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Background
In modern pharmacotherapy, it is common to use drug cocktails to deal with one or 
multiple diseases affecting an individual. Unfortunately, some of these therapies result 
in drug–drug interactions (DDIs) when two or more drugs interact and alter each 
other expected behavior (i.e. pharmacokinetic (PK), pharmacodynamic (PD), absorp-
tion, distribution, metabolism, excretion, efficacy, or toxicity) [1]. Generally, DDIs can 
be avoided. However, if undetected before administration, they can harm patients and 
incur substantial costs to the health care systems.

Abstract 

Background:  Deep learning methods are a proven commodity in many fields and 
endeavors. One of these endeavors is predicting the presence of adverse drug–drug 
interactions (DDIs). The models generated can predict, with reasonable accuracy, 
the phenotypes arising from the drug interactions using their molecular structures. 
Nevertheless, this task requires improvement to be truly useful. Given the complexity 
of the predictive task, an extensive benchmarking on structure-based models for DDIs 
prediction was performed to evaluate their drawbacks and advantages.

Results:  We rigorously tested various structure-based models that predict drug inter-
actions using different splitting strategies to simulate different real-world scenarios. 
In addition to the effects of different training and testing setups on the robustness 
and generalizability of the models, we then explore the contribution of traditional 
approaches such as multitask learning and data augmentation.

Conclusion:  Structure-based models tend to generalize poorly to unseen drugs 
despite their ability to identify new DDIs among drugs seen during training accurately. 
Indeed, they efficiently propagate information between known drugs and could be 
valuable for discovering new DDIs in a database. However, these models will most 
probably fail when exposed to unknown drugs. While multitask learning does not help 
in our case to solve the problem, the use of data augmentation does at least mitigate it. 
Therefore, researchers must be cautious of the bias of the random evaluation scheme, 
especially if their goal is to discover new DDIs.
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Traditionally, in  vivo experiments and clinical trials were used to detect and char-
acterize DDIs [2, 3]. However, due to the vast number of multi-drug therapies and the 
large amount of labor, time, and costs required by these procedures, systematic screen-
ing of all drug combinations is unrealistic. Moreover, due to the cohort size in clinical 
trials, many DDIs remain undetected or mischaracterized until drugs are approved and 
treatments are administered to patients [4]. It creates a substantial workload for post-
approval and drug safety surveillance agencies. These agencies must be alert all time to 
detect and prevent the administration of harmful drug combinations.

Over the last decade, in silico methods have shown the capability to detect and char-
acterize certain DDIs [5–28]. These methods are inexpensive and fast compared to evi-
dence-based methods. Despite being less accurate than evidence-based approaches, in 
silico methods have truly assisted with the current understanding of DDIs and conse-
quently with therapy recommendations and prioritization [29]. These methods can be 
roughly classified into three categories : text mining-based, machine learning-based, and 
deep learning-based methods [8, 17–22, 25–28]. Text mining-based methods allowed to 
extract already annotated and known DDIs from the literature, while machine and deep 
learning-based methods are a promising way to identify and characterize non-annotated 
potential DDIs. The accumulation of data from the scientific literature and electronic 
medical records has strongly favored the development of the field [30, 31].

Nevertheless, in silico computational methods warrant additional investigation and 
validation before being fully adopted and integrated into pharmacotherapy development 
and regulatory processes. This reluctance is primarily due to the lack of comprehension 
and trust in the robustness and the readiness of DDIs modeling for real-world applica-
tions. The absence of training, evaluation, and model deployment consensus also deters 
the integration. Many studies report performance metrics that can be hardly attributed 
to modeling improvements alone [8, 17–22, 25–28].

The DDIs prediction models’ performances are currently predicated on the data par-
titioning process, i.e., training and testing sets. The need to standardize this process is 
urgent since the outcomes of these models will differ depending on the intended use and 
how the modeling was performed. In addition, most DDIs models’ performance reports 
do not reflect their true generalization capabilities. Indeed, studies usually report aggre-
gated performance over many types of DDIs, giving an unrealistic view of the capa-
bilities and limitations of the models. This performance misrepresentation is due to 
the unequal distribution of DDIs in the population. Since the accuracy of deep learn-
ing models is dependent on the data size, reporting aggregated results thus hides these 
nuances and pushes the field towards improving average performance while neglecting 
the worst-case performance. Therefore, a detailed performance report is necessary to 
improve DDIs prediction where it matters the most with a finer and in-depth compari-
son of modeling approaches. Another major problem is the lack of consensus on the 
input information needed for accurate DDIs modeling [32]. Most of the available mod-
els often use different combinations of input features among molecular structure, target 
information, pathways, individual drug side-effects, Absorption–Distribution–Metabo-
lism–Excretion–Toxicity (ADMET) profiles, target indications, among others [20–24]. 
Thus, the deployment environment for DDIs prediction models depends on the avail-
ability of these features at the different drug development stages. For example, using 
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molecular structures alone allows DDIs prediction models to be used at any stage of the 
drug discovery process, while using ADMET profile limits models to late stages only. In 
comparison to methods using different feature combinations, [17, 19, 28, 32] reported a 
state-of-the-art performance by simply improving molecular representation and using 
molecular structures. Therefore, enhancing molecular representation should be the 
common ground for improved DDIs prediction models favoring their deployment at any 
drug and therapy development stage. However, the lack of standardization and accepted 
procedures creates confusion about what constitutes state-of-the-art DDIs prediction 
models.

