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Fingolimod is used for the treatment of multiple sclerosis (MS) and targets receptors for
the bioactive sphingolipid sphingosine-1-phosphate (S1P). Whether fingolimod or other
MS therapies conversely affect plasma concentrations of sphingolipids has, however,
not yet been analyzed. Herein, we quantified 15 representative sphingolipid species
by mass spectrometry in plasma from relapsing-remitting MS patients currently under
fingolimod (n = 24), natalizumab (n = 16), or IFN-β (n = 18) treatment. Healthy controls
(n = 21) and untreated MS patients (n = 11) served as control groups. IFN-ß treatment
strongly increased plasma level of C16 0, C: 18:0, C20 0, and C24 ceramides compared: :1

to healthy controls, untreated patients, or patients receiving fingolimod or natalizumab
medication. Natalizumab treatment increased plasma concentrations of both S1P and
sphinganine-1-phosphate, whereas fingolimod treatment did not affect any of these
lipids. Correlations of sphingolipids with the Expanded Disability Status Scale and
other disease specific parameters revealed no systemic change of sphingolipids in MS,
independent of the respective treatment regime. These results indicate type I interferon
treatment to cause a strong and specific increase in ceramide level. If confirmed in
larger cohorts, these data have implications for the efficacy and adverse effects of IFN-
β. Moreover, quantification of ceramides soon after therapy initiation may help to identify
therapy-responsive patients.

Keywords: multiple sclerosis, ceramides, sphinganines, sphingolipids, interferon-beta, fingolimod, natalizumab

Abbreviations: ARR, annualized relapse rate; ASM, acidic sphingomyelinase; BBB, blood brain barrier; CNS, central nervous
system; CSF, cerebrospinal fluid; CV, coefficient of variation; dhS1P, sphinganine-1-phosphate; EDSS, Expanded Disability
Status Scale; IFN, Interferon; MMPs, matrix metalloproteinases; MS, multiple sclerosis; n/a, not available; RRMS, relapsing-
remitting multiple sclerosis; S1P, sphingosine-1-phosphate; S1PR, sphingosine-1-phosphate receptor; SLE, systemic lupus
erythematosus; w/o, without.
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INTRODUCTION

MS is an autoimmune disorder characterized by the destruction
of the myelin sheath by auto-reactive immune cells. It is the
most common cause for permanent disability in young adults,
with an estimated 2.5 million patients worldwide (Brinkmann
et al., 2010). Eighty-five percent of MS patients are affected
by the RRMS, characterized by isolated relapses followed by
complete or incomplete recovery and episodes of relative clinical
stability until the next relapse. According to a recently suggested
mechanism of relapse induction, myelin-specific memory T cells
may reside in lymphoid tissues of the lung, moving from lung-
draining lymph nodes to the CNS in a bystander activation
process during respiratory infections (Odoardi et al., 2012). At
the BBB, T cells slow down, e.g., via interaction of α4-integrins
with the vascular cell adhesion molecule VCAM-1, and penetrate
the CNS with the help of lytic enzymes, e.g., the MMPs 2 and 9
(Agrawal et al., 2006). Here, T cells are activated by local myelin-
presenting perivascular dendritic cells or microglia, resulting
in upregulation of costimulatory molecules (e.g., CD80) and
the formation of chemokines and cytotoxic cytokines (Greter
et al., 2005). During disease progression, and depending on the
individual genetic disposition, myelin sheath damage develops
into a multi-causal process involving activated B lymphocytes,
antibody-dependent pathology, CD8+-driven direct cytotoxicity,
autoinflammatory monokines, and reactive oxygen species (ROS)
-dependent damage (Brinkmann et al., 2010; Halmer et al.,
2014).

