (LGG) and
KRAS (90%) in pancreatic adeno‐carcinoma (PAAD). We
checked the protein classes of RMGs with mutation rates
greater than 25% and found there was a greater proportion
of hydrolase (p‐value = 0.023, Chi‐square test). In addi-
tion, we identified 624 specifically mutated RMGs
(smRMGs) that were only in a single cancer type (Fig-
ure 1d and Supporting Information Table S2). There were
624 unique smRMGs in 21 cancer types. SKCM possessed
of the most smRMGs (n = 336), whereas there was only
one smRMG in THYM, PRAD, LGG, and HNSC, respec-
tively. BAGE2 was a candidate gene that encoded tumor
antigens and was the most frequently mutated smRMG,
with a mutation rate of 59% in melanoma (UVM). We also
detected another five smRMGs that mutated in nearly half
of the samples in corresponding cancers, including
PCDHAC2 in SKCM (53%), ZFPM1 in ACC (52%), VHL
in KIRC (49%), GNAQ in UVM (49%), and ADAM6 in
LUSC (45%). These 624 smRMGs may not only play cru-
cial roles in tumorigenesis, but also could be considered as
markers for clinical diagnosis.

Subsequently, we performed KEGG pathway analysis
for all RMGs and found that six pathways were

disrupted in most cancers, involving 94 RMGs (Fig-
ure 2a). PI3K‐Akt signaling pathway had the most num-
ber of RMGs (n = 47) and were disrupted in 23 cancer
types. The disruption of cell cycle pathway indicated the
abnormal process of cell division in cancer cells, and
seven of the 11 RMGs this pathway were tumor sup-
pressor genes. Strikingly, 34% genes in ECM receptor
interaction pathway were recurrently mutated in cancer.
SKCM harbored the most RMGs (Figure 1a) and pos-
sessed higher proportions of RMGs in these pathways
than the other cancers, which was consistent with the
high mutation burden in SKCM (Martincorena et al.,
2015). It was also shown that BLCA had the greatest
proportion of RMGs in cell cycle. We further analyzed
the energy metabolism pathway by combining glycolysis,
TCA cycle, oxidative phosphorylation, and carbon meta-
bolism together. Results showed that 50 RMGs were
involved in the energy metabolism pathway and that this
pathway was disrupted in 25 of 31 cancer types (Fig-
ure 2b), which again support that the energy metabolism
was disordered in cancer.

3.2 | Common RMGs in cancers

There were 24 RMGs identified in at least eight (one‐
quarter) cancer types, which were considered as common
RMGs (cRMGs). TP53, MUC16 and MUC4 were the top
three cRMGs, recurrently mutated in 21, 17, and 12 can-
cer types, respectively. Figure 3a summarizes the propor-
tions of different mutation types in each cRMG in
specific cancer types. For most cRMGs, missense muta-
tion accounts for the largest proportion (>50%), espe-
cially for PIK3CA. Specially, KMT2C in LUSC and
CHOL as well as DNAH5 in CHOL were more fre-
quently disrupted by nonsense mutation. In addition,
frame shift insertion was also found to be a key mutation
for MUC5B in KICH, which occupied a relatively large
proportion.

To analyze the functional effects of mutations, we
identified differentially expressed genes (DEGs) poten-
tially affected by each cRMG, whereas these DEGs
showed a relatively low overlap across different cancer
types, except for the DEGs affected by TP53 mutations.
Therefore, we made a further analysis of TP53. It was
observed that TP53 was more frequently disrupted by
nonsense mutations, frame‐shift indels and splice site
mutations compared with other cRMGs (Figure 3a), which
results in the initiation and progression of cancers (Payne
& Kemp, 2005; Wojnarowicz et al., 2012). Comparative
analysis revealed that ratios of upregulated DEGs and
downregulated DEGs affected by TP53 could be very dif-
ferent in cancers (Supporting Information Figure S2).
Most of DEGs were upregulated in ACC, whereas
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downregulation dominated these DEGs in LUSC. To
assess the functional impacts of TP53 mutations, we iden-
tified 87 DEGs shared by more than one‐quarter of the
21 cancer types. KEGG pathway analysis reveals that
these gene products were significantly associated with p53
signaling pathway, cell cycle, and pathways in cancer.
Some of these genes, such as TLCD1, SNORD4A, and
SLC35E3, were the direct target genes of TP53 as a tran-
scription factor gene.