This study investigates the robustness of the generalization of molecular structure-
based DDIs prediction models. The motivation is the unrestricted deployment of such 
models, for example, in the early stages of the drugs discovery process, where they could 
assist candidate prioritization, improve downstream attrition in clinical trials, and aid 
in understanding the mechanism of action of some candidates. Our investigation evalu-
ated the potential of structure-based DDIs models to be used in an unrestricted fashion 
in drug development and identified some of the hurdles impeding this goal. Hence, we 
tested a three-level scenario the capability of current methods to generalize and define 
the applicable parameters. We also investigated how to remove some of the limitations 
to maximize the use of existing models to provide practical applications in the field.

The paper is structured as follows. In “Problem formalism” section, we present the 
DDIs problem and clarify any assumptions that were made and set the expectations 
about the results and the methods. “Evaluation schemes” section presents three evalua-
tion schemes that test different levels of generalization, which will highlight the capabili-
ties of current DDIs prediction models. In the “Modelling” and “Featurization” sections, 
a general multi-label classification engine is presented. It generalizes previous structure-
based DDIs models by using state-of-the-art feature extraction techniques. “Data and 
partitioning” and “Metrics” sections provide details about the datasets and the met-
rics which were used to train, evaluate and assess models’ performances. Finally, the 
“Results” section presents the experiments and analyzes the current level of generaliza-
tion that can be achieved with structure-based models. It also discusses the factors that 
impact this ability to generalize and discover new DDIs using imperfect models.

Material and methods
Problem formalism

Let x := (x1, x2) be a drug pair, with x1 and x2 being two drugs belonging to a molecu-
lar space X  . The associated phenotypes form a set denoted y :=

{

y1, . . . , yn
}

 , where yj 
belongs to a set Y of n predefined phenotypes. Given a database D, containing m drug 
pairs with associated phenotypes (either side effects or PK/PD effects), DDIs char-
acterization models aim to predict y given a pair x. It is often assumed that having x 
associated with y means that no other phenotypes in y := Y\y associated with x. This 
assumption is relatively strong, as it is likely that some phenotypes in y that are asso-
ciated with x have not yet been observed or discovered. The probability of such events 
depends on the quality and the exhaustiveness of the experiments conducted to build 
D. Considering this assumption, DDIs characterization is a task with noisy and imbal-
anced datasets. The level of imbalance grows with |Y| when most drug pairs have only 
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a few associated phenotypes (i.e. 
∣

∣y
∣

∣ ≪ |Y| as is often the case in practice (see Table 1). 
Another factor contributing to the imbalance is the uneven frequency distribution of 
phenotypes in Y . As the severity of a phenotype is often inversely correlated to its fre-
quency, D will often have phenotypes whose frequencies are significantly unequal (see 
DrugBank database in Fig. 2, where 93% of reported phenotypes appear only in 5% of 
the dataset). This formalism and its assumptions may seem obvious, but they remain 
significant discrepancy sources between studies. Experimental design and model 
assessment of different studies must account for them to enable a fair comparison and 
faithfulness to reality. We detail in “Evaluation schemes” and “Metrics” sections our 
experimental design and procedures that derive from this formalism.

Fig. 1  Overall framework. The main steps are as follows. First, a feature extractor network to map 
inputs x := (x1, x2) ∈ X  to a latent space. Then, each pair of drugs is represented as a feature vector by 
concatenating the corresponding latent features of the drugs. Last, the feature vectors representing the drug 
pairs are fed into a deep neural network to train the predictor to uncover potential DDIs

Fig. 2  Distribution of phenotypes frequencies in DrugBank (left), Twosides (center), and Twosides-NOSYN 
(right)

Table 1  Statistics of the data sources

Database m |Y| Nb of unique 
drugs

Median of |y| LD

Twosides 63,472 964 645 72.126 0.075

Twosides-NOSYN 63,472 477 645 77.61 0.16

DrugBank 191,878 86 1710 1.002 0.012
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Modelling

To lead our investigation of molecular structure-based methods, we present a general 
deep learning architecture (Fig. 1) that encapsulates recent structure-based DDIs mod-
els [17, 18, 28, 32–35]. Given the formalism presented, DDIs characterization is best 
viewed as a multilabel classification task to take advantage of the correlations between 
phenotypes. The goal is to produce a function that maps each input x to a binary vector 
b ∈ B

|Y| (with B := {0, 1} ). Each position j of that binary vector corresponds to a pheno-
type yj ∈ Y such that bj := 1 if yj ∈ y and 0 otherwise. Consequently, existing methods 
that fit into this view produce DDIs models f having the following form:

where φθ is a molecular feature extractor of parameters θ , g� is a fully connected net-
work of parameters � , and [. . .] is the concatenation operator.

All hidden layers of the network g� have the same number of units (selected by cross-
validation) and use the ReLU activation function. The output layer has |Y| units and uses 
the Sigmoid activation function, meaning that g� output for each yj in Y , the probability 
that it could be induced by the interaction between x1 and x2 . These probabilities can 
be converted into binary outputs using a standard threshold or different thresholds per 
phenotype. We will discuss in the “Metrics” section how to handle these thresholds at 
evaluation. The whole network f is trained end-to-end to find the parameters � and θ 
that optimize the following objective (multilabel binary cross-entropy):

where b̂ := f (x) . To summarize, given a drug pair x , f first computes the representation 
of each of its drugs (x1, x2) . After that, it concatenates the obtained vectors. Finally, this 
concatenation is passed to a non-linear network g� to get the probability of each pheno-
type associated with that pair. Using a threshold, it is then straightforward to infer all the 
phenotypes associated with the pair.

Featurization

The feature extractor φθ is the main difference between existing molecular structure-
based DDIs prediction models. Herein, we explore various choices of molecular repre-
sentation and feature extractors. Specifically, we use three of the most popular molecular 
representations: ECFP6 (Extended Connectivity FingerPrints of diameter 6), SMILES 
(Simplified Molecular-Input Line-Entry System), and molecular graphs (Fig. 2).

