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Macroalgae have high potential to be an efficient, and sustainable feedstock for the production of biofuels
and other more valuable chemicals. Attempts have been made to enable the co-fermentation of alginate
and mannitol by Saccharomyces cerevisiae to unlock the full potential of this marine biomass. However,
the efficient use of the sugars derived from macroalgae depends on the equilibrium of cofactors derived
from the alginate and mannitol catabolic pathways. There are a number of strong metabolic limitations
that have to be tackled before this bioconversion can be carried out efficiently by engineered yeast cells.

An analysis of the redox balance during ethanol fermentation from alginate and mannitol by Sac-
charomyces cerevisiae using metabolic engineering tools was carried out. To represent the strain designed
for conversion of macroalgae carbohydrates to ethanol, a context-specific model was derived from the
available yeast genome-scale metabolic reconstructions. Flux balance analysis and dynamic simulations
were used to determine the flux distributions. The model indicates that ethanol production is de-
termined by the activity of 4-deoxy-l-erythro-5-hexoseulose uronate (DEHU) reductase (DehR) and its
preferences for NADH or NADPH which influences strongly the flow of cellular resources. Different
scenarios were explored to determine the equilibrium between NAD(H) and NADP(H) that will lead to
increased ethanol yields on mannitol and DEHU under anaerobic conditions. When rates of mannitol
dehydrogenase and DehRNADH tend to be close to a ratio in the range 1–1.6, high growth rates and
ethanol yields were predicted. The analysis shows a number of metabolic limitations that are not easily
identified through experimental procedures such as quantifying the impact of the cofactor preference by
DEHU reductase in the system, the low flux into the alginate catabolic pathway, and a detailed analysis of
the redox balance. These results show that production of ethanol and other chemicals can be optimized if
a redox balance is achieved. A possible methodology to achieve this balance is presented. This paper
shows how metabolic engineering tools are essential to comprehend and overcome this limitation.
& 2015 The Authors. Published by Elsevier B.V. International Metabolic Engineering Society. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Depletion of fossil resources, increasing demand for fuel and
climate change have encouraged the use of more efficient and
sustainable sources to produce valuable products and energy (Jang
et al., 2012). Microbial fermentation of biomass from diverse
sources has been used to overcome this challenge. Corn and su-
garcane biomass have been successfully used to produce biofuels
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).
at high yields using well-established fermentation technology, but
their long-term use is questionable due to the competition be-
tween fuel and food resources. Although lignocellulosic plant
materials are an alternative, the process and related costs to re-
lease sugars are extremely high and complex. In the past years,
macroalgae, so-called seaweeds, have attracted attention for their
high potential as feedstock to produce sustainable biofuels and
commodity chemical compounds. Brown macroalgae has several
key features: (1) its cultivation does not impact food supplies since
it does not require fresh water resources or arable land; (2) brown
macroalgae do not contain lignin which implies that its cell wall is
structurally flexible; and (3) macroalgae are already being mass-
cultivated in several countries (Jung et al., 2013).
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www.sciencedirect.com/science/journal/0301679X
www.elsevier.com/locate/mec
http://dx.doi.org/10.1016/j.meteno.2015.06.004
http://dx.doi.org/10.1016/j.meteno.2015.06.004
http://dx.doi.org/10.1016/j.meteno.2015.06.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.meteno.2015.06.004&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.meteno.2015.06.004&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.meteno.2015.06.004&domain=pdf
mailto:juasenjo@ing.uchile.cl
http://dx.doi.org/10.1016/j.meteno.2015.06.004


C.A. Contador et al. / Metabolic Engineering Communications 2 (2015) 76–84 77
The major polysaccharide constituent of brown macroalgae is
alginate (30–60% of the total carbohydrates). Alginate is composed
of β-D-mannuronate (M) and α-L-guluronate (G) which are linked
by 1,4-glycosidic bonds. These uronic acids can be arranged as
M-blocks, G-blocks and alternative blocks of M and G units (Rehm,
2009). Mannitol and glucan (present as laminarin and cellulose)
complete the carbohydrate composition. A key criterion for the
economic and efficient use of the various sugars derived from
brown macroalgae implies identification or design of micro-
organisms that can metabolize these carbohydrates. Metabolic
engineering and genetic transformation play an important role to
improve product yields and in the efficient use of this biomass. At
present, many efforts are being made to engineer well-character-
ized microorganisms to utilize alginate and mannitol as carbon
sources (Enquist-Newman et al., 2014; Wargacki et al., 2012). En-
quist-Newman et al. (2014) have shown that ethanol can be pro-
duced from the co-fermentation of mannitol and an alginate
monomer (4-deoxy-L-erythro-5-hexoseulose uronate, or DEHU) by
Saccharomyces cerevisiae. They circumvent the limitations of the
native strain by engineering both the mannitol and alginate
catabolic pathways (Enquist-Newman et al., 2014). The native
mannitol metabolic pathway was deregulated. The Vibrio splendi-
dus alginate metabolism pathway was reconstructed in yeast to-
gether with the integration of the DEHU transporter of Aster-
omyces cruciatis. The efficiency of the mannitol and alginate me-
tabolism pathways to produce ethanol depends on the redox
control. Mannitol as a polyol generates excess reducing equiva-
lents which must be redox balanced through an electron shunt.
For ethanol production, alginate metabolism provides a counter
balance to consume two reducing equivalents per mole of alginate.
This electron transfer enabled ethanol fermentation from these
sugars. Thus, a key step in this specific design was the selection of
a DEHU reductase (DehR) with optimal cofactor preference for
redox-balance, it preferentially uses NADH and co-uses NADH and
NADPH. Fig. 1 describes the cofactor balance to generate ethanol in
the engineered S. cerevisiae.