3.3 | MUC family genes are enriched in
RMGs and their mutations are associated with
better OS prognosis

The MUC family genes were significantly enriched in the
RMGs (p‐value = 1.28 × 10−11, Chi‐square test), so we
next analyzed this gene family. Among the 19 MUC family
genes, nine genes are RMGs and four of them (MUC4,
MUC5B, MUC16, and MUC17) were cRMGs. To explore
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the influence of these nine recurrently mutated MUC family
genes on prognosis, we performed overall survival (OS)
analysis based on the mutation data. Surprisingly, patients
with MUC3A, MUC4, MUC5B, MUC6, and MUC16 muta-
tions had significantly better OS prognoses compared with
those without mutations in several cancer types (Figure 4a).
We then manually checked the mutation types of these five
genes in corresponding cancer types. Results showed that
there was a greater proportion of in‐frame deletion of
MUC4 in KIPAN and KIRC (Figure 3a), where the muta-
tions of MUC4 were significantly associated with progno-
sis. Similarly, we found a greater proportion of frame‐shift
deletion of MUC5B in STAD and STES.

We further examined the mutation rates of recurrently
mutated MUC family genes in diverse cancers (Figure 4b).
For most MUC family genes, the mutation rates were lower
than 40%, whereas the mutation rates of MUC4 (in KICH)
and MUC16 (in SKCM) were greater than 60%, which
could be considered as mutation signatures. Among MUC
family, MUC16 and MUC4 were the top two RMGs identi-
fied from most cancer types (17 and 12, respectively).
There were more recurrently mutated MUC family genes in
SKCM, DLBC, CHOL, ACC, ESCA, KICH, and STAD
compared with other cancer types. For each of these can-
cers, we combined recurrently mutated MUC genes
together and performed OS analysis. As a result, the better
OS prognosis were observed in SKCM and STAD (Sup-
porting Information Figure S3), which further suggested
that mutations of MUC family genes were frequently asso-
ciated with better survival prognosis in cancers.

3.4 | Impacts of mutation types on gene
expression and prognosis

To explore the impacts of mutation types on gene expres-
sion, we firstly identified 37 RMGs which were differen-
tially expressed caused by their own mutations (Supporting
Information Table S3). There were five upregulated RMGs
and 32 downregulated RMGs. Four of the five upregulated
RMGs (CTNNB1, EGFR, NRAS, and KIT) were oncogenes
(Figure 5a) and 12 of the 32 downregulated RMGs were
tumor suppressor genes, which was consistent with the
increased expression of oncogenes and decreased expres-
sion of tumor suppressor genes in tumor development.

Gene expressions were affected by different mutation types
(Paull et al., 2013). We further categorized the mutations into
two groups: MS (including missense and in‐frame mutations)
and NS (including nonsense, frame‐shift, and splice site muta-
tions). Subsequently, we identified 10 differentially expressed
RMGs by comparing RMG‐MS cancers with RMG wild‐type
cancers (Supporting Information Table S4). Two genes (TP53
in ESCA and LUSC and CDKN2A in PAAD and SKCM)
were upregulated (Figure 5a), whereas the other eight genes

including ABCC9, BAP1, CFH, DMD, HSPG2, TTN, ZFHX3,
and ZFHX4 were downregulated. When comparing RMG‐NS
cancers to RMG wild‐type cancers, we found all the 20 differ-
entially expressed RMGs are downregulated (Supporting
Information Figure S4), which may mainly due to nonsense‐
mediated mRNA decay (Noensie & Dietz, 2001). More than
half of these genes are tumor suppressor genes, including
APC, CDH1, CIC, FAT1, NF1, NOTCH1, PTEN, STK11,
TP53, and ZFHX3, which illustrated that tumor suppressor
genes were frequently disrupted by NS. BAP1 was reported as
an epigenetic regulator, its downregulation could alter the
expression of other genes, like hTERT whose deregulation
was involved in oncogenesis (Linne et al., 2017). Venn dia-
gram shows that ZFHX3 gene in STAD and BAP1 gene in
UVM were consistently downregulated in these three mutation
groups (Figure 5b). Both ZFHX3 and BAP1 are tumor sup-
pressor genes, their decreased expression may promote the
cancer development.