ECFP6 [36] are binary vectors encoding the environment around each atom of a mol-
ecule. The surroundings are delimited by the radius going from 0 to 3. These fingerprint 
vectors have 2048 bits and are obtained using the RDKit package [37]. Following [17], 
these fingerprints were first transformed into structural similarity profiles (SSP). Next, 
higher-level molecular features were extracted using the feature extractor φθ . The lat-
ter takes the form of a fully connected network with many ReLU and batch normalized 

f : X × X → B
|Y|

x = (x1, x2) �→ g�

([

φθ (x
1),φθ (x

2)

])

,

(1)argmin
�,θ

E
(x,y)

−







�

yk ∈ y

bk log b̂k +
�

yk ∈ y

(1− bk) log(1− b̂k)






,
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activated hidden layers. The exact number of layers and units is selected by grid search. 
Following [17], we will denote the entire model using this combination of fingerprints 
and network as DeepDDI.

SMILES [38] are string-based structural representations of chemical compounds. Each 
character is first embedded into a continuous space using an embedding layer to extract 
molecular features from a string representation. Next, a Bidirectional Long Short Term 
Memory (BLSTM) [39] or a one-dimensional Convolutional Neural Network (1D-CNN) 
[40] architecture processes the sequence of embeddings representing the SMILES. For 
the BLSTM, multiple ReLU activated hidden layers are used. The output of the network 
of the SMILES last character at the last layer is the output of the feature extractor. For 
the 1D-CNN, there are also multiple ReLU-activated hidden convolution layers. Each 
layer has kernels of size 7 (i.e. they span seven characters of the input sequence) and is 
followed by batch normalization and max-pooling over windows of size 2 before the next 
convolution. At the final convolution layer, max-pooling is performed over the whole 
sequence to have a representation that summarizes the entire sequence. Together, the 
embedding layer with the BLSTM or 1D-CNN networks represents the feature extrac-
tors for SMILES. The number of BLSTM/1D-CNN layers and the number of units per 
layer are all selected by a grid search. We will later use BLSTM and CNN to refer to the 
networks using SMILES with BLSTM and 1D-CNN as feature extractors.

Molecular graphs are among the most natural methods to represent molecular struc-
tures, as atoms and bonds in a molecule can be mapped directly to nodes and edges in a 
graph. To extract features from molecular graphs, we define φθ as a graph convolutional 
network (for a comprehensive review on GCNs, please see [41]). More precisely, we 
use the Graph Isomorphism Network (GIN) architecture [42] using two different pool-
ing strategies. GIN has been theoretically proven to have the maximum discriminative 
power among GNNs. GIN can map isomorphic graphs (i.e. topologically similar graphs) 
to the same representation and non-isomorphic ones to different representations. Spe-
cifically, GIN uses a multi-layer perceptron (MLP) model to update the node features 
[42]. In the first, no pooling is performed after each internal GIN layer, but the aver-
age-pooling is done after the last layer to compute the extractor output. In the second, 
Laplacian pooling (LaPool) [43] hierarchically captures the molecule’s structure at each 
hidden layer before applying a sum-pooling at the last layer. Lastly, LaPool iteratively 
coarsens (collapses nodes to single one) graphs to allow for message passing updates to 
reach distant nodes in the original graph. The main intuition is to measure a node-level 
smoothness to determine which nodes to use as pooling centers. The smoothness indi-
cates the difference in signal between each node and its neighbors. We consider these 
two architectural variations because the GCNs pooling layers can significantly impact 
generalization. We will later refer to the models using these feature extractors as GIN 
and GIN + LaPool.

Data and partitioning

We trained and evaluated our DDIs prediction models using DrugBank and two ver-
sions of Twosides. These datasets have unique characteristics that allow us to draw more 
robust conclusions from our experiments.
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DrugBank provides a repository of experimentally discovered PK/PD interactions and 
clinically validated side effects. It has been introduced by [17] using Drugb​ank v5.0.3. It 
has been preprocessed to retain phenotypes that appear at least five times in the data-
base (the preprocessed version of the database is available at repos​itory). Overall, it cov-
ers 86 types of polypharmacy side effects over 192,284 unique drug pairs.

Twosides is a database mined from text sources. It contains unsafe co-drug prescrip-
tions reported by clinicians after drug approval. It was introduced by [44] and is freely 
accessible on the Pharm​GKB websi​te. Initially, it comprised 1318 unique side effects 
over 63,473 drug pairs. By removing all phenotypes that appear fewer than 500 times 
in the dataset, we reduced the size to the 964 most frequent phenotypes. This version of 
the database is referred to as Twosides.

Zhang et  al. [45] has previously reported that many side effects from the Twosides 
database are semantically and physiologically similar. For example, abnormal blood pres-
sure, high blood pressure, and increased blood pressure relate to the same side effect. 
Similarly, the side effect of blood disorder is related to anemia and hemorrhage, while 
hypocalcemia is synonymous with decreased blood calcium. Other side effects such as 
alcohol abuse or drug abuse are linked to non-physiological factors and cannot be con-
sidered pure side effects. As a result, following [45], we removed specific side effects and 
group the remaining using the Unified Medical Language System (UMLS)—Metathesau-
rus. UMLS has been developed and maintained by the United States National Library 
of Medicine (NLM). Its Metathesaurus is one of the most comprehensive terminologi-
cal systems in biomedicine [46]. It is organized by concept and links similar phenotypes 
from nearly 200 different lexicons to the same idea. It also identifies valuable relation-
ships between concepts and preserves the meanings and associations from each lexicon. 
We downloaded the associations for each of the 964 side effects and filtered them to 
keep only those including side effects belonging to our dataset. After synonym cluster-
ing, the set of phenotypes was reduced to 477 side effects. We refer to this smoothed 
version of the Twosides database as Twosides-NOSYN. Table  1 summarizes the char-
acteristics of the datasets, namely the number of pairs, drugs, phenotypes, and the label 
density (LD), which refers to the ratio of positive and negative values in the dataset.