Sphingolipids, first identified in brain extracts in 1884, play
a role in various diseases, and a major role in MS (Tudichum,
1884; Jana and Pahan, 2010). Ceramides are synthesized de
novo by ceramide synthases in the endoplasmic reticulum.
Here, four enzyme groups convert serine and palmitoyl-
CoA to 3-ketosphinganine, and subsequently to sphinganine
(also called dihydrosphingosine), which is converted in turn
to dihydroceramide and ceramide (Figure 3). Subsequently,
conjugation of a choline-phosphate group to ceramide leads to
the formation of sphingomyelin, while conjugation of galactose to
ceramide leads to the formation of galactosylceramide. With the
help of ceramidases and sphingosine kinase 1/2, ceramides can
be metabolized to sphingosine and subsequently to S1P. Besides
de novo generation of ceramides, they can also be produced by
“salvage” pathways, either by breaking down S1P to sphingosine
and ceramide, or by recycling complex sphingolipids, (e.g.,
sphingomyelin) via the ASM (Don et al., 2014). Interestingly,
ASM and the resulting ceramide release have been identified as
a major mechanism of depression. Mice overexpressing ASM
exhibit depression-like behavior even in the absence of stress,
and antidepressants such as amitriptyline and fluoxetine mediate
their therapeutic effects by inhibiting ASM activity. Furthermore,
injection of C16:0 ceramide into the hippocampus is sufficient
to induce depression-like behavior in WT mice (Gulbins et al.,
2013). Downstream of ceramides, S1P is another very important
signaling molecule, especially in MS. By activating five known
S1PRs on the plasma membrane of various cells, S1P influences
cellular processes such as the cell cycle, apoptosis and the
regulation of cytokine expression (Schröder et al., 2011; Arlt

et al., 2014; Ottenlinger et al., 2016). Furthermore, a steep S1P
gradient between blood and secondary lymphoid compartments
regulates the egress of lymphocytes out of secondary lymphoid
organs.

The partial S1PR antagonist fingolimod (Gilenya R©, Novartis,
Basel, Switzerland; codenamed FTY720), approved by the
FDA in 2010 as the first oral treatment for MS, has been
shown to reduce the ARR by approximately 50% relative to
placebo (Kappos et al., 2010). Its additional effects include
activation of astrocytic or neuronal S1PRs by FTY720-P or
the inhibition of IFN-γ formation by non-phosphorylated
FTY720 (Groves et al., 2013; Ottenlinger et al., 2016). The
humanized anti-α4-integrin antibody natalizumab (Tysabri R©,
Biogen, Cambridge, MA, USA) blocks the migration of T
cells across intracerebral vessel walls, resulting in an ARR of
68% (Polman et al., 2006). However, long-term Tysabri-treated
patients displayed an increased risk of progressive multifocal
leukoencephalopathy (PML), an opportunistic viral infection of
the brain which can lead to severe disability or death. Therefore,
Tysabri-treated patients are regularly checked for anti-John
Cunningham virus (JCV) antibodies (Sadiq et al., 2010). IFN-
β (e.g., Avonex R©, Biogen, Cambridge, MA, USA) also reduces
the relapse rate, reaching an ARR of approximately 34% (The
IFNB Multiple Sclerosis Study Group, 1993). MS patients reveal
lower levels of circulating type I IFN than healthy controls
and it is therefore believed that treatment with recombinant
IFN-β suppresses disease progression (Feng et al., 2012).
Pharmacodynamically, IFN-β dampens T cell proliferation and
migration, reduces IFN-γ-release, diminishes IFN-γ mediated
MHC class II expression, inhibits MMPs, increases IL-10 release,
and co-activates regulatory T cells (Weinstock-Guttman et al.,
2008). Side effects include flu-like symptoms and injection site
complications (Walther and Hohlfeld, 1999). However, due to a
discrepancy between the physiological and therapeutic effects of
IFN-β treatment, its actual mode of action remains unclear.

Treatment of patients with MS is still challenging for
neurologists: Although an increasing range of drug options
is now available, it is not possible to identify therapy non-
responders until they suffer further relapse and disability
progression. Moreover, most MS drugs are associated with
severe side-effects which often necessitate switches of medication.
There is therefore a strong need for biomarkers which can
guide treatment choices by distinguishing responders from non-
responders. Notably, fingolimod specifically targets receptors
for the bioactive sphingolipid S1P, but whether fingolimod or
other MS medications conversely affect plasma sphingolipid
concentrations has yet to be determined. Therefore, we quantified
15 representative sphingolipid metabolites by mass spectrometry
in the plasma of relapsing-remitting MS patients currently treated
with fingolimod, natalizumab, or IFN-β.