Similarly, to study the influences of mutation types on
prognosis, we identified 13 cRMGs that mutated in sufficient
samples (n ≥ 5) in each respective group (MS and NS)
excluding TP53 that have been widely explored (Freed‐Pastor
& Prives, 2012). Furthermore, we compared OS between
cRMG‐MS/cRMG‐NS patients and cRMG wild‐type patients.
The results showed that six cRMGs including OBSCN,
CDKN2A, CSMD3, DMD, DNAH5, and KMT2Cwith MS or
NS mutations have significant associations with prognosis in
several cancer types (Figure 5c). Patients with NS mutations
in CDKN2A (PAAD), CSMD3 (STAD), and DMD (STAD
and STES) had worse survival. In particular, both CDKN2A
and DMD were tumor suppressor genes, so their downregula-
tion (Supporting Information Table S3) resulted in poor sur-
vival. KMT2C is a histone lysine methyltransferase. The NS
mutations downregulated its mRNA expression, therefore,
dysregulated transcription, chromatin architecture or cellular
differentiation. Whereas, both OBSCN (in STAD) and
DNAH5 (in SKCM) with MS mutations had better survival.
Specifically, five of the six cRMGs were not identified from
our analysis by comparing OS between cRMG‐mutated
patients and cRMG wild‐type patients (Supporting Informa-
tion Figure S5), indicating the functional effects of RMGs
were associated with specific mutation types.

3.5 | Mutation co‐occurrence and exclusivity
analysis of RMGs in STAD

To have a clear understanding of pairwise mutation patterns
among RMGs, we chose STAD as an example. Several stud-
ies have reported some mutually exclusive and co‐occurred
gene pairs in STAD (Liang et al., 2012; Network, 2014;
Zang et al., 2012). Here we focused on the pairwise mutation
patterns among the top 25 RMGs (Figure 6a). Strikingly,
most gene pairs among RMGs tended to be mutated together,
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suggesting the development of STAD requires the co‐disrup-
tion of diverse pathways. Of which, mutations in ARID1A
and PIK3CA were co‐occurred (p‐value < 0.01), which was
consistent with the previous study (Liang et al., 2012).
ARID1A is a tumor suppressor gene belonging to the SWI/
SNF family that participates in chromatin remodeling and

suppresses cell proliferation (Guan et al., 2011). PIK3CA is
a key member in PI3K pathway. Mutations in ARID1A could
activate the PI3K pathway activity, and the concordance of
mutations in ARID1A and PI3K pathway contributed to
tumorigenesis (Liang et al., 2012). In addition, we also iden-
tified some novel co‐occurred mutations between RMG

a

c

b

FIGURE 5 Impacts of mutation types on gene expression and prognosis. (a) Representative RMGs with significant expression change
caused by their own mutations. The x‐axis shows the mutation type and the y‐axis shows mRNA expressions; (b) The Venn diagram showing
differentially expressed RMGs caused by different mutation types; (c) Overall survival curves showing significant OS time differences due to
specific mutation type in cRMGs
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pairs. For example, RNF43 encodes the E3 ubiquitin ligase
that could inhibit Wnt signaling (Loregger et al., 2015).
While the products of FAT3 and FAT4 are cadherins, which
can bind and remove Beta‐Catenin from cytoplasmic pool
for the utilization in Wnt signaling (Nelson & Nusse, 2004).
The co‐occurred mutations in RNF43 and FAT3/FAT4 dis-
rupted the Wnt signaling and thus promoted the development
of cancer.

Despite the high frequency of co‐occurred mutations, 12
mutually exclusive gene sets were also identified (Table 1).
Specially, TP53, PIK3CA, and CDH1 are in the same or

adjacent pathway, which play a pivotal role in cell prolifera-
tion, differentiation, apoptosis, and cell cycle regulation, and
these three genes shows the strongest exclusivity (Figure 6b).