Evaluation schemes

A common practice in machine learning is to divide the dataset into training, valida-
tion, and testing partitions. A learning algorithm uses the training partition to produce 
a model. The validation partition is then used to select the best model between those 
learned with different hyperparameters combinations at the training phase. To avoid 
overfitting, we apply the early stopping [47] method at the training phase. Finally, the 
testing partition is used to evaluate the model’s performance on data not seen during 
both training and validation. Typical split percentages are 80% for training and 20% 
for testing. The generalization guarantees associated with any machine learning model 
can be provided by using the testing set performances if this set comes from the same 
data distribution as the training set [48, 49]. However, for these guarantees to hold in 
practice, the testing set should also match the data distribution that will be seen after 
the model is deployed. Therefore, it is critical to consider how to construct training and 

https://www.Drugbank.ca/
https://bitbucket.org/kaistsystemsbiology/deepddi/src/master/
https://www.pharmgkb.org/downloads
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evaluation sets from our database D that have statistically solid guarantees when deploy-
ing our DDIs models prospectively.

Randomly splitting the data is often viewed as the best practice for a strong guaran-
tee at test time. Still, it is worth considering the implications for DDIs prediction and 
characterization (also bootstrapping, i.e. redo the random split many times). Specifically, 
randomly splitting drug pairs is not the same as randomly splitting the set of drugs that 
have generated all these pairs. These two splitting procedures will give very different 
generalization performances and guarantees on the final model. For the remainder of 
this section, we explore three splitting schemes used for DDIs characterization and com-
ment on their application to real-life use.

Random split

In automatic discovery and annotation of DDIs, a model is intended to discover and 
characterize DDIs among drugs in a database D. In such cases, after deployment, the 
model will only be exposed to drugs that have been seen during training even if the pairs 
that the model is asked about are unseen (i.e. x := (x1, x2) ) is unseen in training but x1 
and x2 have been seen with other drugs). Consequently, randomly splitting the drug pairs 
into training, validation, and testing sets is the appropriate evaluation scheme because 
the generalization on unseen pairs in the database (not unseen drugs) is the goal.

One‑unseen split

When the model is meant to discover and characterize DDIs between new drugs and 
those that already exist in D, it is critical to refrain from randomly splitting the data. 
Instead, the splitting must be done so that for each pair seen during validation, only one 
of its drugs has been seen during training. Likewise, only one of its drugs must be seen 
during training or validation for each pair in the testing partition. Failing to do so will 
make the deployment settings different from the validation and testing settings, ulti-
mately leading to over-confidence (overfitting) in the model’s capabilities. This scenario 
is relevant when using our DDIs models to predict safety liabilities associated with tak-
ing recently approved drugs in combination with those that already exist.

Both‑unseen split

Moreover, we may be interested to know at some point how safe it is to combine two 
newly approved drugs using our existing DDIs models. Alternatively, we may want to 
take advantage of existing DDIs models when exploring new drug combinations. In this 
case, the goal is to predict how two drugs that have never been seen during the train-
ing might interact with one another. Therefore, the database must be split so that the 
validation and testing partitions contain only pairs for which both drugs are unseen 
during training. Gaining insight into the performance under this scenario, it is critical 
to understand if our models currently understand the molecular mechanisms behind 
DDIs or simply memorize patterns in the data seen during training. Figure 3 summa-
rizes all three evaluation schemes. The training partition is the same in one-unseen and 
both-unseen scenarios, while their sets of unused and testing pairs are mutually exclu-
sive. Consequently, to compute performance in both schemes, one can train and then 
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compute performance on the unused and testing pairs of one scenario separately. This 
helps to avoid doubling the training time unnecessarily.

Metrics

There are various classification metrics suitable for the multilabel classification task, 
namely: Precision, Recall, F1-score, AUROC, and AUPRC. However, due to the labels 
imbalance in the datasets used, we favored using AUPRC (area under the precision-
recall curve) instead of reporting the results only in AUROC (area under the receiver 
operating characteristic curve) [50].

Recall that a ROC curve summarizes the trade-off between the true positive rate 
( TPR := TP/(TP + FN ) ) and the false positive rate ( FPR := FP/(FP + TN ) ) for a 
model using different probability thresholds, where TP, TN, FP, and FN stand for 
True Positive, True Negative, False Positive, and False Negative. Using different prob-
ability thresholds, a precision-recall curve computes the trade-off between the true 
positive rate and the positive predictive value. The area under a precision-recall curve 
AUPRC :=

∑

n(Rn − Rn − 1)Pn is computed as the weighted mean of precision Pn 
achieved at the nth threshold, with the increase in recall (Rn − Rn − 1) from the previous 
thresholds. Intuitively, it measures the classifier’s ability not to label a negative sample as 
positive under any given threshold.

Results
Investigating the importance of evaluation scheme

One of the main assumptions is to evaluate the impact of the partitioning process on the 
models’ performances. We trained and evaluated on Drugbank, Twosides, and Twosides-
NOSYN all the structure-based DDIs models presented in the “Featurization” section, 
namely 1D-CNN, BLSTM, GIN, GIN + LaPool, and DeepDDI. Each model is evaluated 
using every evaluation scheme (random split, one-unseen, and both-seen) across ten 
independent runs with different random seeds. Each run had different training, valida-
tion, and testing partitions. The dataset was divided into three (train/validation/test) sets 
for each run: 60/20/20 for DrugBank, 80/10/10 for Twosides, and Twosides-NOSYN, 

Fig. 3  Evaluation schemes for DDIs models. Left: the random splitting strategy, center: the one-unseen 
splitting strategy, Right: the both-unseen splitting strategy. It is recommended to combine the strategy at 
the center and the right to avoid unnecessarily wasting data. One-unseen and both-unseen share the same 
training examples
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which are the smallest datasets. We report the average AUROC (top boxes) and AUPRC 
(bottom boxes) and their standard deviations on all runs in Fig. 4.