MATERIALS AND METHODS

Patient Selection
Plasma samples of 69 RRMS patients were obtained from the
biobank of the local biobanking project of the Department of
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Neurology at the University Clinic Frankfurt am Main, Germany.
These had been drawn during the routine neurological diagnostic
and checkup visits between 2011 and 2015 and stored at −80◦C
until further preparation. Plasma samples from 21 controls were
obtained from healthy blood donors at the blood donation center
in Frankfurt am Main (Blutspendedienst Hessen) in 2015. These
samples were drawn during blood donation and were prepared
and stored likewise. The study was performed in accordance
with the Declaration of Helsinki and approved by the local
ethics committee (reference number #110-11 for the biobank
and #429/14 for sample analysis). All participants gave written
informed consent prior to study inclusion. Inclusion criteria
were diagnosis of RRMS, treatment with fingolimod or IFN-β
(Rebif R©, Avonex R©, or Extavia R©) for more than 3 months or
natalizumab for more than 6 months, and an age of 18 – 60 years.
Exclusion criteria comprised other disease-modifying treatments,
other immunomodulatory treatments and other forms of MS. All
patients were diagnosed by specialists in neurology. The EDSS
score was not routinely evaluated at every checkup visit and was
therefore not available for all patients. Blood from MS patients
in relapse was taken before treatment with cortisone or other
relapse-specific therapies.

Determination of Sphingolipid
Concentrations by High-Performance
Liquid Chromatography Tandem Mass
Spectrometry
Quantification of plasma sphingolipids was performed by high-
performance liquid chromatography tandem mass spectrometry.
For quantification of sphingolipids, 20 µl plasma was extracted
twice with methanol:chloroform:HCl (15:83:2, v/v/v). The
collected organic phases were evaporated at 45◦C under a
gentle stream of nitrogen and reconstituted in 50 µl methanol.
Thereafter, liquid chromatography coupled to tandem mass
spectrometry (LC-MS/MS) was used to assess quantities of
C14:0 C16:0, C18:1, C18:0, C20:0, C24:1, C24:0 ceramide, C16:0,
C18:0, C24:0, C24:1 sphinganine and the internal standard C17:0
ceramide, in addition to sphingosine, sphingosine1-phosphate,
sphinganine and sphinganine1-phosphate and the internal
standards (sphingosine-D7, sphinganine-D7, and sphingosine1-
phosphate-D7). A Luna C18 column (150 mm × 2 mm ID,
5 µm particle size, 100 Å pore size; Phenomenex, Aschaffenburg,
Germany) was used for chromatographic separation. The HPLC
mobile phases consisted of water-formic acid (100:0.1, v/v)
(A) and acetonitrile–tetrahydrofuran–formic acid (50:50:0.1,
v/v/v) (B). For separation, a gradient program was used at
a flow rate of 0.3 ml/min. The initial buffer composition
60% (A)/40% (B) was held for 0.6 min and then in 3.9 min
linearly changed to 0% (A)/100% (B) and held for 6.5 min.
Subsequently, the composition was linearly changed within
0.5 min to 60% (A)/40% (B) and then held for another
4.5 min. The running time for every sample (injection volume:
15 µl for determination of ceramides and sphinganines and
10 µl for the other sphingolipids) was 16 min. MS/MS
analyses were performed on a API4000 (triple quadrupole mass
spectrometer) equipped with an APCI (Atmospheric Pressure

Chemical Ionization) ion source (Sciex, Darmstadt, Germany)
for determination of ceramides and sphinganines, and with
an ESI (Electrospray Ionization) ion source for determination
of sphingosine, sphinganine, and their 1-phosphate derivatives.
The analysis was done in MRM mode. For every analyte,
two transitions were recorded: one for quantification and a
second for qualification, to exclude false positive results, with
a dwell time of 50 ms. For analysis and quantification, the
Analyst Software 1.6 (Sciex, Darmstadt, Germany) was used
and the peak area of each analyte was corrected by the peak
area of the corresponding internal standard. Linearity of the
calibration curve was proven for C16:0, C24:1, C24:0 ceramide;
C16:0, C24:1, and C24:0 sphinganine from 12 to 3000 ng/mL,
for C18:0, C18:1 ceramide from 1.2 to 300 ng/mL, for C20:0
ceramide, C18:0 sphinganine from 5 to 500 ng/mL and for C14:0
ceramide from 4 to 100 ng/mL. For sphingosine, sphinganine,
and their phosphate derivatives, the calibration curve ranged
from 0.25 to 250 ng/mL. The coefficient of correlation was
at least 0.99. Variations in accuracy were less than 15% over
the whole range of calibration, except for the lowest limit
of quantification, where a variation in accuracy of 20% was
accepted.