4 | DISCUSSION

In this study, we comprehensively investigated the RMGs as
well as the impacts of their mutations on gene expression and
prognosis across 31 cancer types. We defined the mutation
rate of 10% as a threshold and identified 897 RMGs. Extensive

TP53
SPTA1

CSMD3
PCDH15

KMT2D
RNF43

OBSCN
ZFHX4

TTN
LRP1B
MUC16
SYNE1

RYR3
HMCN1

RYR2
ARID1A

FAT4
CSMD1

PCLO
FAT3

PIK3CA
GPR98

FLG
DNAH5

PLEC

TP
53

S
P

TA
1

C
S

M
D

3

P
C

D
H

15

M
LL

2

R
N

F4
3

O
B

S
C

N

ZF
H

X
4

TT
N

LR
P

1B

M
U

C
16

S
Y

N
E

1

R
Y

R
3

H
M

C
N

1

R
Y

R
2

A
R

ID
1A

FA
T4

C
S

M
D

1

P
C

LO

FA
T3

P
IK

3C
A

G
P

R
98

FL
G

D
N

A
H

5

P
LE

C

*
*
* * *

* *
* * * *

* * * * * * * *
* * * * * * *

* * * * * * *
* * * * * * * * *

* * * * * * * * *
* * * * * * * * *
* * * * * * * * * *

* * * * * * * * * * * * *
* * * * * * * * * * * * * *
* * * * * * * * * * * * * * *

* * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * *

* * * * * * * * *
* * * * * * * * * * * *

* * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * *

−5
−4
−3
−2
−1
0
1
2
3
4
5

Co−occurance

Exclusive

*  p < 0.01

p < 0.05
*
*
* * *

* *
* * * *

* * * * * * * *
* * * * * * *

* * * * * * *
* * * * * * * * *

* * * * * * * * *
* * * * * * * * *
* * * * * * * * * *

* * * * * * * * * * * * *
* * * * * * * * * * * * * *
* * * * * * * * * * * * * * *

* * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * *

* * * * * * * * *
* * * * * * * * * * * *

* * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * *

a

b
Altered in 196 (67.82%) of 289 samples.

TP53

PIK3CA

CDH1

Splice_Site

Missense_Mutation

Nonsense_Mutation

Frame_Shift_Del

Multi_Hit

In_Frame_Del

Frame_Shift_Ins

P-value = 2.09 × 10
−5

FIGURE 6 Pairwise mutation patterns among RMGs in STAD. (a) Heatmap showing mutation co‐occurrence and mutual exclusivity among
top 25 mutated RMGs in STAD. Pink denotes preferential mutual exclusivity, whereas green indicates co‐mutation; (b) The gene sets with
strongest mutual exclusivity. Each bar represents a sample, colored corresponding to mutation types

920 | LIU ET AL.



analysis of these RMGs demonstrated multiple protein cate-
gories and signaling pathways disrupted in most cancers.
Moreover, we found MUC family genes were enriched in
RMGs, and mutations of five MUC family genes were associ-
ated with better OS prognosis. In addition, we assessed the
impacts of mutations in RMGs on gene expression and sur-
vival, as well as the pairwise mutation patterns among RMGs.

Hydrolases including phosphatases, cathepsins, protease,
glucosidase, etc., are molecular switches, which can regulate a
number of signaling pathways (Stebbing et al., 2013). In this
study, we showed that the RMGs with mutation rates greater
than 25% were enriched in hydrolases. Among these genes,
PTEN was a tumor suppressor gene encoding a phosphatase
and its mutation may lead to decreased sensitivity to apoptosis
stimulating thus promote tumorigenesis (Farrow & Mark
Evers, 2003; Stambolic et al., 1998; Zhong et al., 2000).
PTPRT encoded a member of tyrosine phosphatase, which
also was reported to be common mutated (Lee et al., 2007).
Mutations in PTPRD abrogated its function to regulate STAT3
and promoted cancer progression (Funato, Yamazumi, Oda, &
Akiyama, 2011; Zhao et al., 2010). In addition, the alterations
in cathepsins may disrupt lysosomal trafficking and autop-
hagy, thus led to tumor invasion (Dielschneider, Henson, &
Gibson, 2017; White, Mehnert, & Chan, 2015). Recurrent
mutations in hydrolases may cause uncontrolled proliferation,
differentiation and metastasis, so target tumor cell hydrolases
is a good way to treat cancer.