Ethanol fermentation from mannitol and DEHU was achieved
under two specific growth conditions, 1:2 M ratio of DEHU:man-
nitol at 6.5% (w/v) and 9.8% (w/v) total sugars where the ratios of
mannitol:DEHU consumptions were 2.4 and 2.1, respectively. In
Fig. 1. Overview of cofactor requirements
both cases, glycerol is the main by-product as it helps to achieve a
cofactor balance. However, no other ratios of mannitol:DEHU up-
takes were reported. In addition, metabolism of DEHU could lead
to a deficit of NADH. Yeast needs an excess of NADH to generate
ethanol. In order to increase the bioconversion to ethanol from
brown macroalgae sugars and allow biomass formation and me-
tabolic maintenance, it is necessary to quantify the ability of DehR
for co-use of NADH and NADPH and its impact on the redox bal-
ance and ethanol production under different ratio consumption
rates. In this study, we aim to identify the optimal flux distribution
through DehR to decrease by-products and increase the ethanol
yield on alginate and mannitol. To represent the engineered strain
used for bioconversion of brown macroalgae sugars to ethanol, we
used a context-specific model derived from the most updated
yeast genome-scale metabolic reconstruction (Heavner et al.,
2012). We evaluated the network by comparing in silico biomass
formation and by-production rates to in vivo measurements. Flux
balance analysis was used for in silico characterization of the
current metabolic state of the yeast platform and the strategies
proposed to achieve the optimal distribution (Orth et al., 2010).
2. Methodology

2.1. Metabolic model

To mimic the cellular behaviour of the synthetic yeast platform
for bioconversion of brown macroalgae sugars to ethanol a pre-
viously described genome-scale model was used to represent S.
cerevisiae metabolism. This corresponds to an updated version of
Yeast5 (Heavner et al., 2012). The yeast systems biology commu-
nity carried out this reconstruction and it includes 910 genes, 3490
reactions and 2220 metabolites. The network is fully compart-
mentalized, elementally-balanced and no regulatory constraints
have been included yet. The reconstruction is available at http://
www.comp-sys-bio.org/yeastnet/.

The biochemical reactions of the reconstruction define a stoi-
chiometric matrix that allows testing of the capabilities of the
system based on structural knowledge of the metabolic reaction
network and steady-state flux distributions. The stoichiometry-
in the engineered S. cerevisiae strain.

http://www.comp-sys-bio.org/yeastnet/
http://www.comp-sys-bio.org/yeastnet/
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oriented approaches are based on a material balance of each me-
tabolite using a quasi-steady state approximation (Llaneras and
Pico, 2008; Savinell and Palsson, 1992; Varma and Palsson, 1994):

vS 0 1· = ( )

where S is the m�n stoichiometric matrix consisting of m
metabolites and n net reactions, and v is the n�1 vector of net
reaction rates. Constraint-based linear optimization was applied to
calculate the optimal production flux distributions under specific
conditions (Becker et al., 2007; Schellenberger et al., 2011). This
method utilizes linear optimization to estimate optimum values
one can achieve given a particular objective function Z.

2.2. In silico strain

S. cerevisiae can use different sugars to grow. However, alginate
is not a natural carbon source for yeast. In addition, only some
strains of S. cerevisiae are able to assimilate mannitol whose
transport and metabolism is not fully understood (Maxwell and
Edward, 1971; Quain and Boulton, 1987). Therefore, the re-
construction of S. cerevisiae does not include pathways related to
the assimilation of alginate and mannitol. These pathways must be
added to simulate the use of brown macroalgae sugars for ethanol
production by yeast. In addition, the co-use of NADH and NADPH
by DehR was incorporated into the reconstruction. Following are
the reactions added to represent the synthetic yeast platform:

(i) DEHU reductase (DehR), both NADH and NADPH-dependent

DehR : DEHU NADH KDG NADNADH + → + +

DehR : DEHU NADPH KDG NADPNADPH + → + +

(ii) KDG kinase

KDG ATP KDGP ADP H+ ↔ + +

(iii) KDGP aldolase

KDGP Pyruvate D glyceraldehyde 3 phosphate↔ + − − −

(iv) Mannitol dehydrogenase

D Mannitol NAD NADH H D Fructose− + ↔ + + −+

Exchange and transport reactions were added for both carbon
sources.

According to the strain’s genetic background, the SUC2 gene
(YIL162W), which encodes two different forms of invertase, is
deleted (Enquist-Newman et al., 2014). Therefore, SUC2 gene was
deleted to simulate the genetic background of the strain.

2.3. In silico growth conditions

Simulations were performed for anaerobic growth on High-
Carbon (HC) media with alginate and mannitol as the carbon
sources (Enquist-Newman et al., 2014). HC medium contains vi-
tamins, trace elements, minerals and a mix of amino acids and
adenine as nitrogen sources. Details of media composition have
been described by Enquist-Newman et al. (2014). The uptake rates
of vitamins and amino acids were set to 10 and
1 mmol g DW�1 h�1, respectively (Mo et al., 2009). Trace ele-
ments and minerals were assumed to be non-limiting. Ergosterol
and unsaturated fatty acids were set at non-limiting but low levels.
Sterols and unsaturated fatty acids are required for optimal growth
of S. cerevisiae under strictly anaerobic conditions (Schulze, 1995).
The anaerobic condition was modeled by assuming an oxygen
uptake rate equal to zero. With the objective to include aspects of
the anaerobic physiology of S. cerevisiae, new constraints were
added to simulate growth under anaerobic conditions as yeast
responds differently to aerobic or anaerobic environments. It has
been observed that during anaerobic fermentation the TCA cycle
splits into two separate branches, an oxidative and a reductive
branch (Nissen et al., 1997). Therefore, the TCA cycle was forced to
act as two branches. This was achieved by bounding to zero the
reactions associated to succinate dehydrogenase and succinyl-CoA
ligase genes. From literature other constraints have been proposed
such as bounding to zero the quinone-mediated reactions invol-
ving FADH2 and NADH reoxidation (Vargas et al., 2011). The flux of
non-growth associated ATP maintenance (ATPm) was fixed at
1 mmol g DW�1 h�1 (Mo et al., 2009). This reaction simulates the
consumption of ATP by non-growth associated processes such as
maintenance of electrochemical gradients.

2.4. In silico predictions on mannitol and DEHU mixtures

To generate predictions consistent with the experimental data
under anaerobic conditions, the specific mannitol uptake rate
(MUR) and acetate formation rate (AFR) were determined from the
data points presented by Enquist-Newman et al. (2014) after spline
smoothing. This procedure was done for the two growth condi-
tions, renamed scenario 1 and 2, in which a ratio of mannitol:
DEHU consumption of 2.4 and 2.1 were assumed respectively. The
MUR and AFR (g g DW�1 h�1) were modeled as

Scenario 1
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M

M D

0. 39
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E
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+ + + ( )
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where M, D, and E are mannitol, DEHU and ethanol concentrations
(g/L), respectively. Initial concentrations were used to calculate
MUR by Eqs. (2) and (4). DEHU uptake rates (DUR) were deter-
mined by the sugar consumption ratios and MUR. These rates were
used as constraints in the simulations.