Statistical Analysis
Statistical analysis was done using Graph Pad Prism 5 (La
Jolla, CA, USA) and SPSS 20 (Chicago, IL, USA). Normal
distribution was assessed using a Kolmogorov–Smirnov test.
Normally distributed parameters were analyzed with two-tailed
t-tests or One-way ANOVAs with Tukey’s post hoc comparison.
Non-normally distributed parameters were analyzed using
Mann–Whitney’s U and Kruskal–Wallis’ tests with Dunn’s post
hoc comparison. Correlations were analyzed using Spearman
or Pearson correlation coefficients, respectively. Sphingolipid
concentrations are shown as Tukey box plots and statistical
significant events are indicated with, ns‘p > 0.05, ∗p ≤ 0.05,
∗∗p< 0.01, and ∗∗∗p< 0.001.

RESULTS

The analysis of 15 representative sphingolipids was performed
in plasma from 69 differently medicated RRMS patients and
21 matched healthy controls (Table 1). Of the 69 MS patients,
16 were treated with natalizumab, 24 with fingolimod, 18 with
IFN-β and 11 were untreated at that time. While some patients
were in remission, a high number of relapsing patients were
enrolled into the study to enable further analysis of the effect
of relapse on plasma sphingolipids. In relapsing patients, blood
samples were taken before cortisone therapy was initiated. Of
the 15 analytes, C18:1 ceramide, sphingosine and sphinganine
did not fulfill the quality control criteria (CV < 20%), because
their concentrations were only just above the detection limit
(data not shown). These analytes were therefore excluded from
further analyses, leaving a total of 12 analytes which were
further analyzed. Samples from RRMS patients did not reveal a
correlation with storage time (Pearson or Spearman correlation
coefficient: −0.29 ≤ R ≤ 0.16, data not shown). Additionally,
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TABLE 1 | Demographic details of RRMS patients and healthy controls.

Treatment group Healthy controls w/o IFN-β Natalizumab Fingolimod

n 21 11 18 16 24

Sex [w/m] 15/6 7/4 16/2 11/5 17/7

Age [mean] 40.4 37.5 39.9 36.5 39.2

Age [range] 22.1–55.6 23.5–53.8 23.3–59.36 23.9–53.2 26.0–53.08

In relapse/remission [n] n/a 11/0 5/13 7/9 8/16

Disease duration [years, mean] n/a 6.0 7.2 7.2 11.9

Disease duration [years, range] n/a 0–14.7 0.1–18.7 1.2–14.4 1.69–32.0

EDSS [mean, n] n/a 1.5, n = 2 2.9, n = 7 2.8, n = 8 3.8, n = 16

EDSS [range] n/a 1–2 2–4 1–7.5 2–6.5

Disease duration of 0 indicates blood sampling at initial diagnosis. Missing data: The EDSS score was not evaluated on the date of sample preparation in all cases. n/a,
not available, w/o, RRMS patients without therapy.

there was no correlation of sphingolipids with age (Pearson
or Spearman correlation coefficient: −0,147 ≤ R ≤ 0,257,
data not shown) and no major influence of gender (data not
shown). Concerning the latter, C14:0 ceramide was increased
exclusively in female RRMS patients (Mann–Whitney’s U test,
p = 0.017), but this was not seen in healthy controls (Mann–
Whitney’s U test, p = 0.353). Plasma sphingolipid levels in
RRMS patients in remission versus patients in relapse showed
no notable difference (Table 2). Exclusively C18:0 ceramide
was increased in RRMS patients in relapse treated with
IFN-β, but this was not seen in other treatment regimes.
Therefore, in the subsequent analysis, patients in remission were
analyzed together with those in relapse. When sphinganines
and ceramides from MS patients were compared to healthy
controls, a tendency was observed for all ceramides to be
increased in MS patients. However, this increase reached
significance only for C24:1 ceramide and C16:0 sphinganine
(Table 3). dhS1P was elevated in MS patients compared to healthy
controls. But, these increases were rather associated with the
individual treatment regimens than with the disease itself (see
below).