As we assume in “Problem formalism” section, that no other phenotypes in y := Y \ y 
associated with x, we trained our models using all y as the negative samples.

Figure 4 shows that all model performances decrease significantly when the evaluation 
scheme changes from random to one-unseen to both-unseen for both of our datasets. 
However, the random split evaluation scheme models consistently outperformed. The 
decrease of the metrics indicates that the models are getting worse at predicting positive 
and negative labels. This implies that generalizing to new unseen drugs is difficult for all 
structure-based DDIs prediction methods.

To better understand the performance variation, we labeled each of the examples in 
the test set as follows: SS for a drug combination in the test set for which all the drugs 
have been seen in the training set; SU, a pair of drugs with a single one of them in the 
training set and UU a pair of drugs never seen in the training set. Table 2 presents the 
distribution of the SS, SU, and UU types in the test set for each evaluation scheme over 
the ten random runs. The random split evaluation scheme contains the most SS type 
pairs, and therefore the greatest number of drugs shared between the validation sets. 
This is what is expected since we randomly selected the drug pairs. On the other hand, 
one-unseen and both-unseen were the evaluation schemes with the least SS type pairs. 
Looking at the trend of the metrics and the distribution of the different drug pair types, 
we hypothesized that it is easier for models to propagate information from one drug 
seen to other drugs than from drugs never seen in training.

Fig. 4  Models performances on random, one-unseen, and both-unseen evaluation schemes. The AUROC 
is given on top, and the AUPRC is shown at the bottom. The scores are presented with their mean standard 
deviation obtained through ten independent runs with random seeds. Again, axes are on different scales
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Investigating the impact of intra‑class and inter‑class imbalances

Generally, most of the DDIs discovery datasets are heavily imbalanced. There are two 
types of imbalances: the intra-class i.e. for the same phenotype, we have an imbalance 
between positive and negative samples. There is also the inter-class which means there is 
an imbalance representation overall between all the side effects to be predicted i.e. there 
are more examples of some side effects than others. The goal is to determine the impact 
of different proportions of positive and negative samples on the ability of the models to 
generalize well to new unseen drugs. To proceed, we measured the frequency of each 
phenotype in the test and the training sets. Then, we evaluated different bins (intervals) 
categories of phenotype frequency and obtained three bins for DrugBank and four bins 
for Twosides and Twosides-NOSYN (Fig. 5). Figure 5 shows the impact of the different 
evaluation schemes on the different phenotypes present in our datasets.

Like Fig. 4, Fig. 5 also confirms the trend of the more complex the evaluation scheme 
gets ((random < one-unseen < both-unseen)), the metrics (AUROC and AUPRC) 
decreased. But Fig.  5 also shows a similar behavior within the bins i.e. this decrease 

Table 2  Of drug combinations in the test set

The scores are presented with their mean standard deviation obtained through ten rounds of single training-test setups

Dataset Splitting scheme Nb. of drug combinations SS SU UU

Drugbank Random 38,363 ± 0 38,341 ± 5 21 ± 5 0 ± 1

One-unseen 46,178 ± 1598 0 ± 0 46,178 ± 1598 0 ± 0

Both-unseen 7580 ± 6834 0 ± 0 0 ± 0 7580 ± 6834

Twosides Random 6348 ± 0 6347 ± 1 1 ± 1 0 ± 0

One-unseen 9706 ± 630 0 ± 0 9706 ± 630 0 ± 0

Both-unseen 629 ± 107 0 ± 0 0 ± 0 629 ± 107

Fig. 5  Impact of evaluation schemes on the different categories of phenotypes. The phenotypes are 
grouped according to their frequencies in the datasets. For example, [11,22[ in x-axis groups all phenotypes 
present at greater than 11% and less than 22% in the training set. On the other hand, for DrugBank, there are 
only 3 different intervals because there is no phenotype present above 25%, which is the case in Twosides 
and Twosides-NOSYN. AUPRC and AUROC scores are from our best model (1D-CNN) on the benchmark 
datasets
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occurred consistently across all phenotypes no matter their frequencies. Therefore, 
the low-frequency phenotypes are affected by the difficulty of the evaluation scheme, 
i.e. the inter-class imbalance is equally affected no matter the phenotype or the dataset. 
Another observation was that the ratio of positive-to-negative samples for each pheno-
type correlates with the models’ ability to correctly label a sample under any threshold, 
suggesting that the intra-imbalance influences the learning process. For example, most 
phenotypes with low AUPRC ( ≤ 0.3) have several negative samples in the training set 
that were several times higher than the positive samples. As a result, only a few samples 
were predicted as positive, resulting in a low rate of true positives (TP) predictions. In 
contrast, side effects with a relatively high AUPRC ( ≥ 0.8) and very low AUROC have 
more positive samples in the training set, and the ones with the most significant results 
(both AUROC and AUPRC high) are those with a ratio of negative/positive examples 
close to one. This highlights that when the number of positive examples for a phenotype 
grows, the models better distinguish positive and negative DDIs (unless positive DDIs 
outgrow the negative). Our results also suggest that the imbalanced nature of the task 
is an important impediment for learning and generalization regardless of the evaluation 
scheme. To overcome this hurdle, databases with more DDIs must be created, or bet-
ter strategies to handle an imbalance in multilabel classification should be developed. 
In addition, using a single value of AUROC or AUPRC to report the DDIs model per-
formances should be avoided as it is non-informative regarding the model predictive 
performance.