To simulate the time course profiles described in the literature
(Enquist-Newman et al., 2014), a bi-level optimization problem
was formulated to calculate the specific growth rates (μ) and
specific production rates:

Maximize Z vethanol=
subject to
maximize μ
subject to

S v i M0
j

ij j∑ = ∀ ∈

v
v

ratio
DEHU

mannitol=

v vATPM maintenance=

v 0oxygen =

v Rj rev, ∈

v Rj irrev, 0∈ +



Fig. 2. Simulation of ethanol fermentation from mannitol and DEHU. Growth rates (B) and secretion profiles for ethanol (E), glycerol (G) and acetate (A) were calculated for
scenario 1 (a,b) and scenario 2 (c,d) assuming a ratio of mannitol:DEHU consumption of 2.4 and 2.1, respectively. Experimental data is represented by symbols, and
continuous lines represent simulated values.
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where vDEHU , vmannitol, voxygen, vethanol and vATPM correspond to DEHU,
mannitol and oxygen uptake rates, ethanol production rate and
non-growth associated ATP for maintenance (ATPm), respectively.
MUR and AFR at each time point were used as inputs to calculate
the pseudo-steady-states. To simulate the late growth phase time
points, μ was bound to zero and then ethanol production rate was
maximized adding as constraint the minimization of ATP con-
sumption for maintenance. These assumptions were deemed
reasonable due to the depletion of essential nutrients and carbon
sources. In several studies maintenance of energy requirements
have been reported at values lower than 1 mmol g DW�1 h�1

(Gustafsson et al., 1993). The calculated growth, uptake and
production rates were used to determine biomass, substrate, and
product concentrations at each time point as follows:

dC

dt
r C 6

j
j x= · ( )

where rj is the substrate uptake rate or product formation rate,
Cj the concentration of product/substrate and Cx the biomass
concentration. It was assumed that the rates remain constant
during each 0.5 h integration step. The solution to this equation
was fitted to the experimental data. All simulations were per-
formed using MATLAB and the COBRA Toolbox software packages
with GurobiTM Optimizer (Gurobi Optimization, Inc., Houston, TX)
(Becker et al., 2007; Schellenberger et al., 2011).
3. Results and discussion

A genome-scale model of the S. cerevisiae metabolism (Heavner
et al., 2012) was used to simulate and assess biomass and by-
product formation in a strain designed for bioconversion of brown
macroalgae sugars to ethanol. Two conditions defined by the ratio
of mannitol:DEHU consumption, 2.4 and 2.1 at 6.5% (w/v) and 9.8%
(w/v) total sugars respectively, were evaluated experimentally
under anaerobic and microaerobic conditions to gain insight into
the metabolic behavior of this strain. Experimental data points
were present by Enquist-Newman et al. (2014). In this study, this
data was used to validate the model and to specify any model
inconsistencies. The two conditions will be referred to as scenarios
1 and 2.

3.1. Dynamic simulation of experimental data

Dynamic simulations of ethanol fermentation from mannitol
and DEHU were performed to compare the simulated profiles with
the published time course data (Enquist-Newman et al., 2014).
From the initial simulations it was observed that the calculated
specific growth rates under anaerobic conditions were too low to
achieve the experimental biomass concentrations. According to
Enquist-Newman et al. (2014), the strains developed were unable
to grow anaerobically in liquid culture, thus strains were adapted
and selected on agar plates with HC media containing DEHU and
mannitol. Actively growing aerobic cells were used as inoculum.
On the other hand, it has been mentioned that direct measure-
ment of low concentrations of oxygen, such as the oxygen probe
and redox potential, only indicate the activity of the oxygen in the
medium, but do not provide information of the oxygen flux (Visser
et al., 1990). Thus, traces of oxygen may be available and explain
the difference between the model estimations and experimental
data since only extracellular measurements are available.

Limited oxygen levels were analyzed and additional constraints
were added to the genome-scale model to simulate and fit the
time course profiles (Hjersted et al., 2007). Oxygen uptake rate
was set in dynamic simulations to minimize the difference be-
tween the experimental and predicted biomass concentration. In
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this way, traces of oxygen and strictly anaerobic growth can be
simulated. In addition, it was assumed that only the by-products
reported as synthetized by the strain are being produced. Fig. 2
shows the simulated scenarios against the time course profiles. A
good fit is observed both for scenarios 1 and 2 where the model
accurately predicts the transition between growth phases and by-
product synthesis. Slight differences are observed for ethanol and
glycerol curves in Fig. 2b and d. The additional constraints on
oxygen are essential to mimic the metabolic behavior of the strain.

3.2. Effect of DehR cofactor use

As stated above, the engineered S. cerevisiae strain is able to
metabolize alginate monomers, DEHU, through the expression of
DehR which co-uses NADH and NADPH. However, it can be seen
that even when the external fluxes are determined, there is an
additional degree of freedom at the metabolite DEHU where the
flux coming into the system is split between DehRNADH and
DehRNADPH. A sensitivity analysis was done to evaluate the effect of
the preference for a specific cofactor by DehR on the flux dis-
tributions that characterize the current metabolic states. For that
purpose, different fractions of DEHU flux through the reactions
catalyzed by DehR, DehRNADH and DehRNADPH, were evaluated. Five
cases were evaluated for scenarios 1 and 2, respectively. Fractions
were selected to range from 0 to 1 to consider cases where all the
flux is directed to only one of the reactions catalyzed by DehR. The
total flux through DehRNADH and DehRNADPH must be equal to DEHU
uptake rate (DUR). The final concentrations of biomass, ethanol
and glycerol were calculated as shown in Table 1. According to
scenario 1, experimental values of biomass, ethanol and glycerol
are 8.97, 26.19, and 5.5 g/L, respectively. In this case, it is observed
that while biomass and ethanol concentrations are well re-
presented by the model, glycerol concentrations have a lower
production depending on the flux distribution through DehRNADH
and DehRNADPH. The highest difference, 42%, was registered when
all DEHU flux goes through DehRNADH. This behavior is corrected as
the flux through DehRNADPH increases. In yeasts, glycerol is pro-
duced by the reduction of dihydroxyacetone phosphate (DHAP) to
glycerol-3-phosphate (G3P), a reaction catalyzed by cytosolic
NADþ-dependent G3P dehydrogenase; G3P is subsequently de-
phosphorylated by a glycerol-3-phosphatase. During anaerobic
growth, glycerol production serves as a redox sink to maintain the
cytosolic redox balance by consuming NADH (Overkamp et al.,
2002). On the other hand, Table 1 shows that as the fraction of
DEHU flux processed by DehRNADPH increased, the OUR needed to
attain the required biomass concentration also increased. It is also
observed that ethanol production decreases although the differ-
ence is less than 10% compared to the experimental value. These
results can be explained because of the role that NADP(H) plays in
anabolism since many of the reactions involved in the biosynthesis
Table 1
Effect of DehR co-use of NADH and NADPH in the final concentrations of biomass,
ethanol and glycerol (g/L) for scenarios 1 and 2. DEHU (DUR) and oxygen uptake
rates (OUR) units are mmol g DW�1 h�1.