IFN-β Treatment Specifically Increased
Ceramide Concentrations in Plasma of
RRMS Patients
To a large degree, the increase in ceramides and sphinganines
was not due to MS in general, but related to treatment, especially
IFN-β therapy. IFN-β-treated patients revealed increased C16:0,
C18:0, C20:0, and C24:1 ceramides compared to healthy controls
(Figures 1B–D,F). These ceramides were also elevated compared
to patients receiving other treatment regimens or no treatment,
but did not reach statistical significance in all cases. C14:0
ceramide and C24:0 ceramide were unaffected by the treatment
(Figures 1A,E). C18:1 ceramide did not pass the quality control,
but was also elevated in IFN-β-treated patients compared to
healthy controls (p < 0.01) or natalizumab-treated patients
(p < 0.05, data not shown). Concerning sphinganine species,
especially C16:0 and C18:0 sphinganine showed a tendency to be
increased in IFN-β-treated patients compared to healthy controls,
but this did not reach statistical significance (Figures 2A,B,
p = 0.06). S1P was slightly decreased in untreated patients

TABLE 2 | RRMS patients in remission and in relapse reveal no obvious
differences in plasma sphingolipid concentrations.

Treatment group IFN-β Natalizumab Fingolimod All (with
untreated)

Relapse/remission [n] 5/13 9/7 16/8 31/38

C14:0 ceramide 0.059 0.758 0.076 0.135

C16:0 ceramide 0.703 0.536 0.052 0.101

C18:0 ceramide 0.035 0.758 0.569 0.763

C20:0 ceramide 0.143 0.918 0.466 0.534

C24:0 ceramide 0.145 0.719 0.654 0.321

C24:1 Ceramide 0.479 0.937 0.475 0.766

C16:0 sphinganine 0.775 0.351 0.528 0.247

C18:0 sphinganine 0.336 1.000 0.653 0.914

C24:0 sphinganine 0.387 0.607 0.697 0.563

C24:1 sphinganine 0.173 0.681 0.417 0.866

S1P 0.913 0.958 0.580 0.719

dhS1P 0.633 0.252 0.610 0.971

Patients in remission were compared to patients in a current relapse depending
on their treatment regime. Data are shown as p-values from Mann–Whitney’s U or
two-tailed t-tests and significant p-values (p ≤ 0.05) are highlighted in bold. dhS1P,
sphinganine-1-phosphate; S1P, sphingosine-1-phosphate.

compared to healthy controls (p = 0.095) and especially
natalizumab treatment increased S1P on a level comparable
to healthy controls (Figure 2F). Interestingly, patients treated
with the S1PR antagonist fingolimod exhibited no statistically
significant difference of S1P levels compared to the control group.
Furthermore, patients receiving natalizumab or IFN-β showed
increased dhS1P concentrations compared to healthy controls
(Figure 2G).

Ceramide and Sphinganines are not
Affected by the Disease Status of RRMS
Patients
Since IFN-β treatment strongly affected ceramide and
sphinganine levels, further analysis was required to assess
whether sphingolipid concentrations are affected by RRMS
independently of the treatment regime. If it can be ruled out
that the disease itself exerts an effect on sphingolipids, a specific
increase of ceramide species may have potential as a marker
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TABLE 3 | RRMS patients reveal a tendency of increased plasma ceramides compared to healthy controls.