Investigating the importance of drug encoding

The drug encoding step initiates the learning process. Since each model uses a specific 
drug representation, we evaluated the impact of the drug encoding on the learning 
process. Three types of representations were used: SMILES, fingerprints, and molecu-
lar graph representation. Figure  4 presents the results of all our encodings (1D-CNN 
BLSTM = SMILES, GIN & GIN + LaPool = molecular graph, DeepDDI = Fingerprint). 
It shows that overall performances vary between models. This expected behavior under-
scores the importance of using the right molecular representations with the right feature 
extractors.

Generally, the SMILES drug representation outperforms the fingerprint and molecu-
lar graph approaches in random and one-unseen evaluation schemes for AUPRC and 
AUROC (see Fig. 4). However, models using graph encoding such as GIN perform better 
in the most constraining evaluation scheme (i.e. both-unseen). Moreover, compared to 
the state-of-the-art, in the random scheme (the most common and used scheme in the 
literature), our model performances were on par or better than those reported in recent 
studies (Table 3).

We hypothesize that the low predictive performance on Twosides arises from the low 
number of training examples, as Twosides is much smaller than DrugBank. Interest-
ingly, these scores show that the general architecture used is as robust as any recently 
published random split models. Even those outside of the structure-based DDIs, such as 
adjacency matrix factorization (AMF) [33], who represent the problem as a link predic-
tion problem, reported 0.991 AUROC and 0.950 AUPRC. Zitnik et al. [18] (Decagon), a 
GCN network over a multimodal graph of protein–protein interactions, drug–protein 
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target interactions, and drug–drug interactions, reported an AUROC of 0.872. Shtar 
et al. [33] and Zitnik et al. [18] handle the data imbalance through random under-sam-
pling from the set of negative samples at a ratio corresponding to the positive set. As 
mentioned above, all negative examples have been considered intentionally.

We also noticed that the drop in performance is not drastic for all the evaluated mod-
els. For example, compared to other models, the change of evaluation scheme does not 
significantly affect the graph network (GIN). Moreover, the difference in performance 
between recurrent networks (1D-CNN, BLSTM) and graph networks is much more sig-
nificant when one is in the random mode.

Investigating the robustness of models

Once the models are built, we accessed their robustness, i.e. how consistently accu-
rate the output is even if one or more of the features of the examples in the dataset or 
the assumptions about those examples are drastically changed. This validation finds its 
legitimacy in the simple fact that a robust model (if we consider the different measured 
metrics) is not necessarily a powerful model. There are other criteria beyond metric 
performances which must be validated to assure the robustness of a model before its 
deployment, including its stability and sensitivity (tolerance to noise).

In Fig. 4, we tackled the stability aspect of the models. Figure 4 presents the score for 
the AUROC and the AUPRC and displays those metrics’ standard deviation over ten 
random runs. Indeed, the standard deviation offers a measure of the degree of varia-
tion or dispersion of the performance of the models between each random run. Figure 4 
shows that most of the tested models had slight performance variations (especially for 
random split settings), indicating that the models were relatively stable. To evaluate the 
sensitivity of the models, we use a particular advantage of the SMILES representation. 
Several different SMILES strings can represent a single molecule. All the variants con-
tain the same atoms but read in a separate order. The number of possible SMILES strings 
depends on the size of the molecule. The longer the molecule, the more variants can 
be found. In all the experimentations, we have used (as in the literature) the canonical 
smiles, which is a consensus between the different SMILES string representation for a 
molecule. To investigate the sensitivity, we generated for each molecule in the training 
sets a fixed number n of SMILES strings using the cheminformatics library RDKit. This 
technique is known as data augmentation and is widely used to build robust models [52, 
53]. We mainly used the 1D-CNN and the GIN models, which respectively register the 

Table 3  Performance comparison on Drugbank and Twosides datasets for the random split scheme

Dataset Method AUROC AUPRC

Drugbank DeepDDI [17] 0.994 0.866

NDD [32] 0.954 0.922

1D-CNN (Ours) 0.999 0.96

SSI-DDI [28] 0.983 0.981
Twosides MHCADDI [19] 0.882 –

GENN [51] 0.886 0.260

1D-CNN (Ours) 0.889 0.420
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best performance for random + one-unseen and both-unseen. Figure 6 shows how the 
performance gap µ evolves according to the numbern of randomized smiles generated 
per drug when switching from the random scheme to one-unseen and both-unseen. We 
note that using augmented dataset considerably reduced the initial gap between the dif-
ferent evaluation schemes. We also observed that graphs (GIN) and CNN + randomized 
smiles generated the lowest values compared to fingerprints, with special mention for 
graphs that continue to have the best performance on both-unseen (Additional file  1: 
Table S1, Additional file 1: Table S2 and Additional file 1: Table S3). Moreover, the GIN 
model is more robust and less sensitive than the 1D-CNN model to the different SMILES 
variations (Additional file 1: Table S2 and Additional file 1: Table S3). This is explained 
because the molecular graph is the same for canonical SMILES and all its variants.

Multitask learning: adding an auxiliary task

We attempted to improve the models’ ability to generalize to new unseen molecules 
using a multitask framework. To do so, we added a new auxiliary task to the learning 
process. The goal was to learn shared drug representations across the tasks. We assumed 
that those representations would be helpful to our main task. Hence, the auxiliary task 
should be related to the main task in some way to share a common optimal hypothesis 
space, i.e. to have the same inductive bias [54].