Condition DehRNADH Biomass Ethanol Glycerol OUR

Scenario 1 DUR 9.0 26.8 3.2 0.06
0.8DUR 9.0 26.1 3.3 0.10
0.5DUR 9.0 25.2 4.2 0.14
0.2DUR 9.0 24.5 4.8 0.19
0 9.0 23.7 5.3 0.22

Scenario 2 DUR 16.3 39.1 6.3 0.01
0.8DUR 16.3 38.4 9.1 0.01
0.5DUR 16.3 36.5 8.0 0.05
0.2DUR 16.3 33.7 7.7 0.10
0 16.3 24.8 16.0 0.13
of amino acids, lipids and nucleotides use NADPH as the reducing
agent. Due to the oxidation of NADPH by DehRNADPH, less reducing
agent is available to support the growth and thus more oxygen is
needed. Additionally, the more NADH that goes to glycerol pro-
duction, the less is available for ethanol production.

For scenario 2, experimental values of biomass, ethanol and
glycerol are 16, 36.4, and 10.77 g/L, respectively. As in scenario 1,
the biggest variations are for the calculated glycerol concentra-
tions. As the fraction of DEHU flux processed by DehRNADPH in-
creased the OUR needed to attain the biomass concentration also
increased and ethanol production decreases. However, in this case
the best fit is obtained when 80% of DUR is processed through
DehRNADH and only 20% goes through DehRNADPH where the OUR is
almost zero. Differences in the flux distribution between scenarios
are ascribed both to the different initial concentrations of biomass
and the length of growth periods. In scenario 1, biomass con-
centration increased from 6 to 9 g/l in 18 h while in scenario 2, the
increase was from 15 to 16 g/ in 30 h.

From these results, it is evident that DehR co-use of NADH and
NADPH has an impact on ethanol production and by-product
synthesis. To take a picture of the flux distribution and conditions
that determine both scenarios, simulations were done at time 3 h
where the cells are still growing. Fig. 3 shows the flux distributions
obtained with the conditions of scenarios 1 and 2 at the men-
tioned time. In the first case, Fig. 3a, all DEHU is converted to
2-Keto-3-Deoxy-D-Gluconate (KDG) by the reaction DehRNADPH.
Consequently, the system must be adjusted to balance the reduced
cofactor NADH produced in mannitol reduction. This is achieved
through the synthesis of glycerol from DHAP. In addition, a fraction
of DHAP is transported to the mitochondria where the NADH
produced by malate dehydrogenase is used to produce G3P that is
then transported to the cytosol. The glycerol produced reduces the
excess of NADH in both the cytosol and mitochondria. On the other
hand for scenario 2, Fig. 3b shows that DEHU is mostly oxidized
through DehRNADH, which contributes to oxidation of the NADH
produced by mannitol reduction. In this case, the glycerol pro-
duction rate is lower than in scenario 1. However, its production is
still required to reduce the excess of NADH since the rate of the
reaction catalyzed by mannitol dehydrogenase is higher than
DehRNADH. The lower growth rate implies that the rate of the re-
action catalyzed by malate dehydrogenase is lower. In both cases,
low growth rates are predicted to achieve the experimental values
since cells seem to be at the end of the exponential phase.

3.3. Simulation of optimal ethanol production

In the experiments presented by Enquist-Newman et al. (2014),
ethanol fermentations were performed from mannitol and DEHU
at a specific molar ratio to mimic the sugars prepared via their
biorefinery approach. However, macroalgae carbohydrate content
varies depending on factors such as season and water depth
(Adams et al., 2011; Draget et al., 2005) and even more important
is the ratio of mannitol:DEHU consumption. Experimentally only
two consumption ratios were presented, 2.4 and 2.1, that defined
the two scenarios evaluated in this work. The energy and reducing
agents generated by the system should be in proportion to the
availability of carbon sources to generate biomass. If it is assumed
that glucose is the optimum carbon source for yeast, the mannitol:
DEHU ratio to produce the same amount of NADH and ATP than
glucose is around 2. Thus, it could be of interest to analyze the
system’s response against changes in these variables and how
ethanol production can be optimized. To study the influence of
sugar consumption rate on cellular metabolism, mannitol uptake
rate (MUR) was allowed to take values from 0.8 to
1.5 mmol g DW�1 h�1. This interval covers experimental ranges
and simulates new conditions since initial MUR were 1.38 and



Fig. 3. Flux distributions at time 3 h: (a) Scenario 1 assuming DehRNADPH¼DUR, (b) Scenario 2 assuming DehRNADPH¼0.2DUR. All fluxes are in the direction of the arrows. A
negative value means that the flux is in the direction opposite to the arrow.
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1.16 mmol g�1 h�1 for scenarios 1 and 2, respectively. The range
for the ratio of mannitol:DEHU consumptionwas defined from 1 to
2.4. For the simulations, it was considered that the DEHU flux
coming into the system is split into DehRNADH and DehRNADPH. Flux
distributions were calculated assuming a split ratio of 80:20, re-
spectively. This allows the co-use of NADH and NADPH with a
preference for NADH. Simulations were also carried out assuming
a split ratio of 96:4 where 96% of DEHU is processed by the NADH
reductase. Results were extremely similar to those obtained with
the 80:20 ratio which are explained in detail and shown in Fig. 4.
This figure shows the effect of the ratio of mannitol:DEHU con-
sumption and MUR over growth rate, ethanol, glycerol, and acetate
production rates and substrate yield on ethanol. For the ranges
established, it is observed that the maximum growth rate,
0.036 h�1, is achieved when MUR is in the region
1.35–1.5 mmol g DW�1 h�1 and the ratio MUR:DUR is around 1,
which means maximum growth is favored when both substrates
are consumed at the same specific rates. In this case, the NADH
produced in the reduction of mannitol is balanced through DEHU
oxidation because a higher percentage of the DEHU flux goes
through DehRNADH. From Fig. 4a it can be observed that growth
rate decreases as the mannitol uptake rate decreased and the ratio
MUR:DUR increased. The initial growth rates for the MUR and
ratio mannitol:DEHU experimental values registered for scenarios
1 and 2 are near the growth curves of 0.02 and 0.015 h�1, re-
spectively. These growth curves are away from the optimal growth