RRMS patients [n = 69] Healthy controls [n = 21] p-value

mean SD median mean SD median

C14:0 ceramide 18.9 8.1 17.3 15.5 7.1 14.0 0.111

C16:0 ceramide 650.9 198.0 635.1 573.2 152.2 550.4 0.128

C18:0 ceramide 164.6 73.8 152.0 138.6 44.8 126.7 0.177

C20:0 ceramide 385.1 161.3 370.7 335.1 104.7 323.6 0.227

C24:0 ceramide 6936.6 2165.2 6707.6 6143.7 1695.6 6178.5 0.128

C24:1 ceramide 1560.4 496.5 1513.6 1187.6 452.2 1129.5 0.003

C16:0 sphinganine 31.5 15.4 29.3 24.1 12.6 24.5 0.042

C18:0 sphinganine 37.3 28.0 32.6 26.9 13.7 23.0 0.143

C24:0 sphinganine 368.7 172.6 335.1 307.9 118.5 268.7 0.100

C24:1 sphinganine 249.6 111.4 222.3 206.5 80.3 181.2 0.141

S1P 312.3 111.6 298.8 347.8 78.1 335.4 0.178

dhS1P 57.2 27.5 50.2 40.1 13.2 39.4 0.006

Data are shown as mean, SD, and median with p-values of Mann–Whitney’s U or two-tailed t-tests with significant p-values (p ≤ 0.05) highlighted in bold. dhS1P,
sphinganine-1-phosphate; RRMS, relapsing-remitting multiple sclerosis; S1P, sphingosine-1-phosphate.

FIGURE 1 | IFN-β-treated RRMS patients demonstrated increased ceramides of specific chain length. (A–F) Ceramides were determined by mass
spectrometry from plasma of RRMS patients and healthy controls. Data shown are Tukey box plots with a horizontal line representing the median, whiskers
representing the 1.5× interquartile range and dots representing outliers. Healthy controls (n = 21), untreated patients (w/o, n = 11), IFN-β (n = 18), natalizumab
(n = 16), and fingolimod (n = 24) treated patients. One-Way ANOVA with Tukey’s post hoc comparison or Kruskal-Wallis’ test with Dunn’s post hoc comparison for
normally or non-normally distributed data, respectively. ∗p ≤ 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001.
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FIGURE 2 | S1P and dhS1P level are affected by the respective treatment regime. (A–D) Sphinganines were determined from plasma of RRMS patients and
healthy controls, as well as (E,F) S1P and dhS1P. Data shown are Tukey box plots with a horizontal line representing the median, whiskers representing the 1.5×
interquartile range and dots representing outliers. Healthy controls (n = 21), untreated patients (w/o, n = 11), IFN-β (n = 18), natalizumab (n = 16), and fingolimod
(n = 24) treated patients. One-Way ANOVA with Tukey’s post hoc comparison test or Kruskal-Wallis’ test with Dunn’s post hoc comparison for normally or
non-normally distributed data, respectively. ∗p ≤ 0.05; ∗∗p < 0.01.

TABLE 4 | Plasma sphingosines and ceramides are not affected by RRMS, independent from the treatment.

Correlation with Disease duration Time to last relapse Time to next relapse EDSS

n = (IFN-β/non-IFN-β) 69/56 67/54 29/27 33/27

C14:0 ceramidea 0.246∗ 0.001 0.107 0.243

C16:0 ceramideb 0.152 −0.115 0.149 0.030

C18:0 ceramideb 0.006 −0.174 0.062 0.014

C20:0 ceramideb 0.101 −0.064 0.250 0.146

C24:0 ceramidea 0.296∗ 0.112 0.022 0.112

C24:1 ceramideb 0.081 −0.254 0.078 0.218

C16:0 sphinganineb 0.237 0.057 0.201 −0.162

C18:0 sphinganineb
−0.092 0.008 0.052 −0.331

C24:0 sphinganinea 0.089 0.125 0.171 −0.105

C24:1 sphinganinea
−0.173 −0.049 −0.038 −0.197

Disease duration, time to the last or the next relapse and EDSS score were correlated to ceramides and sphinganines using Pearson or Spearman correlations, respectively.
Data are shown as the correlation coefficient (R) with ∗p ≤ 0.05. Missing data: since IFN-β therapy affected specific plasma ceramides and sphinganines, especially for
these analytes patients treated with IFN-β were omitted; a = including patients treated with IFN-β; b = without patients treated with IFN-β; time to last relapse = two
patients had their first relapse and were excluded; time to next relapse = only patients with a relapse before data collection was begun were included; EDSS = only
patients with EDSS score evaluation on date of sample collection were included.

of therapy response. Since IFN-β-treated patients were found
to have elevated ceramide and sphingosine levels, they were
omitted from the subsequent analysis (reduction to n = 56),
except for the unaffected analytes C14:0 and C24:0 ceramide, and
C24:0 and C24:1 sphinganine. Ceramides and sphinganines were

assessed in relation to disease duration, time from sampling
to the last or next relapse, and the EDSS score (Table 4). Only
minor correlations with the disease duration were observed,
indicating changes in analyte levels to be predominantly induced
by treatment and not by the disease per se.
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DISCUSSION