As an auxiliary task, we chose the Connectivity Map (CMAP) score prediction task, 
which predicts for each pair of drugs a score ranging from −100 to 100 related to how 
the two drugs are similar in transcriptional response. Recent findings strengthen the 
hypothesis that gene-expression changes can, to some extent, reflect drug activities and 
provide information about mechanisms of action (MoA) [55–57]. It also informs on the 
molecular targets since high similarity transcriptional responses could represent valid 
and previously unrecognized connections, e.g. between two proteins operating in the 

Fig. 6  SMILES Data Augmentation results. The first row: We tested different values of n and report the 
gap between our evaluations schemes. ( µ1 = random–one unseen, µ2 = random–both unseen, µ3 = 
one-unseen–both-unseen). Best n = 20 for Twosides and n = 80 for DrugBank. Second row: we compare 
ourselves, i.e. best-randomized smiles (Rand, smiles) to GIN, fingerprints, and canonical SMILES
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same pathway, between a small molecule and its protein target, or between two small 
molecules of a similar function but structural dissimilarity. The Connectivity Map 
(CMap) scores of drug pairs are from the Touchstone dataset (Touchstone V1.0) pro-
vided by the Broad Institute [58]. Transcriptional profiles used to compute CMap score 
in Touchstone are obtained from high-throughput gene expression profiling technol-
ogy (L1000), which measures the mRNA transcript abundance of 978 “landmark” genes 
from human cells. The “L” in L1000 refers to the Landmark genes measured in the assay.

For multitask learning, we readapted the training schemes to fit with the new learning 
task. Therefore, we tried many new protocols to evaluate which ones yielded the best 
results. First, we co-trained a joint network using: (a) an identical batch for all models 
during the training phase, i.e. the same drugs pairs samples; then a filter (mask) is used 
to handle the drugs pairs samples that do not belong to the two tasks (C1), (b) random 
batches during training; each model has its own drugs pairs samples. Second, we pre-
trained our drug feature extractor for CMap prediction and then: (c) freeze the weights 
of the drug features extractor (T1) and (d) start with the pre-trained model features 
extractor weights to train a new model (T2). The training scheme that yielded the best 
results was co-training C1 (see Additional file  1: Table  S3). We achieved a maximum 
improvement of 5% and 2% respectively on the macro and micro performance for the 
SMILES models when using the random evaluation scheme. Compared to the random 
scheme, the improvements were slightly less significant for the one-unseen and both-
unseen (maximum improvement of 3%) (Additional file  1: Table  S4, Additional file  1: 
Table  S5, Additional file  1: Table  S6 and Additional file  1: Table  S7). No significant 
improvements were noted for the graph models (Additional file 1: Table S6).

To better understand why multitasking does not seem to work, we quantified the dis-
tance between the training, validation, and test sets drugs features distributions via the 
concept of Maximum Mean Discrepancy (MMD). MMD is defined by the idea of repre-
senting distances between distributions as distances between mean embeddings of fea-
tures. The further away from random, the more the MMD increases (Fig. 7), showing 
that domain adaptation framework could be more suitable in our specific case. For the 

Fig. 7  Maximum mean discrepancy (MMD) between drug features distributions. We estimated the 
maximum mean discrepancy between drug features distributions in train, test, and validation partitions for 
each of our evaluation schemes
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prediction of CMap scores, we obtained results similar to the state-of-the-art (MSE = 
0.084 [58]).

Database validation: identifying new drug repositioning candidates

Lastly, we checked the quality of the datasets used by investigating all negative samples 
labeled 0 in Twosides (ground truth, i.e. TN) for which the output of our best model, the 
1D-CNN model, was greater than or equal to 0.7 ( ≥ 0.7) and confirmed that there is a 
substantial body of evidence in validated databases and published papers that demon-
strate the existence of these interactions. This experiment was inspired by Fig. 5, which 
shows that model performance degrades as the number of negative samples increases, 
especially on Twosides. Table 5 shows ten potential DDIs examples with possible side 
effects, their frequency in the dataset, and the probability output by our model.

Table 4  Uncovering the False Negatives examples in Twosides database

The table shows the drug–drug potential side effect and their probability of existence predicted by the 1D-CNN model

Drug1 Drug2 Side effect (SE) SE freq (%) Probability

Random One-unseen Both-unseen

Fenofibrate Valsartan Hepatitis c 5.1 0.008 – –

Verapamil Fluvoxamine Hepatitis c 5.1 0.019 0.034 –

Bupropion Fluoxetine Hepatitis a 1.0 0.052 0.008 –

Bupropion Fluoxetine HIV disease 0.9 0.084 0.009 –

Paroxetine Risperidone HIV disease 0.9 0.035 0.006 –

Mupirocin Sertraline Drug withdrawal 12.5 0.015 0.107 0.056

Amlodipine Cerivastatin Flu 10.4 0.028 0.050 –

Metoclopramide Minoxidil Road traffic accident 14.6 0.048 0.005 –

n-Acetylcysteine Cefuroxime Herpes simplex 6.8 0.029 0.028 –

Clonazepam Salmeterol Adverse drug effect 7.5 0.048 – 0.048

Table 5  Uncovering potential new DDIs from the 1D-CNN model

The table shows the drug–drug potential side effects supported with the existence probability predicted with the literature 
link proof