Fig. 4. Effect of the ratio of mannitol:DEHU consumption and mannitol uptake rates (MUR, mmol g DW�1 h�1) on (a) the specific growth rate (h�1), (b) ethanol, (c ) glycerol
and (d) acetate specific synthesis rates (mmol g DW�1 h�1), and (e) ethanol yield on substrate. The arrows show changes during growth under conditions of scenario 2 in
batch fermentation.
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conditions, which is important since ethanol production rates
show a similar behavior to growth. Fig. 4b shows that ethanol
production increases as the MUR increased and the ratio MUR:
DUR decreased. The maximum ethanol production curve is
reached when MUR is in the region 1.35–1.5 mmol g DW�1 h�1

and the ratio MUR:DUR is lower than 1.6. The ethanol production
predicted for conditions under scenarios 1 and 2 are near to the
production curves of 3.36 and 2.51 mmol g DW�1 h�1, respec-
tively. These values are lower than the maximum calculated. It is
interesting to highlight that the model only predicts glycerol
production at ratios of MUR:DUR higher than 2, which is the
current metabolic state of this strain. Glycerol and acetate pro-
duction curves are shown in Fig. 4c and d. Acetate production
curves are only predicted at ratios of MUR:DUR lower than 1.6
(Fig. 4d), acetate increases as the MUR increased and the ratio of
MUR:DUR decreased. This behavior is explained since the NADPH
produced by biosynthetic reactions must be oxidized. In this case,
predicted values are slightly different from experimental data
since according to scenario 2, acetate should be produced at a ratio
of MUR:DUR equal to 2.1. The difference is explained by the trace
elements of oxygen that were set to 0.1 mmol g DW�1 h�1, a
higher value than the best fit in Table 1. Finally, substrate yield on
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ethanol as a function of MUR and the ratio MUR:DUR is shown in
Fig. 4e. The maximum ethanol yield corresponds to the curve
defined by a mannitol uptake rate between 0.8 and
1.2 mmol g DW�1 h�1 and a ratio of mannitol:DEHU higher than
1.8. This state is characterized by the absence of glycerol and
acetate production. The conditions of the experimental data are
found in the upper right corner of the diagram and inside the area
defined for the maximum ethanol yield curve, respectively. How-
ever, experimental conditions are not able to reach maximum
yield, because of by-product production. In addition, MUR changes
during the process due to the decrease in substrate concentration
and the increase in ethanol concentration (relationships in Eqs. (2)
and (4)). Assuming constant ratios of mannitol:DEHU consump-
tion (Enquist-Newman et al., 2014), the changes in growth rate,
ethanol, and glycerol production rates and substrate yield on
ethanol, respectively in the batch fermentation for scenario 2 were
represented by an horizontal line in Fig. 4.

The fact that experimental data is not near optimal conditions
is due to the low flux into the alginate catabolic pathway in spite
of the current metabolic structure. This could be ascribed to a
slower rate of DEHU transport compared to mannitol uptake rate
and/or regulatory elements that are not included in the model for
identification. For example, codon optimization of KDG Kinase
from E. coli has shown high expression of the protein in S. cere-
visiae. However, low enzyme activity has been reported in yeast
(Benisch and Boles, 2014). This enzyme contains an [4Fe4S] cluster
(Gardner and Fridovich, 1991) which possibly is not recognized as
apoprotein for [FeS] incorporation or is inactivated by reactive
oxygen species (ROS) due to an insufficient repair mechanism in
yeast (Benisch and Boles, 2014). Benisch and Boles (2014) tested
diverse strategies to improve enzyme activity without positive
results. The optimized strain described by Enquist-Newman et al.
(2014) has a genome-integrated KDG Kinase gene from E. coli.
These factors must be evaluated in order to test other strategies to
reach the desirable scenario such as to replace native enzymatic
reactions with heterologous enzymes that have specificity for the
opposite cofactor for engineering of the redox metabolism in S.
cerevisiae (King and Feist, 2013; Bro et al., 2006).
4. Conclusions

In this study, a genome-scale model of S. cerevisiae metabolism
(Heavner et al., 2012) was used to simulate and assess biomass and
by-product formation in a strain designed for bioconversion of
brown macroalgae sugars to ethanol. Two conditions defined by
the ratio of mannitol:DEHU consumption, 2.4 and 2.1, were eval-
uated experimentally under anaerobic conditions to gain insight
into the metabolic behavior of this strain. Experimental data
points were taken from Enquist-Newman et al. (2014). In this
study, the two conditions were referred to as scenarios 1 and 2,
respectively. The model predicted with accuracy biomass and
product formation in the yeast platform under anaerobic condi-
tions for scenarios 1 and 2. Since the entire flux map is not known,
as only the external fluxes have been measured, a variety of split
ratios were examined between DehRNADH and DehRNADPH. This
allows the characterization of the current metabolic state of the
strain. It was observed that the flux split into DehRNADH and
DehRNADPH determines the redox balance of the system, by-pro-
duct formation and ethanol production. The model shows that
traces of oxygen must be present in the system. From the ex-
perimental data and simulations, the main by-product was gly-
cerol. Glycerol is produced to reduce the excess of NADH when the
rate of the reaction catalyzed by mannitol dehydrogenase is higher
than DehRNADH. Glycerol formation is undesirable in the industrial
production of ethanol from carbohydrate feedstocks. Some
strategies have been suggested for reducing glycerol production by
S. cerevisiae during fermentation (Albers et al., 1996; Weusthuis
et al., 1994). For the co-fermentation of mannitol and DEHU,
oxygen could be controlled to balance any difference between
mannitol reduction and DEHU oxidation; however at a large scale
oxygen control may be not feasible.