The oral prodrug fingolimod is known to act on the receptors
for the bioactive sphingolipid S1P in secondary lymphoid
organs. To date, no studies have examined a possible inverse
effect of fingolimod and other MS drugs on the metabolism
of sphingolipids. Our results indicate that no such effect is
associated with fingolimod, but did reveal a strong and specific
increase of ceramides of specific chain lengths especially in IFN-
β-treated MS patients, compared to healthy controls, untreated
patients or other treatment groups (Figures 1 and 2).

The Therapeutic Effect of IFN-β and
Associated Side-Effects
IFN-β is believed to support regulatory functions of the immune
system in MS, but the actual mode of action is not completely
understood. Major side-effects of IFN-β therapy include injection
site reactions and flu-like symptoms. Furthermore, IFN-β has
been suggested to cause or exacerbate depression. Whereas
this observation failed to reach significance on a single trial
level, pooled data from several clinical trials clearly showed
that IFN-β increased the rate of depression from 8% in the
placebo-treated group to 5–18% in patients treated with 22–
44 µg IFN-β via different administration routes (p = 0.017)
(Patten et al., 2005). Accordingly, a switch from an injectable
disease-modifying therapy (IFN-β or glatiramer acetate) to oral
fingolimod improves depressive symptoms in patients with
RRMS (Hunter et al., 2016).

Analogous to IFN-β-Treated MS Patients,
Patients with Depression, Systemic
Lupus Erythematosus or Parkinson’s
Disease are Characterized by Increased
Plasma Ceramides
Our data reveals that IFN-β specifically increased plasma
ceramide level, especially C16:0, C18:0, C20:0, and C24:1 species,
compared to healthy controls, untreated patients or other
treatment groups (Figure 1). C16:0 and C18:0 sphinganine showed
a tendency to be increased compared to healthy controls
(Figures 2A,B, p = 0.06). S1P was not affected by IFN-
β-treatment, but dhS1P was increased compared to healthy
controls (p < 0.01, Figure 2F). Diverse pro-inflammatory
cytokines, such as IFN-α, TNF-α, IL-1β, or IFN-γ induce
sphingolipid metabolizing enzymes (Jenkins et al., 2010; Su et al.,
2011) and especially IFN-α has already been shown to effect a
decrease, for example, in HDL cholesterol in hepatitis C patients
treated with IFN-α (Shinohara et al., 1997). Accordingly, a direct
influence either of IFN-β itself or of IFN-β-induced cytokines on
the metabolism of sphingolipids is to be expected. As mentioned
above, ceramides can either be produced by the de novo
pathway with the help of ceramide synthases or, alternatively,
via “salvage” pathways, e.g., by recycling of sphingomyelin by
the ASM or by recycling of S1P by the S1P phosphatases
1/2 (Figure 3). Focusing on the “salvage” pathway originating
from sphingomyelin, ASM is a ubiquitously expressed enzyme,
activated by a variety of stress stimuli, e.g., IFN-α, TNF-α,

IL-1β, or IFN-γ (Jenkins et al., 2010; Su et al., 2011). Non-MS
patients with severe major depression have been found to have
increased ASM activity in peripheral blood mononuclear cells
(Kornhuber et al., 2005). Similarly, non-MS study participants
with recent major depression within the previous 2 years reveal
increased plasma levels of C16:0, C18:0, C20:0, C24:1, and C26:1
ceramide compared to subjects with less recent prior depression
(>2 years before) or no history of depression. C22:0, C24:0,
and C26:0 were not affected (Gracia-Garcia et al., 2011). These
ceramide species are identical to the ones affected by IFN-β in
our cohort.