Drug1 Drug2 Side effect (SE) SE freq (%) Probability Proof

Random One-unseen Both-unseen

Bupropion Benazepril Heart attack 25.8 0.951 – 0.182 e-1

Didanosine Stavudine Acidosis 13.6 0.872 0.068 – 2-2

Bupropion Fluoxetine Panic attack 10.5 0.868 0.100 – e-3

Bupropion Orphenadrine Muscle spasm 24.2 0.865 0.161 – e-4

Tramadol Zolpidem Diaphragmatic 
hernia

1.4 0.854 0.029 0.041 e-5

Paroxetine Fluticasone Muscle spasm 24.2 0.871 0.355 – e-6

Paroxetine Fluticasone Fatigue 38.2 0.863 0.450 – e-7

Fluoxetine Methadone Pain 37.6 0.769 – – e-8

Carboplatin Cisplatin Blood sodium 
decreased

23.1 0.749 0.097 0.080 e-9

Chlorthalidone Fluticasone High blood 
pressure

30.5 0.797 0.439 – e-​10

https://www.drugs.com/interactions-check.php?drug_list=332-0.440-0
https://www.sciencedirect.com/science/article/pii/B9781455706952000110
https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/018644s052lbl.pdf
https://www.drugs.com/drug-interactions/aspirin-caffeine-orphenadrine-with-wellbutrin-xl-250-0-440-2469.html
https://www.drugs.com/drug-interactions/ambien-with-tramadol-2333-1544-2221-0.html
https://www.drugs.com/drug-interactions/advair-diskus-with-paroxetine-1126-657-1800-0.html?professional=1
https://www.drugs.com/drug-interactions/advair-diskus-with-paroxetine-1126-657-1800-0.html?professional=1
https://www.sciencedirect.com/science/article/pii/S0033318209707790?via%3Dihub
https://www.ncbi.nlm.nih.gov/pubmed/22897880
https://www.healthline.com/health/fluticasone-ssalmeterolalmeterol-inhalation-powder#interactions
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We also investigated all drug interactions labeled 1 in Twosides (ground truth, i.e. TP), 
which obtained very low probabilities ( ≤ 0.1) (our model labeled them 0, i.e. FN). Table 4 
shows the ten DDIs examples selected with their potential side effects (as stated in the 
Twosides database), their frequency in the dataset, and the probability output from our 
model. False Negative side effects predicted were generally non-intuitive and meaning-
less (drug withdrawal, adverse drug effect, road traffic accident) or related to sexually 
transmitted diseases. For example, it was easy to determine that in the case of sexually 
transmitted diseases, drug combinations can make the disease worse but not cause it. 
It is also counter-intuitive to think about the drug’s withdrawal as a side effect except 
for addictive drugs. Nevertheless, it can also be a consequence of a potentially harmful 
side effect. The above observations are consistent with [59] study, which showed that a 
small number of novel drug interactions reported in Twosides have been corroborated 
by thorough investigations of relevant patient records as well as laboratory experiments 
(Table 5).

Moreover, we confirmed the similarity in the distribution of TP, TN, FN (misla-
beling errors), and FP (i.e. potential DDIs) testing pairs compared to positive train-
ing samples with the same phenotypes. Figure  8 presents that distribution on 4 
different phenotypes. The similarity of two drug pairs (a,  b) and (c,  d) is given by 
0.5×max(t(a, c), t(a, d))+ 0.5×max(t(b, c), t(b, d)) , where t is the Tanimoto similarity 

Fig. 8  Distribution of similarity of drugs for four candidates side effects. Examples are from Twosides 
database
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using ECFP6 fingerprints [60]. On one hand, the similarity distributions of true posi-
tives are almost identical to those of false positives, making false positives (FP) more 
trustworthy candidates for DDIs. On the other hand, the similarity distributions of true 
negatives are almost identical to those of false negatives, which makes the false negatives 
(FN) candidates for mislabeling.

Discussion and conclusion
We investigated and presented an overview of the methods for predicting drug interac-
tions. Most of these methods use the molecular structure of drugs to overcome the lim-
ited information available at the beginning of the drug development process for potential 
new medicines. However, other factors must be considered to improve the models to 
enhance the drug discovery process.

Model generalization

The primary factor impacting the ability to generalize existing models to new unseen 
molecules is the lack of standardization of the training process. We show that current 
studies use overly optimistic training modes, especially if the goal is to predict inter-
actions between new drugs. Indeed, despite their ability to identify new DDIs amongst 
drugs seen during training, current model performances decrease significantly if they 
have to generalize to unseen drugs. Therefore, they can limit the search space of possi-
ble drug combinations and provide an alternative starting point towards repurposing old 
drugs. To predict interactions between new molecules, it is then more realistic to train 
models using disjointed evaluation schemes similar to both-unseen and one-unseen, 
while taking into account the distribution of phenotypes in the training set. In addi-
tion, the results of “Multitask learning: adding an auxiliary task” section strongly suggest 
that domain adaptation (DA) (or transfer learning) could improve the prediction of side 
effects for new drugs.

Robustness of models

We tested different drug encoding methods for our models: SMILES, molecular graphs, 
and fingerprints. Each representation is suited for a specific model. The SMILES repre-
sentation is well suited for the bidirectional long short-term memory model (BLSTM) 
and the 1D convolutional neural network model (CNN) because BLSTM and 1D-CNN 
can capture sequential information of string input. The GIN models and their vari-
ations are well suited for the molecular graphs’ representation. The deep feedforward 
neural network is used with fingerprints. Our results demonstrate that recurrent models 
(BLSTM and CNN) and graph models perform better than feedforward neural networks 
using fingerprints. They also show that graph models are ideal for predicting interac-
tions between new molecules and are much less sensitive to the order in which the 
molecule’s components are read. This is not the case for recurrent networks, which are 
highly dependent on how SMILES are generated. It is therefore recommended to use 
several variants of the same molecule (SMILES) (“Investigating the robustness of mod-
els” section) during training to build robust feature extractors, which will help recurrent 
models to generalize even better when using the random scheme.
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Database validation

A qualitative analysis of the results (“Database validation: identifying new drug repo-
sitioning candidates” section) indicates the need for experimental validation of all 
the interactions reported in databases such as Twosides, which are derived from data 
mining. Furthermore, databases should be constructed to provide interactions and 
non-interactions (true negatives) to help develop reliable prediction algorithms. It is, 
therefore, preferable to use a curated reference set of drug interactions instead of data 
obtained through data mining.
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