To optimize the current metabolic state, a serie of simulations
were done to study the effect of the ratio of mannitol:DEHU
consumption and mannitol uptake rates assuming the co-use of
NADH and NADPH by DehR with a preference for NADH. It was
observed that the relationship between the ratio of mannitol:
DEHU consumption and mannitol uptake rate could favor a de-
crease or increase in growth and product formation. The condi-
tions for maximum ethanol production were established when
MUR was in the region between 1.35 and 1.5 mmol g DW�1 h�1

and the ratio MUR:DUR was lower than 1.6. This state is char-
acterized for high growth rates, no glycerol production, low acet-
ate production, and high ethanol yields. In this case, NADH pro-
duced in the oxidation of mannitol is balanced through DEHU
reduction because a higher percentage of the DEHU flux goes into
DehRNADH.

In this study, we have shown that the full potential of brown
macroalgae as feedstocks for biofuel production and other more
valuable chemicals depends on the equilibrium of cofactors de-
rived from the alginate and mannitol catabolic pathways. The
genome-scale model is a useful tool to evaluate theoretically dif-
ferent hypothesis about the metabolic behavior of this strain. The
analysis shows a number of metabolic limitations that are not
easily identified through experimental procedures such as quan-
tifying the impact of the cofactor preference by DEHU reductase in
the system, the low flux into the alginate catabolic pathway, and a
detailed analysis of the redox balance. These modern metabolic
modeling tools are very useful to aid the research and develop-
ment necessary to produce ethanol and other metabolites from
brown macroalgae. This is a first modeling approach to assess the
co-fermentation of manitol and an alginate monomer (DEHU) by
Saccharomyces cerevisiae.
Acknowledgements

We would like to thank BAL for the support of a postdoctoral
fellow (C.A.C.) and the Conicyt Basal Centre Grant for the CeBiB
(FB0001).
Appendix A. Supplementary material

Supplementary data associated with this article can be found in
the online version at http://dx.doi.org/10.1016/j.meteno.2015.06.004.
References

Adams, J.M.M., Toop, T.A., Donnison, I.S., Gallagher, J.A., 2011. Seasonal variation in
Laminaria digitata and its impact on biochemical conversion routes to biofuels.
Bioresour. Technol. 102, 9976–9984.

Albers, E., Larsson, C., Lidén, G., Niklasson, C., Gustafsson, L., 1996. Influence of the
nitrogen source on Saccharomyces cerevisiae. Anaerobic growth and product
formation. Appl. Environ. Microbiol. 62, 3187–3195.

Becker, S.A., Feist, A.M., Mo, M.L., Hannum, G., Palsson, B.Ø., Herrgard, M.J., 2007.
Quantitative prediction of cellular metabolism with constraint-based models:
the COBRA toolbox. Nat. Protoc. 2, 727–738.

Benisch, F., Boles, E., 2014. The bacterial Entner–Doudoroff pathway does not re-
place glycolysis in Saccharomyces cerevisiae due to the lack of activity of iron-
sulfur cluster enzyme 6-phosphogluconate dehydratase. J. Biotechnol. 171,
45–55.

Bro, C., Regenberg, B., Förster, J., Nielsen, J., 2006. In silico aided metabolic en-
gineering of Saccharomyces cerevisiae for improved bioethanol production.

http://dx.doi.org/10.1016/j.meteno.2015.06.004
http://refhub.elsevier.com/S2214-0301(15)30004-3/sbref1
http://refhub.elsevier.com/S2214-0301(15)30004-3/sbref1
http://refhub.elsevier.com/S2214-0301(15)30004-3/sbref1
http://refhub.elsevier.com/S2214-0301(15)30004-3/sbref1
http://refhub.elsevier.com/S2214-0301(15)30004-3/sbref2
http://refhub.elsevier.com/S2214-0301(15)30004-3/sbref2
http://refhub.elsevier.com/S2214-0301(15)30004-3/sbref2
http://refhub.elsevier.com/S2214-0301(15)30004-3/sbref2
http://refhub.elsevier.com/S2214-0301(15)30004-3/sbref4
http://refhub.elsevier.com/S2214-0301(15)30004-3/sbref4
http://refhub.elsevier.com/S2214-0301(15)30004-3/sbref4
http://refhub.elsevier.com/S2214-0301(15)30004-3/sbref4
http://refhub.elsevier.com/S2214-0301(15)30004-3/sbref5
http://refhub.elsevier.com/S2214-0301(15)30004-3/sbref5
http://refhub.elsevier.com/S2214-0301(15)30004-3/sbref5
http://refhub.elsevier.com/S2214-0301(15)30004-3/sbref5
http://refhub.elsevier.com/S2214-0301(15)30004-3/sbref5
http://refhub.elsevier.com/S2214-0301(15)30004-3/sbref6
http://refhub.elsevier.com/S2214-0301(15)30004-3/sbref6


C.A. Contador et al. / Metabolic Engineering Communications 2 (2015) 76–8484
Metab. Eng. 8, 102–111.
Draget, K.I., Smidsrùd, O., Skjåk-brñk, G., 2005. Alginates from algae. In: Alexander

Steinbüchel , Sang Ki Rhee (Eds). Polysaccharides and Polyamides in the Food
Industry. Wiley-VCH Verlag GmbH & Co. KGaA, pp. 1–30.

Enquist-Newman, M., Faust, A.M.E., Bravo, D.D., Santos, C.N.S., Raisner, R.M., Hanel,
A., Sarvabhowman, P., Le, C., Regitsky, D.D., Cooper, S.R., Peereboom, L., Clark, A.,
Martinez, Y., Goldsmith, J., Cho, M.Y., Donohoue, P.D., Luo, L., Lamberson, B.,
Tamrakar, P., Kim, E.J., Villari, J.L., Gill, A., Tripathi, S.A., Karamchedu, P., Paredes,
C.J., Rajgarhia, V., Kotlar, H.K., Bailey, R.B., Miller, D.J., Ohler, N.L., Swimmer, C.,
Yoshikuni, Y., 2014. Efficient ethanol production from brown macroalgae sugars
by a synthetic yeast platform. Nature 505, 239–243.

Gardner, P.R., Fridovich, I., 1991. Superoxide sensitivity of the Escherichia coli aco-
nitase. J. Biol. Chem 266, 19328–19333.