While IFN-β reveals therapeutic effects in MS, increased type
I IFN signaling is associated with SLE (Crow, 2010). Checa
et al. detected increased concentrations of certain sphingolipids
in SLE patients’ plasma compared to healthy controls, namely
C16:0, C18:0, C20:0, and C24:1 ceramide, while C14:0, C22:0, and
C24:0 were unaffected (Checa et al., in preparation, preliminary
results with a lower number of patients published (Checa et al.,
2016)). This characteristic pattern of ceramides resembles that
observed in IFN-β-treated MS patients in our cohort (Figures 1
and 2) or individuals with recent major depression as reported
by Gracia-Garcia et al. (2011). The same ceramides are also
elevated in patients suffering from sporadic Parkinson’s disease
with cognitive impairment (Mielke et al., 2013). Here again, C16:0,
C18:0, C20:0, C22:0, C24:1, and C26:1 were elevated compared to
patients without cognitive impairment, whereas C22:1, C24:0, and
C26:0 ceramides were not affected. The same ceramide species
were elevated compared to healthy controls albeit with slight
differences in their level of significance. In summary, IFN-β
treatment of RRMS specifically increased ceramides of certain
specific chain-lengths. These ceramides are also elevated in
patients with depression, SLE or sporadic Parkinson’s disease.

No Evidence for a
Treatment-Independent Systemic
Change of Sphingolipids in RRMS
To evaluate treatment-independent effects in RRMS, the
influence of relapse, EDSS score, disease duration and time to the
previous and next relapse were analyzed (Tables 2 and 4). It is
important to note that not only S1P but also a number of other
sphingolipids play an important role in the pathophysiology
of MS. About 80% of the myelin sheath consists of lipids,
predominantly sphingomyelins and galactosylceramides (also
called “cerebrosides”). Autoantibodies against these lipids are
often found in patients with MS (Menge et al., 2005). C18:0
ceramide accumulates in human MS lesions, while C16:0, C18:0,
and C20:0 ceramides were found in lesions in a cuprizone
animal model of demyelination (Kim et al., 2012). On contact
with neurons, the CSF of MS patients induces bioenergetic
dysfunction and oxidative damage, due to increased C16:0 and
C24:0 ceramides (Vidaurre et al., 2014). The major cellular
source of ceramides in MS is reactive astrocytes, which show
enhanced expression of enzymes involved in sphingolipid
metabolism (van Doorn et al., 2012). Interestingly, levels of the
hexosylceramide HexCer16:0 in CSF correlated with the EDSS
score of MS patients, indicating an accumulation over the course
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FIGURE 3 | Schematic overview of the generation of C18:0 ceramide and the supposed effect of IFN-β. Ceramides are produced de novo by serine and
palmitoyl-CoA or by “salvage” pathways, with recycling of sphingomyelin or sphingosine-1-phosphate. IFN-β increased e.g., C18:0 ceramide and
sphinganine-1-phosphate (with a C18-backbone) as indicated by the arrows in brackets. Accordingly, the de novo synthesis and/or the “salvage” pathway may be
activated by IFN-β therapy as indicated by bold arrows.

of disease (Checa et al., 2015). In neurodegeneration, especially in
Alzheimer’s disease, ceramides have been shown to be increased
in CSF and most brain regions (Mielke and Lyketsos, 2010).
Furthermore, high plasma ceramides have been associated with
greater disease progression (Mielke et al., 2012). In RRMS,
however, we found no evidence of a treatment-independent
systemic change in sphingolipids. Although ceramides have
been shown to be locally released in MS lesions, increases
in plasma ceramides comparable to those seen in patients
with Alzheimer’s disease were not observed. Furthermore,
especially untreated RRMS patients failed to show statistically
significant differences compared to healthy controls. Therefore,

ceramides and sphinganines are not influenced by the disease
per se, but are increased due to specific effects of IFN-β
therapy.

In summary, we identified for the first time a previously
unknown effect of IFN-β treatment on plasma ceramides: We
found elevated levels of C16:0, C18:0, C20:0, and C24:1 ceramides
in MS patients receiving IFN-β. The very same ceramides have
already been shown to be elevated in patients with depression,
SLE or sporadic Parkinson’s disease, thus indicating a molecular
connection. As a prerequisite for biomarker development, we
were able to demonstrate that ceramide and sphinganine levels
are not affected by RRMS per se. Further research will be
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necessary to discover whether ceramide induction by IFN-
β occurs as a result of increased ASM activity or due to
the induction of other enzymes. In addition, further studies
are required to assess the utility of ceramide induction as
a biomarker in therapy responders, and to discover whether
ceramide induction is involved in side-effects of IFN-β therapy.
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