In this study, we analyzed the STES data, which was a
combination of the STAD and ESCA data. Another merged
data, glioma (GBMLGG), the combination of the GBM and
LGG data, was also analyzed. STAD and ESCA (GBM and
LGG) originated from the same tissue or system, so the
analysis of them may show some common features and
additional results (Center BITGDA, 2016). MUC4 was
reported as the major constituents of mucus, which could

form gels to protect the epithelial luminal surfaces of the
healthy ducts (McGuckin, Lindén, Sutton, & Florin, 2011).
The recurrent mutations of MUC4 were detected only in
ESCA (16%), whereas not in STAD. However, MUC4 was
still frequently mutated in the merged data (excluding the
unbalance of sample numbers), STES, which indicated this
gene might play a pivotal role in both STAD and ESCA.
Compared to paired normal tissues, the gene expression
profile also showed the significant upregulation of MUC4
in ESCA and STAD by using GEPIA (Tang et al., 2017).
Our results suggested recurrent mutations of MUC family
genes are closely associated with survival in diverse can-
cers, so the mutations of MUC4 may cause the increase in
mRNA expression and further protect epithelial surfaces in
ESCA and STAD. Similarly, PTEN was frequently mutated
in GBM and the combined data, GBMLGG, which could
also indicate the mutated PTEN lost its cancer suppressing
property thus promote tumorigenesis in GBM.

The MS mutations may alter gene expression differently.
Both TP53 and CDKN2A were well‐studied tumor suppres-
sor genes. MS mutations could alter their functions and
upregulate their gene expression. Mutant p53 protein
encoded by TP53 with MS mutations could inactivate p53‐
related proteins and acquire new oncogenic functions (Freed‐
Pastor & Prives, 2012), so the upregulation of TP53 helped
the tumor cells evade apoptosis and senescence. CDKN2A
was a cell cycle regulatory gene that encoded CDK4 inhibi-
tors (Serrano, Hannon, & Beach, 1993). The mutated
CDKN2A proteins failed to bind to cdk4, which promoted
the development of cancer (Lilischkis, Sarcevic, Kennedy,
Warlters, & Sutherland, 1996; Liu et al., 1995; Ranade et al.,
1995). Besides, the MS mutations could also downregulate
gene expression (Supporting Information Table S4). DMD,
BAP1 and ZFHX3 were tumor suppressor genes. The
decrease in their gene expression conferred a predisposition
to cancer development. Whereas NS mutations could only
downregulate gene expression (Supporting Information Fig-
ure S4). Using drugs or other methods to restore the expres-
sion of these potential tumor suppressor genes and
epigenetic regulators, whose downregulation led to poor sur-
vival, may be a good strategy for cancer treatment. For
upregulated, mutually exclusive or co‐occurred RMGs,
which were associated with poor survival, might be consid-
ered as therapeutic targets (Luo, Solimini, & Elledge, 2009).

Although we analyzed the effects of mutation types on
gene expression and survival, some of corresponding mech-
anisms were still unknown, which need more experiments
to verify. For the impact of mutation types on human sur-
vival, we only focused on common RMGs, so more inves-
tigations are invited to explore this and identify novel
therapeutic targets. Furthermore, the uniform pairwise
mutation patterns among mutant genes in more cancer
types is insufficient, which needs more efforts.

TABLE 1 Mutually exclusive RMG sets in STAD

Mutually exclusive gene sets p value

PIK3CA, TP53, CDH1 2.09E‐05

TP53, CDH1, VCAN 1.62E‐04

TP53, CDH1, ARID1A 4.74E‐04

TCHH, TP53, CDH1 6.35E‐04

TP53, CDH1, MYCBP2 8.06E‐04

PIK3CA, TP53, VCAN 1.23E‐03

PIK3CA, TP53, MYCBP2 1.24E‐03

PIK3CA, TCHH, TP53 2.87E‐03

TP53, VCAN, ARID1A 3.30E‐02

TCHH, TP53, VCAN 4.18E‐02

TP53, ZFHX4, CDH1 4.25E‐02

TP53, MYCBP2, ARID1A 4.52E‐02

Note. p‐value < 0.05, fisher exact test.
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5 | CONCLUSIONS

Overall, through function enrichment analysis of RMGs in
31 cancer types, we found six signaling pathways that dis-
rupted in most cancer types and energy metabolism was
abnormal in cancers. Strong correlation between recurrently
mutated MUC family genes and human survival were
revealed. In addition, we found gene expression and sur-
vival prognosis were associated with different mutation
types of RMGs. These findings will help to gain a deeper
understanding of tumorigenesis.
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