Gustafsson, L., Larsson, K., Larsson, C., Adler, L., 1993. Maintenance energy re-
quirements under stress conditions Pure & Appl. Chem. 65, 1893–1898.

Heavner, B.D., Smallbone, K., Barker, B., Mendes, P., Walker, L.P., 2012. Yeast 5-an
expanded reconstruction of the Saccharomyces cerevisiae metabolic network.
BMC Syst. Biol. 6, 55.

Hjersted, J.L., Henson, M.A., Mahadevan, R., 2007. Genome-scale analysis of Sac-
charomyces cerevisiae metabolism and ethanol production in fed-batch culture.
Biotechnol. Bioeng. 97, 1190–1204.

Jang, Y.S., Park, J.M., Choi, S., Choi, Y.J., Seung, D.Y., Cho, J.H., Lee, S.Y., 2012. En-
gineering of microorganisms for the production of biofuels and perspectives
based on systems metabolic engineering approaches. Biotechnol. Adv. 30,
989–1000.

Jung, K.A., Lim, S.R., Kim, Y., Park, J.M., 2013. Potentials of macroalgae as feedstocks
for biorefinery. Bioresour. Technol. 135, 182–190.

King, Z.A., Feist, A.M., 2013. Optimizing cofactor specificity of oxidoreductase en-
zymes for the generation of microbial production strains—OptSwap. Ind. Bio-
technol. 9, 236–246.

Llaneras, F., Pico, J., 2008. Stoichiometric modelling of cell metabolism. J. Biosci.
Bioeng. 105, 1–11.

Maxwell, W.A., Edward, S., 1971. Mannitol uptake by Saccharomyces cerevisiae. J.
Bacteriol. 105 (3), 753–758.

Mo, M.L., Palsson, B.Ø., Herrgård, M.J., 2009. Connecting extracellular metabolomic
measurements to intracellular flux states in yeast. BMC Syst. Biol. 3, 37.
Nissen, T.L., Ulrik, S., Nielsen, J., Villadsen, J., 1997. Flux distributions in anaerobic,
glucose-limited continuous cultures of Saccharomyces cerevisiae. Microbiology
143, 203–218.

Orth, J.D., Thiele, I., Palsson, B.Ø., 2010. What is flux balance analysis? Nat. Bio-
technol. 28, 245–248.

Overkamp, K.M., Kötter, P., van der Hoek, R., Schoondermark-Stolk, S., Luttik, M.A.
H., van Dijken, J.P., Pronk, J.T., 2002. Functional analysis of structural genes for
NAD(þ)-dependent formate dehydrogenase in Saccharomyces cerevisiae. Yeast
19, 509–520.

Quain, D.E., Boulton, B., 1987. Growth and Metabolism of Mannitol by Strains of
Saccharomyces cerevisiae. J. Gen. Microbiol. 133 (7), 1675–1684.

Rehm, B.H.A. (Ed.), 2009. Alginates: Biology and Applications. Springer, Berlin,
Heidelberg.

Savinell, J.M., Palsson, B.Ø., 1992. Network analysis of intermediary metabolism
using linear optimization. I. Development of mathematical formalism. J. Theor.
Biol. 154, 421–454.

Schellenberger, J., Que, R., Fleming, R.M.T., Thiele, I., Orth, J.D., Feist, A.M., Zielinski,
D.C., Bordbar, A., Lewis, N.E., Rahmanian, S., Kang, J., Hyduke, D.R., Palsson, B.Ø.,
2011. Quantitative prediction of cellular metabolism with constraint-based
models: the COBRA Toolbox v2.0. Nat. Protoc. 6, 1290–1307.

Schulze, U., 1995. Anaerobic Physiology of Saccharomyces cerevisiae. Technical
University of Denmark.

Vargas, F., Pizarro, F., Pérez-Correa, J.R., Agosin, E., 2011. Expanding a dynamic flux
balance model of yeast fermentation to genome-scale. BMC Syst. Biol. 5 (75).

Varma, A., Palsson, B.Ø., 1994. Metabolic flux balancing: basic concepts, scientific
and practical use. Nat. Biotechnol. 12, 994–998.

Visser, W., Scheffers, W.A., Batenburg-van der Vegte, W.H., van Dijken, J.P., 1990.
Oxygen requirements of yeasts. Appl. Environ. Microbiol. 56, 3785–3792.

Wargacki, A.J., Leonard, E., Win, M.N., Regitsky, D.D., Santos, C.N.S., Kim, P.B.,
Cooper, S.R., Raisner, R.M., Herman, A., Sivitz, A.B., Lakshmanaswamy, A., Ka-
shiyama, Y., Baker, D., Yoshikuni, Y., 2012. An engineered microbial platform for
direct biofuel production from brown macroalgae. Science 335, 308–313.

Weusthuis, R.A., Visser, W., Pronk, J.T., Scheffers, W.A., Van Dijken, J.P., 1994. Effects
of oxygen limitation on sugar metabolism in yeasts: a continuous-culture study
of the Kluyver effect. Microbiology 140, 703–715.

http://refhub.elsevier.com/S2214-0301(15)30004-3/sbref6
http://refhub.elsevier.com/S2214-0301(15)30004-3/sbref6
http://refhub.elsevier.com/S2214-0301(15)30004-3/sbref7
http://refhub.elsevier.com/S2214-0301(15)30004-3/sbref7
http://refhub.elsevier.com/S2214-0301(15)30004-3/sbref7
http://refhub.elsevier.com/S2214-0301(15)30004-3/sbref7
http://refhub.elsevier.com/S2214-0301(15)30004-3/sbref7
http://refhub.elsevier.com/S2214-0301(15)30004-3/sbref7
http://refhub.elsevier.com/S2214-0301(15)30004-3/sbref7
http://refhub.elsevier.com/S2214-0301(15)30004-3/sbref7
http://refhub.elsevier.com/S2214-0301(15)30004-3/sbref8
http://refhub.elsevier.com/S2214-0301(15)30004-3/sbref8
http://refhub.elsevier.com/S2214-0301(15)30004-3/sbref8
http://refhub.elsevier.com/S2214-0301(15)30004-3/sbref9
http://refhub.elsevier.com/S2214-0301(15)30004-3/sbref9
http://refhub.elsevier.com/S2214-0301(15)30004-3/sbref9
http://refhub.elsevier.com/S2214-0301(15)30004-3/sbref9
http://refhub.elsevier.com/S2214-0301(15)30004-3/sbref10
http://refhub.elsevier.com/S2214-0301(15)30004-3/sbref10
http://refhub.elsevier.com/S2214-0301(15)30004-3/sbref10
http://refhub.elsevier.com/S2214-0301(15)30004-3/sbref11
http://refhub.elsevier.com/S2214-0301(15)30004-3/sbref11
http://refhub.elsevier.com/S2214-0301(15)30004-3/sbref11
http://refhub.elsevier.com/S2214-0301(15)30004-3/sbref11
http://refhub.elsevier.com/S2214-0301(15)30004-3/sbref12
http://refhub.elsevier.com/S2214-0301(15)30004-3/sbref12
http://refhub.elsevier.com/S2214-0301(15)30004-3/sbref12
http://refhub.elsevier.com/S2214-0301(15)30004-3/sbref12
http://refhub.elsevier.com/S2214-0301(15)30004-3/sbref12
http://refhub.elsevier.com/S2214-0301(15)30004-3/sbref13
http://refhub.elsevier.com/S2214-0301(15)30004-3/sbref13
http://refhub.elsevier.com/S2214-0301(15)30004-3/sbref13
http://refhub.elsevier.com/S2214-0301(15)30004-3/sbref14
http://refhub.elsevier.com/S2214-0301(15)30004-3/sbref14
http://refhub.elsevier.com/S2214-0301(15)30004-3/sbref14
http://refhub.elsevier.com/S2214-0301(15)30004-3/sbref14
http://refhub.elsevier.com/S2214-0301(15)30004-3/sbref15
http://refhub.elsevier.com/S2214-0301(15)30004-3/sbref15
http://refhub.elsevier.com/S2214-0301(15)30004-3/sbref15
http://refhub.elsevier.com/S2214-0301(15)30004-3/sbref16
http://refhub.elsevier.com/S2214-0301(15)30004-3/sbref16
http://refhub.elsevier.com/S2214-0301(15)30004-3/sbref16
http://refhub.elsevier.com/S2214-0301(15)30004-3/sbref17
http://refhub.elsevier.com/S2214-0301(15)30004-3/sbref17
http://refhub.elsevier.com/S2214-0301(15)30004-3/sbref18
http://refhub.elsevier.com/S2214-0301(15)30004-3/sbref18
http://refhub.elsevier.com/S2214-0301(15)30004-3/sbref18
http://refhub.elsevier.com/S2214-0301(15)30004-3/sbref18
http://refhub.elsevier.com/S2214-0301(15)30004-3/sbref19
http://refhub.elsevier.com/S2214-0301(15)30004-3/sbref19
http://refhub.elsevier.com/S2214-0301(15)30004-3/sbref19
http://refhub.elsevier.com/S2214-0301(15)30004-3/sbref20
http://refhub.elsevier.com/S2214-0301(15)30004-3/sbref20
http://refhub.elsevier.com/S2214-0301(15)30004-3/sbref20
http://refhub.elsevier.com/S2214-0301(15)30004-3/sbref20
http://refhub.elsevier.com/S2214-0301(15)30004-3/sbref20
http://refhub.elsevier.com/S2214-0301(15)30004-3/sbref20
http://refhub.elsevier.com/S2214-0301(15)30004-3/sbref20
http://refhub.elsevier.com/S2214-0301(15)30004-3/sbref20
http://refhub.elsevier.com/S2214-0301(15)30004-3/sbref21
http://refhub.elsevier.com/S2214-0301(15)30004-3/sbref21
http://refhub.elsevier.com/S2214-0301(15)30004-3/sbref21
http://refhub.elsevier.com/S2214-0301(15)30004-3/sbref22
http://refhub.elsevier.com/S2214-0301(15)30004-3/sbref22
http://refhub.elsevier.com/S2214-0301(15)30004-3/sbref22
http://refhub.elsevier.com/S2214-0301(15)30004-3/sbref22
http://refhub.elsevier.com/S2214-0301(15)30004-3/sbref23
http://refhub.elsevier.com/S2214-0301(15)30004-3/sbref23
http://refhub.elsevier.com/S2214-0301(15)30004-3/sbref23
http://refhub.elsevier.com/S2214-0301(15)30004-3/sbref23
http://refhub.elsevier.com/S2214-0301(15)30004-3/sbref23
http://refhub.elsevier.com/S2214-0301(15)30004-3/sbref24
http://refhub.elsevier.com/S2214-0301(15)30004-3/sbref24
http://refhub.elsevier.com/S2214-0301(15)30004-3/sbref25
http://refhub.elsevier.com/S2214-0301(15)30004-3/sbref25
http://refhub.elsevier.com/S2214-0301(15)30004-3/sbref26
http://refhub.elsevier.com/S2214-0301(15)30004-3/sbref26
http://refhub.elsevier.com/S2214-0301(15)30004-3/sbref26
http://refhub.elsevier.com/S2214-0301(15)30004-3/sbref27
http://refhub.elsevier.com/S2214-0301(15)30004-3/sbref27
http://refhub.elsevier.com/S2214-0301(15)30004-3/sbref27
http://refhub.elsevier.com/S2214-0301(15)30004-3/sbref28
http://refhub.elsevier.com/S2214-0301(15)30004-3/sbref28
http://refhub.elsevier.com/S2214-0301(15)30004-3/sbref28
http://refhub.elsevier.com/S2214-0301(15)30004-3/sbref28
http://refhub.elsevier.com/S2214-0301(15)30004-3/sbref28
http://refhub.elsevier.com/S2214-0301(15)30004-3/sbref29
http://refhub.elsevier.com/S2214-0301(15)30004-3/sbref29
http://refhub.elsevier.com/S2214-0301(15)30004-3/sbref29
http://refhub.elsevier.com/S2214-0301(15)30004-3/sbref29

	Analyzing redox balance in a synthetic yeast platform to improve utilization of brown macroalgae as feedstock
	Introduction
	Methodology
	Metabolic model
	In silico strain
	In silico growth conditions
	In silico predictions on mannitol and DEHU mixtures

	Results and discussion
	Dynamic simulation of experimental data
	Effect of DehR cofactor use
	Simulation of optimal ethanol production

	Conclusions
	Acknowledgements
	Supplementary material
	References




